Files
test2/source/blender/blenlib/intern/uvproject.c
Campbell Barton e955c94ed3 License Headers: Set copyright to "Blender Authors", add AUTHORS
Listing the "Blender Foundation" as copyright holder implied the Blender
Foundation holds copyright to files which may include work from many
developers.

While keeping copyright on headers makes sense for isolated libraries,
Blender's own code may be refactored or moved between files in a way
that makes the per file copyright holders less meaningful.

Copyright references to the "Blender Foundation" have been replaced with
"Blender Authors", with the exception of `./extern/` since these this
contains libraries which are more isolated, any changed to license
headers there can be handled on a case-by-case basis.

Some directories in `./intern/` have also been excluded:

- `./intern/cycles/` it's own `AUTHORS` file is planned.
- `./intern/opensubdiv/`.

An "AUTHORS" file has been added, using the chromium projects authors
file as a template.

Design task: #110784

Ref !110783.
2023-08-16 00:20:26 +10:00

189 lines
4.6 KiB
C

/* SPDX-FileCopyrightText: 2023 Blender Authors
*
* SPDX-License-Identifier: GPL-2.0-or-later */
/** \file
* \ingroup bli
*/
#include <math.h>
#include "MEM_guardedalloc.h"
#include "DNA_camera_types.h"
#include "DNA_object_types.h"
#include "BLI_math_matrix.h"
#include "BLI_math_rotation.h"
#include "BLI_math_vector.h"
#include "BLI_uvproject.h"
typedef struct ProjCameraInfo {
float camangle;
float camsize;
float xasp, yasp;
float shiftx, shifty;
float rotmat[4][4];
float caminv[4][4];
bool do_persp, do_pano, do_rotmat;
} ProjCameraInfo;
void BLI_uvproject_from_camera(float target[2], float source[3], ProjCameraInfo *uci)
{
float pv4[4];
copy_v3_v3(pv4, source);
pv4[3] = 1.0;
/* rotmat is the object matrix in this case */
if (uci->do_rotmat) {
mul_m4_v4(uci->rotmat, pv4);
}
/* caminv is the inverse camera matrix */
mul_m4_v4(uci->caminv, pv4);
if (uci->do_pano) {
float angle = atan2f(pv4[0], -pv4[2]) / ((float)M_PI * 2.0f); /* angle around the camera */
if (uci->do_persp == false) {
target[0] = angle; /* no correct method here, just map to 0-1 */
target[1] = pv4[1] / uci->camsize;
}
else {
float vec2d[2]; /* 2D position from the camera */
vec2d[0] = pv4[0];
vec2d[1] = pv4[2];
target[0] = angle * ((float)M_PI / uci->camangle);
target[1] = pv4[1] / (len_v2(vec2d) * (uci->camsize * 2.0f));
}
}
else {
if (pv4[2] == 0.0f) {
pv4[2] = 0.00001f; /* don't allow div by 0 */
}
if (uci->do_persp == false) {
target[0] = (pv4[0] / uci->camsize);
target[1] = (pv4[1] / uci->camsize);
}
else {
target[0] = (-pv4[0] * ((1.0f / uci->camsize) / pv4[2])) / 2.0f;
target[1] = (-pv4[1] * ((1.0f / uci->camsize) / pv4[2])) / 2.0f;
}
}
target[0] *= uci->xasp;
target[1] *= uci->yasp;
/* adds camera shift + 0.5 */
target[0] += uci->shiftx;
target[1] += uci->shifty;
}
void BLI_uvproject_from_view(float target[2],
float source[3],
float persmat[4][4],
float rotmat[4][4],
float winx,
float winy)
{
float pv4[4], x = 0.0, y = 0.0;
copy_v3_v3(pv4, source);
pv4[3] = 1.0;
/* rotmat is the object matrix in this case */
mul_m4_v4(rotmat, pv4);
/* almost ED_view3d_project_short */
mul_m4_v4(persmat, pv4);
if (fabsf(pv4[3]) > 0.00001f) { /* avoid division by zero */
target[0] = winx / 2.0f + (winx / 2.0f) * pv4[0] / pv4[3];
target[1] = winy / 2.0f + (winy / 2.0f) * pv4[1] / pv4[3];
}
else {
/* scaling is lost but give a valid result */
target[0] = winx / 2.0f + (winx / 2.0f) * pv4[0];
target[1] = winy / 2.0f + (winy / 2.0f) * pv4[1];
}
/* v3d->persmat seems to do this funky scaling */
if (winx > winy) {
y = (winx - winy) / 2.0f;
winy = winx;
}
else {
x = (winy - winx) / 2.0f;
winx = winy;
}
target[0] = (x + target[0]) / winx;
target[1] = (y + target[1]) / winy;
}
ProjCameraInfo *BLI_uvproject_camera_info(Object *ob, float rotmat[4][4], float winx, float winy)
{
ProjCameraInfo uci;
Camera *camera = ob->data;
uci.do_pano = (camera->type == CAM_PANO);
uci.do_persp = (camera->type == CAM_PERSP);
uci.camangle = focallength_to_fov(camera->lens, camera->sensor_x) / 2.0f;
uci.camsize = uci.do_persp ? tanf(uci.camangle) : camera->ortho_scale;
/* account for scaled cameras */
copy_m4_m4(uci.caminv, ob->object_to_world);
normalize_m4(uci.caminv);
if (invert_m4(uci.caminv)) {
ProjCameraInfo *uci_pt;
/* normal projection */
if (rotmat) {
copy_m4_m4(uci.rotmat, rotmat);
uci.do_rotmat = true;
}
else {
uci.do_rotmat = false;
}
/* also make aspect ratio adjustment factors */
if (winx > winy) {
uci.xasp = 1.0f;
uci.yasp = winx / winy;
}
else {
uci.xasp = winy / winx;
uci.yasp = 1.0f;
}
/* include 0.5f here to move the UVs into the center */
uci.shiftx = 0.5f - (camera->shiftx * uci.xasp);
uci.shifty = 0.5f - (camera->shifty * uci.yasp);
uci_pt = MEM_mallocN(sizeof(ProjCameraInfo), "ProjCameraInfo");
*uci_pt = uci;
return uci_pt;
}
return NULL;
}
void BLI_uvproject_from_view_ortho(float target[2], float source[3], const float rotmat[4][4])
{
float pv[3];
mul_v3_m4v3(pv, rotmat, source);
/* ortho projection */
target[0] = -pv[0];
target[1] = pv[2];
}
void BLI_uvproject_camera_info_scale(ProjCameraInfo *uci, float scale_x, float scale_y)
{
uci->xasp *= scale_x;
uci->yasp *= scale_y;
}