Files
test2/source/blender/nodes/NOD_math_functions.hh
Omar Emara fbdb803750 Compositor: Implement Multi-Function Procedure Operation
This patch implements the multi-function procedure operation for the new
CPU compositor, which is a concrete implementation of the PixelOperation
abstraction, much like ShaderOperation, but uses the FN system to more
efficiently evaluate a group of pixel-wise operations.

A few changes were done to FN to support development. The multi-function
builder now allows retrieving the built function. A new builder method
construct_and_set_matching_fn_cb was added to allow using the SI_SO
builders with non static functions. A few other SI_SO were added to. And
a CPP type for float4 was added.

Additionally, the Gamma, Math, Brightness, and Normal nodes were
implemented as an example. The Math node implementation reused the
existing GN math node implementation, so the code was moved to a common
file.

Reference #125968.

Pull Request: https://projects.blender.org/blender/blender/pulls/126988
2024-10-15 06:51:42 +02:00

481 lines
18 KiB
C++

/* SPDX-FileCopyrightText: 2023 Blender Authors
*
* SPDX-License-Identifier: GPL-2.0-or-later */
#pragma once
#include "DNA_node_types.h"
#include "BLI_math_base_safe.h"
#include "BLI_math_rotation.h"
#include "BLI_math_vector.hh"
#include "BLI_string_ref.hh"
#include "FN_multi_function_builder.hh"
#include "NOD_multi_function.hh"
namespace blender::nodes {
void node_math_build_multi_function(NodeMultiFunctionBuilder &builder);
struct FloatMathOperationInfo {
StringRefNull title_case_name;
StringRefNull shader_name;
FloatMathOperationInfo() = delete;
FloatMathOperationInfo(StringRefNull title_case_name, StringRefNull shader_name)
: title_case_name(title_case_name), shader_name(shader_name)
{
}
};
const FloatMathOperationInfo *get_float_math_operation_info(int operation);
const FloatMathOperationInfo *get_float3_math_operation_info(int operation);
const FloatMathOperationInfo *get_float_compare_operation_info(int operation);
/**
* This calls the `callback` with two arguments:
* 1. The math function that takes a float as input and outputs a new float.
* 2. A #FloatMathOperationInfo struct reference.
* Returns true when the callback has been called, otherwise false.
*
* The math function that is passed to the callback is actually a lambda function that is different
* for every operation. Therefore, if the callback is templated on the math function, it will get
* instantiated for every operation separately. This has two benefits:
* - The compiler can optimize the callback for every operation separately.
* - A static variable declared in the callback will be generated for every operation separately.
*
* If separate instantiations are not desired, the callback can also take a function pointer with
* the following signature as input instead: float (*math_function)(float a).
*/
template<typename Callback>
inline bool try_dispatch_float_math_fl_to_fl(const int operation, Callback &&callback)
{
const FloatMathOperationInfo *info = get_float_math_operation_info(operation);
if (info == nullptr) {
return false;
}
static auto exec_preset_fast = mf::build::exec_presets::AllSpanOrSingle();
static auto exec_preset_slow = mf::build::exec_presets::Materialized();
/* This is just an utility function to keep the individual cases smaller. */
auto dispatch = [&](auto exec_preset, auto math_function) -> bool {
callback(exec_preset, math_function, *info);
return true;
};
switch (operation) {
case NODE_MATH_EXPONENT:
return dispatch(exec_preset_slow, [](float a) { return expf(a); });
case NODE_MATH_SQRT:
return dispatch(exec_preset_fast, [](float a) { return safe_sqrtf(a); });
case NODE_MATH_INV_SQRT:
return dispatch(exec_preset_fast, [](float a) { return safe_inverse_sqrtf(a); });
case NODE_MATH_ABSOLUTE:
return dispatch(exec_preset_fast, [](float a) { return fabs(a); });
case NODE_MATH_RADIANS:
return dispatch(exec_preset_fast, [](float a) { return (float)DEG2RAD(a); });
case NODE_MATH_DEGREES:
return dispatch(exec_preset_fast, [](float a) { return (float)RAD2DEG(a); });
case NODE_MATH_SIGN:
return dispatch(exec_preset_fast, [](float a) { return compatible_signf(a); });
case NODE_MATH_ROUND:
return dispatch(exec_preset_fast, [](float a) { return floorf(a + 0.5f); });
case NODE_MATH_FLOOR:
return dispatch(exec_preset_fast, [](float a) { return floorf(a); });
case NODE_MATH_CEIL:
return dispatch(exec_preset_fast, [](float a) { return ceilf(a); });
case NODE_MATH_FRACTION:
return dispatch(exec_preset_fast, [](float a) { return a - floorf(a); });
case NODE_MATH_TRUNC:
return dispatch(exec_preset_fast, [](float a) { return a >= 0.0f ? floorf(a) : ceilf(a); });
case NODE_MATH_SINE:
return dispatch(exec_preset_slow, [](float a) { return sinf(a); });
case NODE_MATH_COSINE:
return dispatch(exec_preset_slow, [](float a) { return cosf(a); });
case NODE_MATH_TANGENT:
return dispatch(exec_preset_slow, [](float a) { return tanf(a); });
case NODE_MATH_SINH:
return dispatch(exec_preset_slow, [](float a) { return sinhf(a); });
case NODE_MATH_COSH:
return dispatch(exec_preset_slow, [](float a) { return coshf(a); });
case NODE_MATH_TANH:
return dispatch(exec_preset_slow, [](float a) { return tanhf(a); });
case NODE_MATH_ARCSINE:
return dispatch(exec_preset_slow, [](float a) { return safe_asinf(a); });
case NODE_MATH_ARCCOSINE:
return dispatch(exec_preset_slow, [](float a) { return safe_acosf(a); });
case NODE_MATH_ARCTANGENT:
return dispatch(exec_preset_slow, [](float a) { return atanf(a); });
}
return false;
}
/**
* This is similar to try_dispatch_float_math_fl_to_fl, just with a different callback signature.
*/
template<typename Callback>
inline bool try_dispatch_float_math_fl_fl_to_fl(const int operation, Callback &&callback)
{
const FloatMathOperationInfo *info = get_float_math_operation_info(operation);
if (info == nullptr) {
return false;
}
static auto exec_preset_fast = mf::build::exec_presets::AllSpanOrSingle();
static auto exec_preset_slow = mf::build::exec_presets::Materialized();
/* This is just an utility function to keep the individual cases smaller. */
auto dispatch = [&](auto exec_preset, auto math_function) -> bool {
callback(exec_preset, math_function, *info);
return true;
};
switch (operation) {
case NODE_MATH_ADD:
return dispatch(exec_preset_fast, [](float a, float b) { return a + b; });
case NODE_MATH_SUBTRACT:
return dispatch(exec_preset_fast, [](float a, float b) { return a - b; });
case NODE_MATH_MULTIPLY:
return dispatch(exec_preset_fast, [](float a, float b) { return a * b; });
case NODE_MATH_DIVIDE:
return dispatch(exec_preset_fast, [](float a, float b) { return safe_divide(a, b); });
case NODE_MATH_POWER:
return dispatch(exec_preset_slow, [](float a, float b) { return safe_powf(a, b); });
case NODE_MATH_LOGARITHM:
return dispatch(exec_preset_slow, [](float a, float b) { return safe_logf(a, b); });
case NODE_MATH_MINIMUM:
return dispatch(exec_preset_fast, [](float a, float b) { return std::min(a, b); });
case NODE_MATH_MAXIMUM:
return dispatch(exec_preset_fast, [](float a, float b) { return std::max(a, b); });
case NODE_MATH_LESS_THAN:
return dispatch(exec_preset_fast, [](float a, float b) { return (float)(a < b); });
case NODE_MATH_GREATER_THAN:
return dispatch(exec_preset_fast, [](float a, float b) { return (float)(a > b); });
case NODE_MATH_MODULO:
return dispatch(exec_preset_fast, [](float a, float b) { return safe_modf(a, b); });
case NODE_MATH_FLOORED_MODULO:
return dispatch(exec_preset_fast, [](float a, float b) { return safe_floored_modf(a, b); });
case NODE_MATH_SNAP:
return dispatch(exec_preset_fast,
[](float a, float b) { return floorf(safe_divide(a, b)) * b; });
case NODE_MATH_ARCTAN2:
return dispatch(exec_preset_slow, [](float a, float b) { return atan2f(a, b); });
case NODE_MATH_PINGPONG:
return dispatch(exec_preset_fast, [](float a, float b) { return pingpongf(a, b); });
}
return false;
}
/**
* This is similar to try_dispatch_float_math_fl_to_fl, just with a different callback signature.
*/
template<typename Callback>
inline bool try_dispatch_float_math_fl_fl_fl_to_fl(const int operation, Callback &&callback)
{
const FloatMathOperationInfo *info = get_float_math_operation_info(operation);
if (info == nullptr) {
return false;
}
/* This is just an utility function to keep the individual cases smaller. */
auto dispatch = [&](auto exec_preset, auto math_function) -> bool {
callback(exec_preset, math_function, *info);
return true;
};
switch (operation) {
case NODE_MATH_MULTIPLY_ADD:
return dispatch(mf::build::exec_presets::AllSpanOrSingle(),
[](float a, float b, float c) { return a * b + c; });
case NODE_MATH_COMPARE:
return dispatch(mf::build::exec_presets::SomeSpanOrSingle<0, 1>(),
[](float a, float b, float c) -> float {
return ((a == b) || (fabsf(a - b) <= fmaxf(c, FLT_EPSILON))) ? 1.0f : 0.0f;
});
case NODE_MATH_SMOOTH_MIN:
return dispatch(mf::build::exec_presets::SomeSpanOrSingle<0, 1>(),
[](float a, float b, float c) { return smoothminf(a, b, c); });
case NODE_MATH_SMOOTH_MAX:
return dispatch(mf::build::exec_presets::SomeSpanOrSingle<0, 1>(),
[](float a, float b, float c) { return -smoothminf(-a, -b, c); });
case NODE_MATH_WRAP:
return dispatch(mf::build::exec_presets::SomeSpanOrSingle<0>(),
[](float a, float b, float c) { return wrapf(a, b, c); });
}
return false;
}
/**
* This is similar to try_dispatch_float_math_fl_to_fl, just with a different callback signature.
*/
template<typename Callback>
inline bool try_dispatch_float_math_fl3_fl3_to_fl3(const NodeVectorMathOperation operation,
Callback &&callback)
{
using namespace blender::math;
const FloatMathOperationInfo *info = get_float3_math_operation_info(operation);
if (info == nullptr) {
return false;
}
static auto exec_preset_fast = mf::build::exec_presets::AllSpanOrSingle();
static auto exec_preset_slow = mf::build::exec_presets::Materialized();
/* This is just a utility function to keep the individual cases smaller. */
auto dispatch = [&](auto exec_preset, auto math_function) -> bool {
callback(exec_preset, math_function, *info);
return true;
};
switch (operation) {
case NODE_VECTOR_MATH_ADD:
return dispatch(exec_preset_fast, [](float3 a, float3 b) { return a + b; });
case NODE_VECTOR_MATH_SUBTRACT:
return dispatch(exec_preset_fast, [](float3 a, float3 b) { return a - b; });
case NODE_VECTOR_MATH_MULTIPLY:
return dispatch(exec_preset_fast, [](float3 a, float3 b) { return a * b; });
case NODE_VECTOR_MATH_DIVIDE:
return dispatch(exec_preset_fast, [](float3 a, float3 b) { return safe_divide(a, b); });
case NODE_VECTOR_MATH_CROSS_PRODUCT:
return dispatch(exec_preset_fast,
[](float3 a, float3 b) { return cross_high_precision(a, b); });
case NODE_VECTOR_MATH_PROJECT:
return dispatch(exec_preset_fast, [](float3 a, float3 b) { return project(a, b); });
case NODE_VECTOR_MATH_REFLECT:
return dispatch(exec_preset_fast,
[](float3 a, float3 b) { return reflect(a, normalize(b)); });
case NODE_VECTOR_MATH_SNAP:
return dispatch(exec_preset_fast,
[](float3 a, float3 b) { return floor(safe_divide(a, b)) * b; });
case NODE_VECTOR_MATH_MODULO:
return dispatch(exec_preset_slow, [](float3 a, float3 b) { return mod(a, b); });
case NODE_VECTOR_MATH_MINIMUM:
return dispatch(exec_preset_fast, [](float3 a, float3 b) { return min(a, b); });
case NODE_VECTOR_MATH_MAXIMUM:
return dispatch(exec_preset_fast, [](float3 a, float3 b) { return max(a, b); });
default:
return false;
}
return false;
}
/**
* This is similar to try_dispatch_float_math_fl_to_fl, just with a different callback signature.
*/
template<typename Callback>
inline bool try_dispatch_float_math_fl3_fl3_to_fl(const NodeVectorMathOperation operation,
Callback &&callback)
{
using namespace blender::math;
const FloatMathOperationInfo *info = get_float3_math_operation_info(operation);
if (info == nullptr) {
return false;
}
static auto exec_preset_fast = mf::build::exec_presets::AllSpanOrSingle();
/* This is just a utility function to keep the individual cases smaller. */
auto dispatch = [&](auto exec_preset, auto math_function) -> bool {
callback(exec_preset, math_function, *info);
return true;
};
switch (operation) {
case NODE_VECTOR_MATH_DOT_PRODUCT:
return dispatch(exec_preset_fast, [](float3 a, float3 b) { return dot(a, b); });
case NODE_VECTOR_MATH_DISTANCE:
return dispatch(exec_preset_fast, [](float3 a, float3 b) { return distance(a, b); });
default:
return false;
}
return false;
}
/**
* This is similar to try_dispatch_float_math_fl_to_fl, just with a different callback signature.
*/
template<typename Callback>
inline bool try_dispatch_float_math_fl3_fl3_fl3_to_fl3(const NodeVectorMathOperation operation,
Callback &&callback)
{
using namespace blender::math;
const FloatMathOperationInfo *info = get_float3_math_operation_info(operation);
if (info == nullptr) {
return false;
}
static auto exec_preset_fast = mf::build::exec_presets::AllSpanOrSingle();
static auto exec_preset_slow = mf::build::exec_presets::Materialized();
/* This is just a utility function to keep the individual cases smaller. */
auto dispatch = [&](auto exec_preset, auto math_function) -> bool {
callback(exec_preset, math_function, *info);
return true;
};
switch (operation) {
case NODE_VECTOR_MATH_MULTIPLY_ADD:
return dispatch(exec_preset_fast, [](float3 a, float3 b, float3 c) { return a * b + c; });
case NODE_VECTOR_MATH_WRAP:
return dispatch(exec_preset_slow, [](float3 a, float3 b, float3 c) {
return float3(wrapf(a.x, b.x, c.x), wrapf(a.y, b.y, c.y), wrapf(a.z, b.z, c.z));
});
case NODE_VECTOR_MATH_FACEFORWARD:
return dispatch(exec_preset_fast,
[](float3 a, float3 b, float3 c) { return faceforward(a, b, c); });
default:
return false;
}
return false;
}
/**
* This is similar to try_dispatch_float_math_fl_to_fl, just with a different callback signature.
*/
template<typename Callback>
inline bool try_dispatch_float_math_fl3_fl3_fl_to_fl3(const NodeVectorMathOperation operation,
Callback &&callback)
{
using namespace blender::math;
const FloatMathOperationInfo *info = get_float3_math_operation_info(operation);
if (info == nullptr) {
return false;
}
static auto exec_preset_slow = mf::build::exec_presets::Materialized();
/* This is just a utility function to keep the individual cases smaller. */
auto dispatch = [&](auto exec_preset, auto math_function) -> bool {
callback(exec_preset, math_function, *info);
return true;
};
switch (operation) {
case NODE_VECTOR_MATH_REFRACT:
return dispatch(exec_preset_slow,
[](float3 a, float3 b, float c) { return refract(a, normalize(b), c); });
default:
return false;
}
return false;
}
/**
* This is similar to try_dispatch_float_math_fl_to_fl, just with a different callback signature.
*/
template<typename Callback>
inline bool try_dispatch_float_math_fl3_to_fl(const NodeVectorMathOperation operation,
Callback &&callback)
{
using namespace blender::math;
const FloatMathOperationInfo *info = get_float3_math_operation_info(operation);
if (info == nullptr) {
return false;
}
static auto exec_preset_fast = mf::build::exec_presets::AllSpanOrSingle();
/* This is just a utility function to keep the individual cases smaller. */
auto dispatch = [&](auto exec_preset, auto math_function) -> bool {
callback(exec_preset, math_function, *info);
return true;
};
switch (operation) {
case NODE_VECTOR_MATH_LENGTH:
return dispatch(exec_preset_fast, [](float3 in) { return length(in); });
default:
return false;
}
return false;
}
/**
* This is similar to try_dispatch_float_math_fl_to_fl, just with a different callback signature.
*/
template<typename Callback>
inline bool try_dispatch_float_math_fl3_fl_to_fl3(const NodeVectorMathOperation operation,
Callback &&callback)
{
const FloatMathOperationInfo *info = get_float3_math_operation_info(operation);
if (info == nullptr) {
return false;
}
static auto exec_preset_fast = mf::build::exec_presets::AllSpanOrSingle();
/* This is just a utility function to keep the individual cases smaller. */
auto dispatch = [&](auto exec_preset, auto math_function) -> bool {
callback(exec_preset, math_function, *info);
return true;
};
switch (operation) {
case NODE_VECTOR_MATH_SCALE:
return dispatch(exec_preset_fast, [](float3 a, float b) { return a * b; });
default:
return false;
}
return false;
}
/**
* This is similar to try_dispatch_float_math_fl_to_fl, just with a different callback signature.
*/
template<typename Callback>
inline bool try_dispatch_float_math_fl3_to_fl3(const NodeVectorMathOperation operation,
Callback &&callback)
{
using namespace blender::math;
const FloatMathOperationInfo *info = get_float3_math_operation_info(operation);
if (info == nullptr) {
return false;
}
static auto exec_preset_fast = mf::build::exec_presets::AllSpanOrSingle();
static auto exec_preset_slow = mf::build::exec_presets::Materialized();
/* This is just a utility function to keep the individual cases smaller. */
auto dispatch = [&](auto exec_preset, auto math_function) -> bool {
callback(exec_preset, math_function, *info);
return true;
};
switch (operation) {
case NODE_VECTOR_MATH_NORMALIZE:
/* Should be safe. */
return dispatch(exec_preset_fast, [](float3 in) { return normalize(in); });
case NODE_VECTOR_MATH_FLOOR:
return dispatch(exec_preset_fast, [](float3 in) { return floor(in); });
case NODE_VECTOR_MATH_CEIL:
return dispatch(exec_preset_fast, [](float3 in) { return ceil(in); });
case NODE_VECTOR_MATH_FRACTION:
return dispatch(exec_preset_fast, [](float3 in) { return fract(in); });
case NODE_VECTOR_MATH_ABSOLUTE:
return dispatch(exec_preset_fast, [](float3 in) { return abs(in); });
case NODE_VECTOR_MATH_SINE:
return dispatch(exec_preset_slow,
[](float3 in) { return float3(sinf(in.x), sinf(in.y), sinf(in.z)); });
case NODE_VECTOR_MATH_COSINE:
return dispatch(exec_preset_slow,
[](float3 in) { return float3(cosf(in.x), cosf(in.y), cosf(in.z)); });
case NODE_VECTOR_MATH_TANGENT:
return dispatch(exec_preset_slow,
[](float3 in) { return float3(tanf(in.x), tanf(in.y), tanf(in.z)); });
default:
return false;
}
return false;
}
} // namespace blender::nodes