Listing the "Blender Foundation" as copyright holder implied the Blender Foundation holds copyright to files which may include work from many developers. While keeping copyright on headers makes sense for isolated libraries, Blender's own code may be refactored or moved between files in a way that makes the per file copyright holders less meaningful. Copyright references to the "Blender Foundation" have been replaced with "Blender Authors", with the exception of `./extern/` since these this contains libraries which are more isolated, any changed to license headers there can be handled on a case-by-case basis. Some directories in `./intern/` have also been excluded: - `./intern/cycles/` it's own `AUTHORS` file is planned. - `./intern/opensubdiv/`. An "AUTHORS" file has been added, using the chromium projects authors file as a template. Design task: #110784 Ref !110783.
943 lines
26 KiB
C++
943 lines
26 KiB
C++
/* SPDX-FileCopyrightText: 2011 Blender Authors
|
|
*
|
|
* SPDX-License-Identifier: GPL-2.0-or-later */
|
|
|
|
#include "BLI_jitter_2d.h"
|
|
|
|
#include "COM_VectorBlurOperation.h"
|
|
|
|
namespace blender::compositor {
|
|
|
|
/* Defined */
|
|
#define PASS_VECTOR_MAX 10000.0f
|
|
|
|
/* Forward declarations */
|
|
struct DrawBufPixel;
|
|
struct ZSpan;
|
|
void zbuf_accumulate_vecblur(NodeBlurData *nbd,
|
|
int xsize,
|
|
int ysize,
|
|
float *newrect,
|
|
const float *imgrect,
|
|
float *vecbufrect,
|
|
const float *zbufrect);
|
|
void zbuf_alloc_span(ZSpan *zspan, int rectx, int recty, float clipcrop);
|
|
void zbuf_free_span(ZSpan *zspan);
|
|
void antialias_tagbuf(int xsize, int ysize, char *rectmove);
|
|
|
|
/* VectorBlurOperation */
|
|
|
|
VectorBlurOperation::VectorBlurOperation()
|
|
{
|
|
this->add_input_socket(DataType::Color);
|
|
this->add_input_socket(DataType::Value); /* ZBUF */
|
|
this->add_input_socket(DataType::Color); /* SPEED */
|
|
this->add_output_socket(DataType::Color);
|
|
settings_ = nullptr;
|
|
cached_instance_ = nullptr;
|
|
input_image_program_ = nullptr;
|
|
input_speed_program_ = nullptr;
|
|
input_zprogram_ = nullptr;
|
|
flags_.complex = true;
|
|
flags_.is_fullframe_operation = true;
|
|
}
|
|
void VectorBlurOperation::init_execution()
|
|
{
|
|
init_mutex();
|
|
input_image_program_ = get_input_socket_reader(0);
|
|
input_zprogram_ = get_input_socket_reader(1);
|
|
input_speed_program_ = get_input_socket_reader(2);
|
|
cached_instance_ = nullptr;
|
|
QualityStepHelper::init_execution(COM_QH_INCREASE);
|
|
}
|
|
|
|
void VectorBlurOperation::execute_pixel(float output[4], int x, int y, void *data)
|
|
{
|
|
float *buffer = (float *)data;
|
|
int index = (y * this->get_width() + x) * COM_DATA_TYPE_COLOR_CHANNELS;
|
|
copy_v4_v4(output, &buffer[index]);
|
|
}
|
|
|
|
void VectorBlurOperation::deinit_execution()
|
|
{
|
|
deinit_mutex();
|
|
input_image_program_ = nullptr;
|
|
input_speed_program_ = nullptr;
|
|
input_zprogram_ = nullptr;
|
|
if (cached_instance_) {
|
|
MEM_freeN(cached_instance_);
|
|
cached_instance_ = nullptr;
|
|
}
|
|
}
|
|
void *VectorBlurOperation::initialize_tile_data(rcti *rect)
|
|
{
|
|
if (cached_instance_) {
|
|
return cached_instance_;
|
|
}
|
|
|
|
lock_mutex();
|
|
if (cached_instance_ == nullptr) {
|
|
MemoryBuffer *tile = (MemoryBuffer *)input_image_program_->initialize_tile_data(rect);
|
|
MemoryBuffer *speed = (MemoryBuffer *)input_speed_program_->initialize_tile_data(rect);
|
|
MemoryBuffer *z = (MemoryBuffer *)input_zprogram_->initialize_tile_data(rect);
|
|
float *data = (float *)MEM_dupallocN(tile->get_buffer());
|
|
this->generate_vector_blur(data, tile, speed, z);
|
|
cached_instance_ = data;
|
|
}
|
|
unlock_mutex();
|
|
return cached_instance_;
|
|
}
|
|
|
|
bool VectorBlurOperation::determine_depending_area_of_interest(rcti * /*input*/,
|
|
ReadBufferOperation *read_operation,
|
|
rcti *output)
|
|
{
|
|
if (cached_instance_ == nullptr) {
|
|
rcti new_input;
|
|
new_input.xmax = this->get_width();
|
|
new_input.xmin = 0;
|
|
new_input.ymax = this->get_height();
|
|
new_input.ymin = 0;
|
|
return NodeOperation::determine_depending_area_of_interest(&new_input, read_operation, output);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
void VectorBlurOperation::get_area_of_interest(const int /*input_idx*/,
|
|
const rcti & /*output_area*/,
|
|
rcti &r_input_area)
|
|
{
|
|
r_input_area = this->get_canvas();
|
|
}
|
|
|
|
void VectorBlurOperation::update_memory_buffer(MemoryBuffer *output,
|
|
const rcti &area,
|
|
Span<MemoryBuffer *> inputs)
|
|
{
|
|
/* TODO(manzanilla): once tiled implementation is removed, run multi-threaded where possible. */
|
|
if (!cached_instance_) {
|
|
MemoryBuffer *image = inputs[IMAGE_INPUT_INDEX];
|
|
const bool is_image_inflated = image->is_a_single_elem();
|
|
image = is_image_inflated ? image->inflate() : image;
|
|
|
|
/* Must be a copy because it's modified in #generate_vector_blur. */
|
|
MemoryBuffer *speed = inputs[SPEED_INPUT_INDEX];
|
|
speed = speed->is_a_single_elem() ? speed->inflate() : new MemoryBuffer(*speed);
|
|
|
|
MemoryBuffer *z = inputs[Z_INPUT_INDEX];
|
|
const bool is_z_inflated = z->is_a_single_elem();
|
|
z = is_z_inflated ? z->inflate() : z;
|
|
|
|
cached_instance_ = (float *)MEM_dupallocN(image->get_buffer());
|
|
this->generate_vector_blur(cached_instance_, image, speed, z);
|
|
|
|
if (is_image_inflated) {
|
|
delete image;
|
|
}
|
|
delete speed;
|
|
if (is_z_inflated) {
|
|
delete z;
|
|
}
|
|
}
|
|
|
|
const int num_channels = COM_data_type_num_channels(get_output_socket()->get_data_type());
|
|
MemoryBuffer buf(cached_instance_, num_channels, this->get_width(), this->get_height());
|
|
output->copy_from(&buf, area);
|
|
}
|
|
|
|
void VectorBlurOperation::generate_vector_blur(float *data,
|
|
MemoryBuffer *input_image,
|
|
MemoryBuffer *input_speed,
|
|
MemoryBuffer *inputZ)
|
|
{
|
|
NodeBlurData blurdata;
|
|
blurdata.samples = settings_->samples / QualityStepHelper::get_step();
|
|
blurdata.maxspeed = settings_->maxspeed;
|
|
blurdata.minspeed = settings_->minspeed;
|
|
blurdata.curved = settings_->curved;
|
|
blurdata.fac = settings_->fac;
|
|
zbuf_accumulate_vecblur(&blurdata,
|
|
this->get_width(),
|
|
this->get_height(),
|
|
data,
|
|
input_image->get_buffer(),
|
|
input_speed->get_buffer(),
|
|
inputZ->get_buffer());
|
|
}
|
|
|
|
/* -------------------------------------------------------------------- */
|
|
/** \name Spans
|
|
*
|
|
* Duplicated logic from `zbuf.cc`.
|
|
* \{ */
|
|
|
|
/** Span fill in method, is also used to localize data for Z-buffering. */
|
|
struct ZSpan {
|
|
/* range for clipping */
|
|
int rectx, recty;
|
|
|
|
/* actual filled in range */
|
|
int miny1, maxy1, miny2, maxy2;
|
|
/* vertex pointers detect min/max range in */
|
|
const float *minp1, *maxp1, *minp2, *maxp2;
|
|
float *span1, *span2;
|
|
|
|
/* transform from hoco to zbuf co */
|
|
float zmulx, zmuly, zofsx, zofsy;
|
|
|
|
int *rectz;
|
|
DrawBufPixel *rectdraw;
|
|
float clipcrop;
|
|
};
|
|
|
|
/**
|
|
* Each Z-buffer has coordinates transformed to local rectangle coordinates,
|
|
* so we can simply clip.
|
|
*/
|
|
void zbuf_alloc_span(ZSpan *zspan, int rectx, int recty, float clipcrop)
|
|
{
|
|
memset(zspan, 0, sizeof(ZSpan));
|
|
|
|
zspan->rectx = rectx;
|
|
zspan->recty = recty;
|
|
|
|
zspan->span1 = (float *)MEM_mallocN(recty * sizeof(float), "zspan");
|
|
zspan->span2 = (float *)MEM_mallocN(recty * sizeof(float), "zspan");
|
|
|
|
zspan->clipcrop = clipcrop;
|
|
}
|
|
|
|
void zbuf_free_span(ZSpan *zspan)
|
|
{
|
|
if (zspan) {
|
|
if (zspan->span1) {
|
|
MEM_freeN(zspan->span1);
|
|
}
|
|
if (zspan->span2) {
|
|
MEM_freeN(zspan->span2);
|
|
}
|
|
zspan->span1 = zspan->span2 = nullptr;
|
|
}
|
|
}
|
|
|
|
/* reset range for clipping */
|
|
static void zbuf_init_span(ZSpan *zspan)
|
|
{
|
|
zspan->miny1 = zspan->miny2 = zspan->recty + 1;
|
|
zspan->maxy1 = zspan->maxy2 = -1;
|
|
zspan->minp1 = zspan->maxp1 = zspan->minp2 = zspan->maxp2 = nullptr;
|
|
}
|
|
|
|
static void zbuf_add_to_span(ZSpan *zspan, const float v1[2], const float v2[2])
|
|
{
|
|
const float *minv, *maxv;
|
|
float *span;
|
|
float xx1, dx0, xs0;
|
|
int y, my0, my2;
|
|
|
|
if (v1[1] < v2[1]) {
|
|
minv = v1;
|
|
maxv = v2;
|
|
}
|
|
else {
|
|
minv = v2;
|
|
maxv = v1;
|
|
}
|
|
|
|
my0 = ceil(minv[1]);
|
|
my2 = floor(maxv[1]);
|
|
|
|
if (my2 < 0 || my0 >= zspan->recty) {
|
|
return;
|
|
}
|
|
|
|
/* clip top */
|
|
if (my2 >= zspan->recty) {
|
|
my2 = zspan->recty - 1;
|
|
}
|
|
/* clip bottom */
|
|
if (my0 < 0) {
|
|
my0 = 0;
|
|
}
|
|
|
|
if (my0 > my2) {
|
|
return;
|
|
}
|
|
/* if (my0>my2) should still fill in, that way we get spans that skip nicely */
|
|
|
|
xx1 = maxv[1] - minv[1];
|
|
if (xx1 > FLT_EPSILON) {
|
|
dx0 = (minv[0] - maxv[0]) / xx1;
|
|
xs0 = dx0 * (minv[1] - my2) + minv[0];
|
|
}
|
|
else {
|
|
dx0 = 0.0f;
|
|
xs0 = min_ff(minv[0], maxv[0]);
|
|
}
|
|
|
|
/* empty span */
|
|
if (zspan->maxp1 == nullptr) {
|
|
span = zspan->span1;
|
|
}
|
|
else { /* does it complete left span? */
|
|
if (maxv == zspan->minp1 || minv == zspan->maxp1) {
|
|
span = zspan->span1;
|
|
}
|
|
else {
|
|
span = zspan->span2;
|
|
}
|
|
}
|
|
|
|
if (span == zspan->span1) {
|
|
// printf("left span my0 %d my2 %d\n", my0, my2);
|
|
if (zspan->minp1 == nullptr || zspan->minp1[1] > minv[1]) {
|
|
zspan->minp1 = minv;
|
|
}
|
|
if (zspan->maxp1 == nullptr || zspan->maxp1[1] < maxv[1]) {
|
|
zspan->maxp1 = maxv;
|
|
}
|
|
if (my0 < zspan->miny1) {
|
|
zspan->miny1 = my0;
|
|
}
|
|
if (my2 > zspan->maxy1) {
|
|
zspan->maxy1 = my2;
|
|
}
|
|
}
|
|
else {
|
|
// printf("right span my0 %d my2 %d\n", my0, my2);
|
|
if (zspan->minp2 == nullptr || zspan->minp2[1] > minv[1]) {
|
|
zspan->minp2 = minv;
|
|
}
|
|
if (zspan->maxp2 == nullptr || zspan->maxp2[1] < maxv[1]) {
|
|
zspan->maxp2 = maxv;
|
|
}
|
|
if (my0 < zspan->miny2) {
|
|
zspan->miny2 = my0;
|
|
}
|
|
if (my2 > zspan->maxy2) {
|
|
zspan->maxy2 = my2;
|
|
}
|
|
}
|
|
|
|
for (y = my2; y >= my0; y--, xs0 += dx0) {
|
|
/* xs0 is the X-coordinate! */
|
|
span[y] = xs0;
|
|
}
|
|
}
|
|
|
|
/** \} */
|
|
|
|
/* ******************** VECBLUR ACCUM BUF ************************* */
|
|
|
|
struct DrawBufPixel {
|
|
const float *colpoin;
|
|
float alpha;
|
|
};
|
|
|
|
/**
|
|
* \note Near duplicate of `zspan_scanconvert` in `zbuf.cc` with some minor adjustments.
|
|
*/
|
|
static void zbuf_fill_in_rgba(
|
|
ZSpan *zspan, DrawBufPixel *col, float *v1, float *v2, float *v3, float *v4)
|
|
{
|
|
DrawBufPixel *rectpofs, *rp;
|
|
double zxd, zyd, zy0, zverg;
|
|
float x0, y0, z0;
|
|
float x1, y1, z1, x2, y2, z2, xx1;
|
|
const float *span1, *span2;
|
|
float *rectzofs, *rz;
|
|
int x, y;
|
|
int sn1, sn2, rectx, my0, my2;
|
|
|
|
/* init */
|
|
zbuf_init_span(zspan);
|
|
|
|
/* set spans */
|
|
zbuf_add_to_span(zspan, v1, v2);
|
|
zbuf_add_to_span(zspan, v2, v3);
|
|
zbuf_add_to_span(zspan, v3, v4);
|
|
zbuf_add_to_span(zspan, v4, v1);
|
|
|
|
/* clipped */
|
|
if (zspan->minp2 == nullptr || zspan->maxp2 == nullptr) {
|
|
return;
|
|
}
|
|
|
|
my0 = max_ii(zspan->miny1, zspan->miny2);
|
|
my2 = min_ii(zspan->maxy1, zspan->maxy2);
|
|
|
|
// printf("my %d %d\n", my0, my2);
|
|
if (my2 < my0) {
|
|
return;
|
|
}
|
|
|
|
/* ZBUF DX DY, in floats still */
|
|
x1 = v1[0] - v2[0];
|
|
x2 = v2[0] - v3[0];
|
|
y1 = v1[1] - v2[1];
|
|
y2 = v2[1] - v3[1];
|
|
z1 = v1[2] - v2[2];
|
|
z2 = v2[2] - v3[2];
|
|
x0 = y1 * z2 - z1 * y2;
|
|
y0 = z1 * x2 - x1 * z2;
|
|
z0 = x1 * y2 - y1 * x2;
|
|
|
|
if (z0 == 0.0f) {
|
|
return;
|
|
}
|
|
|
|
xx1 = (x0 * v1[0] + y0 * v1[1]) / z0 + v1[2];
|
|
|
|
zxd = -double(x0) / double(z0);
|
|
zyd = -double(y0) / double(z0);
|
|
zy0 = double(my2) * zyd + double(xx1);
|
|
|
|
/* start-offset in rect */
|
|
rectx = zspan->rectx;
|
|
rectzofs = (float *)(zspan->rectz + rectx * my2);
|
|
rectpofs = ((DrawBufPixel *)zspan->rectdraw) + rectx * my2;
|
|
|
|
/* correct span */
|
|
sn1 = (my0 + my2) / 2;
|
|
if (zspan->span1[sn1] < zspan->span2[sn1]) {
|
|
span1 = zspan->span1 + my2;
|
|
span2 = zspan->span2 + my2;
|
|
}
|
|
else {
|
|
span1 = zspan->span2 + my2;
|
|
span2 = zspan->span1 + my2;
|
|
}
|
|
|
|
for (y = my2; y >= my0; y--, span1--, span2--) {
|
|
|
|
sn1 = floor(*span1);
|
|
sn2 = floor(*span2);
|
|
sn1++;
|
|
|
|
if (sn2 >= rectx) {
|
|
sn2 = rectx - 1;
|
|
}
|
|
if (sn1 < 0) {
|
|
sn1 = 0;
|
|
}
|
|
|
|
if (sn2 >= sn1) {
|
|
zverg = double(sn1) * zxd + zy0;
|
|
rz = rectzofs + sn1;
|
|
rp = rectpofs + sn1;
|
|
x = sn2 - sn1;
|
|
|
|
while (x >= 0) {
|
|
if (zverg < double(*rz)) {
|
|
*rz = zverg;
|
|
*rp = *col;
|
|
}
|
|
zverg += zxd;
|
|
rz++;
|
|
rp++;
|
|
x--;
|
|
}
|
|
}
|
|
|
|
zy0 -= zyd;
|
|
rectzofs -= rectx;
|
|
rectpofs -= rectx;
|
|
}
|
|
}
|
|
|
|
/* char value==255 is filled in, rest should be zero */
|
|
/* returns alpha values,
|
|
* but sets alpha to 1 for zero alpha pixels that have an alpha value as neighbor. */
|
|
void antialias_tagbuf(int xsize, int ysize, char *rectmove)
|
|
{
|
|
char *row1, *row2, *row3;
|
|
char prev, next;
|
|
int a, x, y, step;
|
|
|
|
/* 1: tag pixels to be candidate for AA */
|
|
for (y = 2; y < ysize; y++) {
|
|
/* setup rows */
|
|
row1 = rectmove + (y - 2) * xsize;
|
|
row2 = row1 + xsize;
|
|
row3 = row2 + xsize;
|
|
for (x = 2; x < xsize; x++, row1++, row2++, row3++) {
|
|
if (row2[1]) {
|
|
if (row2[0] == 0 || row2[2] == 0 || row1[1] == 0 || row3[1] == 0) {
|
|
row2[1] = 128;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* 2: evaluate horizontal scan-lines and calculate alphas. */
|
|
row1 = rectmove;
|
|
for (y = 0; y < ysize; y++) {
|
|
row1++;
|
|
for (x = 1; x < xsize; x++, row1++) {
|
|
if (row1[0] == 128 && row1[1] == 128) {
|
|
/* find previous color and next color and amount of steps to blend */
|
|
prev = row1[-1];
|
|
step = 1;
|
|
while (x + step < xsize && row1[step] == 128) {
|
|
step++;
|
|
}
|
|
|
|
if (x + step != xsize) {
|
|
/* now we can blend values */
|
|
next = row1[step];
|
|
|
|
/* NOTE: prev value can be next value, but we do this loop to clear 128 then. */
|
|
for (a = 0; a < step; a++) {
|
|
int fac, mfac;
|
|
|
|
fac = ((a + 1) << 8) / (step + 1);
|
|
mfac = 255 - fac;
|
|
|
|
row1[a] = (prev * mfac + next * fac) >> 8;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* 3: evaluate vertical scan-lines and calculate alphas */
|
|
/* use for reading a copy of the original tagged buffer */
|
|
for (x = 0; x < xsize; x++) {
|
|
row1 = rectmove + x + xsize;
|
|
|
|
for (y = 1; y < ysize; y++, row1 += xsize) {
|
|
if (row1[0] == 128 && row1[xsize] == 128) {
|
|
/* find previous color and next color and amount of steps to blend */
|
|
prev = row1[-xsize];
|
|
step = 1;
|
|
while (y + step < ysize && row1[step * xsize] == 128) {
|
|
step++;
|
|
}
|
|
|
|
if (y + step != ysize) {
|
|
/* now we can blend values */
|
|
next = row1[step * xsize];
|
|
/* NOTE: prev value can be next value, but we do this loop to clear 128 then. */
|
|
for (a = 0; a < step; a++) {
|
|
int fac, mfac;
|
|
|
|
fac = ((a + 1) << 8) / (step + 1);
|
|
mfac = 255 - fac;
|
|
|
|
row1[a * xsize] = (prev * mfac + next * fac) >> 8;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* last: pixels with 0 we fill in Z-buffer, with 1 we skip for mask */
|
|
for (y = 2; y < ysize; y++) {
|
|
/* setup rows */
|
|
row1 = rectmove + (y - 2) * xsize;
|
|
row2 = row1 + xsize;
|
|
row3 = row2 + xsize;
|
|
for (x = 2; x < xsize; x++, row1++, row2++, row3++) {
|
|
if (row2[1] == 0) {
|
|
if (row2[0] > 1 || row2[2] > 1 || row1[1] > 1 || row3[1] > 1) {
|
|
row2[1] = 1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* in: two vectors, first vector points from origin back in time, 2nd vector points to future */
|
|
/* we make this into 3 points, center point is (0, 0) */
|
|
/* and offset the center point just enough to make curve go through midpoint */
|
|
|
|
static void quad_bezier_2d(float *result, const float *v1, const float *v2, const float *ipodata)
|
|
{
|
|
float p1[2], p2[2], p3[2];
|
|
|
|
p3[0] = -v2[0];
|
|
p3[1] = -v2[1];
|
|
|
|
p1[0] = v1[0];
|
|
p1[1] = v1[1];
|
|
|
|
/* official formula 2*p2 - 0.5*p1 - 0.5*p3 */
|
|
p2[0] = -0.5f * p1[0] - 0.5f * p3[0];
|
|
p2[1] = -0.5f * p1[1] - 0.5f * p3[1];
|
|
|
|
result[0] = ipodata[0] * p1[0] + ipodata[1] * p2[0] + ipodata[2] * p3[0];
|
|
result[1] = ipodata[0] * p1[1] + ipodata[1] * p2[1] + ipodata[2] * p3[1];
|
|
}
|
|
|
|
static void set_quad_bezier_ipo(float fac, float *data)
|
|
{
|
|
float mfac = (1.0f - fac);
|
|
|
|
data[0] = mfac * mfac;
|
|
data[1] = 2.0f * mfac * fac;
|
|
data[2] = fac * fac;
|
|
}
|
|
|
|
void zbuf_accumulate_vecblur(NodeBlurData *nbd,
|
|
int xsize,
|
|
int ysize,
|
|
float *newrect,
|
|
const float *imgrect,
|
|
float *vecbufrect,
|
|
const float *zbufrect)
|
|
{
|
|
ZSpan zspan;
|
|
DrawBufPixel *rectdraw, *dr;
|
|
static float jit[256][2];
|
|
float v1[3], v2[3], v3[3], v4[3], fx, fy;
|
|
const float *dimg, *dz, *ro;
|
|
float *rectvz, *dvz, *dvec1, *dvec2, *dz1, *dz2, *rectz;
|
|
float *minvecbufrect = nullptr, *rectweight, *rw, *rectmax, *rm;
|
|
float maxspeedsq = float(nbd->maxspeed) * nbd->maxspeed;
|
|
int y, x, step, maxspeed = nbd->maxspeed, samples = nbd->samples;
|
|
int tsktsk = 0;
|
|
static int firsttime = 1;
|
|
char *rectmove, *dm;
|
|
|
|
zbuf_alloc_span(&zspan, xsize, ysize, 1.0f);
|
|
zspan.zmulx = float(xsize) / 2.0f;
|
|
zspan.zmuly = float(ysize) / 2.0f;
|
|
zspan.zofsx = 0.0f;
|
|
zspan.zofsy = 0.0f;
|
|
|
|
/* the buffers */
|
|
rectz = (float *)MEM_callocN(sizeof(float) * xsize * ysize, "zbuf accum");
|
|
zspan.rectz = (int *)rectz;
|
|
|
|
rectmove = (char *)MEM_callocN(xsize * ysize, "rectmove");
|
|
rectdraw = (DrawBufPixel *)MEM_callocN(sizeof(DrawBufPixel) * xsize * ysize, "rect draw");
|
|
zspan.rectdraw = rectdraw;
|
|
|
|
rectweight = (float *)MEM_callocN(sizeof(float) * xsize * ysize, "rect weight");
|
|
rectmax = (float *)MEM_callocN(sizeof(float) * xsize * ysize, "rect max");
|
|
|
|
/* debug... check if PASS_VECTOR_MAX still is in buffers */
|
|
dvec1 = vecbufrect;
|
|
for (x = 4 * xsize * ysize; x > 0; x--, dvec1++) {
|
|
if (dvec1[0] == PASS_VECTOR_MAX) {
|
|
dvec1[0] = 0.0f;
|
|
tsktsk = 1;
|
|
}
|
|
}
|
|
if (tsktsk) {
|
|
printf("Found uninitialized speed in vector buffer... fixed.\n");
|
|
}
|
|
|
|
/* Min speed? then copy speed-buffer to recalculate speed vectors. */
|
|
if (nbd->minspeed) {
|
|
float minspeed = float(nbd->minspeed);
|
|
float minspeedsq = minspeed * minspeed;
|
|
|
|
minvecbufrect = (float *)MEM_callocN(sizeof(float[4]) * xsize * ysize, "minspeed buf");
|
|
|
|
dvec1 = vecbufrect;
|
|
dvec2 = minvecbufrect;
|
|
for (x = 2 * xsize * ysize; x > 0; x--, dvec1 += 2, dvec2 += 2) {
|
|
if (dvec1[0] == 0.0f && dvec1[1] == 0.0f) {
|
|
dvec2[0] = dvec1[0];
|
|
dvec2[1] = dvec1[1];
|
|
}
|
|
else {
|
|
float speedsq = dvec1[0] * dvec1[0] + dvec1[1] * dvec1[1];
|
|
if (speedsq <= minspeedsq) {
|
|
dvec2[0] = 0.0f;
|
|
dvec2[1] = 0.0f;
|
|
}
|
|
else {
|
|
speedsq = 1.0f - minspeed / sqrtf(speedsq);
|
|
dvec2[0] = speedsq * dvec1[0];
|
|
dvec2[1] = speedsq * dvec1[1];
|
|
}
|
|
}
|
|
}
|
|
std::swap(minvecbufrect, vecbufrect);
|
|
}
|
|
|
|
/* Make vertex buffer with averaged speed and Z-values. */
|
|
rectvz = (float *)MEM_callocN(sizeof(float[4]) * (xsize + 1) * (ysize + 1), "vertices");
|
|
dvz = rectvz;
|
|
for (y = 0; y <= ysize; y++) {
|
|
|
|
if (y == 0) {
|
|
dvec1 = vecbufrect + 4 * y * xsize;
|
|
}
|
|
else {
|
|
dvec1 = vecbufrect + 4 * (y - 1) * xsize;
|
|
}
|
|
|
|
if (y == ysize) {
|
|
dvec2 = vecbufrect + 4 * (y - 1) * xsize;
|
|
}
|
|
else {
|
|
dvec2 = vecbufrect + 4 * y * xsize;
|
|
}
|
|
|
|
for (x = 0; x <= xsize; x++) {
|
|
|
|
/* two vectors, so a step loop */
|
|
for (step = 0; step < 2; step++, dvec1 += 2, dvec2 += 2, dvz += 2) {
|
|
/* average on minimal speed */
|
|
int div = 0;
|
|
|
|
if (x != 0) {
|
|
if (dvec1[-4] != 0.0f || dvec1[-3] != 0.0f) {
|
|
dvz[0] = dvec1[-4];
|
|
dvz[1] = dvec1[-3];
|
|
div++;
|
|
}
|
|
if (dvec2[-4] != 0.0f || dvec2[-3] != 0.0f) {
|
|
if (div == 0) {
|
|
dvz[0] = dvec2[-4];
|
|
dvz[1] = dvec2[-3];
|
|
div++;
|
|
}
|
|
else if ((fabsf(dvec2[-4]) + fabsf(dvec2[-3])) < (fabsf(dvz[0]) + fabsf(dvz[1]))) {
|
|
dvz[0] = dvec2[-4];
|
|
dvz[1] = dvec2[-3];
|
|
}
|
|
}
|
|
}
|
|
|
|
if (x != xsize) {
|
|
if (dvec1[0] != 0.0f || dvec1[1] != 0.0f) {
|
|
if (div == 0) {
|
|
dvz[0] = dvec1[0];
|
|
dvz[1] = dvec1[1];
|
|
div++;
|
|
}
|
|
else if ((fabsf(dvec1[0]) + fabsf(dvec1[1])) < (fabsf(dvz[0]) + fabsf(dvz[1]))) {
|
|
dvz[0] = dvec1[0];
|
|
dvz[1] = dvec1[1];
|
|
}
|
|
}
|
|
if (dvec2[0] != 0.0f || dvec2[1] != 0.0f) {
|
|
if (div == 0) {
|
|
dvz[0] = dvec2[0];
|
|
dvz[1] = dvec2[1];
|
|
}
|
|
else if ((fabsf(dvec2[0]) + fabsf(dvec2[1])) < (fabsf(dvz[0]) + fabsf(dvz[1]))) {
|
|
dvz[0] = dvec2[0];
|
|
dvz[1] = dvec2[1];
|
|
}
|
|
}
|
|
}
|
|
if (maxspeed) {
|
|
float speedsq = dvz[0] * dvz[0] + dvz[1] * dvz[1];
|
|
if (speedsq > maxspeedsq) {
|
|
speedsq = float(maxspeed) / sqrtf(speedsq);
|
|
dvz[0] *= speedsq;
|
|
dvz[1] *= speedsq;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* set border speeds to keep border speeds on border */
|
|
dz1 = rectvz;
|
|
dz2 = rectvz + 4 * (ysize) * (xsize + 1);
|
|
for (x = 0; x <= xsize; x++, dz1 += 4, dz2 += 4) {
|
|
dz1[1] = 0.0f;
|
|
dz2[1] = 0.0f;
|
|
dz1[3] = 0.0f;
|
|
dz2[3] = 0.0f;
|
|
}
|
|
dz1 = rectvz;
|
|
dz2 = rectvz + 4 * (xsize);
|
|
for (y = 0; y <= ysize; y++, dz1 += 4 * (xsize + 1), dz2 += 4 * (xsize + 1)) {
|
|
dz1[0] = 0.0f;
|
|
dz2[0] = 0.0f;
|
|
dz1[2] = 0.0f;
|
|
dz2[2] = 0.0f;
|
|
}
|
|
|
|
/* tag moving pixels, only these faces we draw */
|
|
dm = rectmove;
|
|
dvec1 = vecbufrect;
|
|
for (x = xsize * ysize; x > 0; x--, dm++, dvec1 += 4) {
|
|
if (dvec1[0] != 0.0f || dvec1[1] != 0.0f || dvec1[2] != 0.0f || dvec1[3] != 0.0f) {
|
|
*dm = 255;
|
|
}
|
|
}
|
|
|
|
antialias_tagbuf(xsize, ysize, rectmove);
|
|
|
|
/* Has to become static, the jitter initialization calls a random-seed,
|
|
* screwing up texture noise node. */
|
|
if (firsttime) {
|
|
firsttime = 0;
|
|
BLI_jitter_init(jit, 256);
|
|
}
|
|
|
|
memset(newrect, 0, sizeof(float) * xsize * ysize * 4);
|
|
|
|
/* accumulate */
|
|
samples /= 2;
|
|
for (step = 1; step <= samples; step++) {
|
|
float speedfac = 0.5f * nbd->fac * float(step) / float(samples + 1);
|
|
int side;
|
|
|
|
for (side = 0; side < 2; side++) {
|
|
float blendfac, ipodata[4];
|
|
|
|
/* clear zbuf, if we draw future we fill in not moving pixels */
|
|
if (false) {
|
|
for (x = xsize * ysize - 1; x >= 0; x--) {
|
|
rectz[x] = 10e16;
|
|
}
|
|
}
|
|
else {
|
|
for (x = xsize * ysize - 1; x >= 0; x--) {
|
|
if (rectmove[x] == 0) {
|
|
rectz[x] = zbufrect[x];
|
|
}
|
|
else {
|
|
rectz[x] = 10e16;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* clear drawing buffer */
|
|
for (x = xsize * ysize - 1; x >= 0; x--) {
|
|
rectdraw[x].colpoin = nullptr;
|
|
}
|
|
|
|
dimg = imgrect;
|
|
dm = rectmove;
|
|
dz = zbufrect;
|
|
dz1 = rectvz;
|
|
dz2 = rectvz + 4 * (xsize + 1);
|
|
|
|
if (side) {
|
|
if (nbd->curved == 0) {
|
|
dz1 += 2;
|
|
dz2 += 2;
|
|
}
|
|
speedfac = -speedfac;
|
|
}
|
|
|
|
set_quad_bezier_ipo(0.5f + 0.5f * speedfac, ipodata);
|
|
|
|
for (fy = -0.5f + jit[step & 255][0], y = 0; y < ysize; y++, fy += 1.0f) {
|
|
for (fx = -0.5f + jit[step & 255][1], x = 0; x < xsize;
|
|
x++, fx += 1.0f, dimg += 4, dz1 += 4, dz2 += 4, dm++, dz++)
|
|
{
|
|
if (*dm > 1) {
|
|
float jfx = fx + 0.5f;
|
|
float jfy = fy + 0.5f;
|
|
DrawBufPixel col;
|
|
|
|
/* make vertices */
|
|
if (nbd->curved) { /* curved */
|
|
quad_bezier_2d(v1, dz1, dz1 + 2, ipodata);
|
|
v1[0] += jfx;
|
|
v1[1] += jfy;
|
|
v1[2] = *dz;
|
|
|
|
quad_bezier_2d(v2, dz1 + 4, dz1 + 4 + 2, ipodata);
|
|
v2[0] += jfx + 1.0f;
|
|
v2[1] += jfy;
|
|
v2[2] = *dz;
|
|
|
|
quad_bezier_2d(v3, dz2 + 4, dz2 + 4 + 2, ipodata);
|
|
v3[0] += jfx + 1.0f;
|
|
v3[1] += jfy + 1.0f;
|
|
v3[2] = *dz;
|
|
|
|
quad_bezier_2d(v4, dz2, dz2 + 2, ipodata);
|
|
v4[0] += jfx;
|
|
v4[1] += jfy + 1.0f;
|
|
v4[2] = *dz;
|
|
}
|
|
else {
|
|
ARRAY_SET_ITEMS(v1, speedfac * dz1[0] + jfx, speedfac * dz1[1] + jfy, *dz);
|
|
ARRAY_SET_ITEMS(v2, speedfac * dz1[4] + jfx + 1.0f, speedfac * dz1[5] + jfy, *dz);
|
|
ARRAY_SET_ITEMS(
|
|
v3, speedfac * dz2[4] + jfx + 1.0f, speedfac * dz2[5] + jfy + 1.0f, *dz);
|
|
ARRAY_SET_ITEMS(v4, speedfac * dz2[0] + jfx, speedfac * dz2[1] + jfy + 1.0f, *dz);
|
|
}
|
|
if (*dm == 255) {
|
|
col.alpha = 1.0f;
|
|
}
|
|
else if (*dm < 2) {
|
|
col.alpha = 0.0f;
|
|
}
|
|
else {
|
|
col.alpha = float(*dm) / 255.0f;
|
|
}
|
|
col.colpoin = dimg;
|
|
|
|
zbuf_fill_in_rgba(&zspan, &col, v1, v2, v3, v4);
|
|
}
|
|
}
|
|
dz1 += 4;
|
|
dz2 += 4;
|
|
}
|
|
|
|
/* blend with a falloff. this fixes the ugly effect you get with
|
|
* a fast moving object. then it looks like a solid object overlaid
|
|
* over a very transparent moving version of itself. in reality, the
|
|
* whole object should become transparent if it is moving fast, be
|
|
* we don't know what is behind it so we don't do that. this hack
|
|
* overestimates the contribution of foreground pixels but looks a
|
|
* bit better without a sudden cutoff. */
|
|
blendfac = ((samples - step) / float(samples));
|
|
/* Smooth-step to make it look a bit nicer as well. */
|
|
blendfac = 3.0f * pow(blendfac, 2.0f) - 2.0f * pow(blendfac, 3.0f);
|
|
|
|
/* accum */
|
|
rw = rectweight;
|
|
rm = rectmax;
|
|
for (dr = rectdraw, dz2 = newrect, x = xsize * ysize - 1; x >= 0;
|
|
x--, dr++, dz2 += 4, rw++, rm++) {
|
|
if (dr->colpoin) {
|
|
float bfac = dr->alpha * blendfac;
|
|
|
|
dz2[0] += bfac * dr->colpoin[0];
|
|
dz2[1] += bfac * dr->colpoin[1];
|
|
dz2[2] += bfac * dr->colpoin[2];
|
|
dz2[3] += bfac * dr->colpoin[3];
|
|
|
|
*rw += bfac;
|
|
*rm = MAX2(*rm, bfac);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* blend between original images and accumulated image */
|
|
rw = rectweight;
|
|
rm = rectmax;
|
|
ro = imgrect;
|
|
dm = rectmove;
|
|
for (dz2 = newrect, x = xsize * ysize - 1; x >= 0; x--, dz2 += 4, ro += 4, rw++, rm++, dm++) {
|
|
float mfac = *rm;
|
|
float fac = (*rw == 0.0f) ? 0.0f : mfac / (*rw);
|
|
float nfac = 1.0f - mfac;
|
|
|
|
dz2[0] = fac * dz2[0] + nfac * ro[0];
|
|
dz2[1] = fac * dz2[1] + nfac * ro[1];
|
|
dz2[2] = fac * dz2[2] + nfac * ro[2];
|
|
dz2[3] = fac * dz2[3] + nfac * ro[3];
|
|
}
|
|
|
|
MEM_freeN(rectz);
|
|
MEM_freeN(rectmove);
|
|
MEM_freeN(rectdraw);
|
|
MEM_freeN(rectvz);
|
|
MEM_freeN(rectweight);
|
|
MEM_freeN(rectmax);
|
|
if (minvecbufrect) {
|
|
MEM_freeN(vecbufrect); /* rects were swapped! */
|
|
}
|
|
zbuf_free_span(&zspan);
|
|
}
|
|
|
|
} // namespace blender::compositor
|