Files
test2/intern/cycles/render/integrator.cpp
Brecht Van Lommel 75704091fc Cycles: add additive AO support through Fast GI settings
Add a Fast GI Method, either Replace for the existing behavior, or Add
to add ambient occlusion like the old world settings.

This replaces the old Ambient Occlusion settings in the world properties.
2021-10-26 14:56:43 +02:00

346 lines
12 KiB
C++

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "render/integrator.h"
#include "device/device.h"
#include "render/background.h"
#include "render/camera.h"
#include "render/film.h"
#include "render/jitter.h"
#include "render/light.h"
#include "render/object.h"
#include "render/scene.h"
#include "render/shader.h"
#include "render/sobol.h"
#include "render/stats.h"
#include "kernel/kernel_types.h"
#include "util/util_foreach.h"
#include "util/util_hash.h"
#include "util/util_logging.h"
#include "util/util_task.h"
#include "util/util_time.h"
CCL_NAMESPACE_BEGIN
NODE_DEFINE(Integrator)
{
NodeType *type = NodeType::add("integrator", create);
SOCKET_INT(min_bounce, "Min Bounce", 0);
SOCKET_INT(max_bounce, "Max Bounce", 7);
SOCKET_INT(max_diffuse_bounce, "Max Diffuse Bounce", 7);
SOCKET_INT(max_glossy_bounce, "Max Glossy Bounce", 7);
SOCKET_INT(max_transmission_bounce, "Max Transmission Bounce", 7);
SOCKET_INT(max_volume_bounce, "Max Volume Bounce", 7);
SOCKET_INT(transparent_min_bounce, "Transparent Min Bounce", 0);
SOCKET_INT(transparent_max_bounce, "Transparent Max Bounce", 7);
SOCKET_INT(ao_bounces, "AO Bounces", 0);
SOCKET_FLOAT(ao_factor, "AO Factor", 0.0f);
SOCKET_FLOAT(ao_distance, "AO Distance", FLT_MAX);
SOCKET_FLOAT(ao_additive_factor, "AO Additive Factor", 0.0f);
SOCKET_INT(volume_max_steps, "Volume Max Steps", 1024);
SOCKET_FLOAT(volume_step_rate, "Volume Step Rate", 1.0f);
SOCKET_BOOLEAN(caustics_reflective, "Reflective Caustics", true);
SOCKET_BOOLEAN(caustics_refractive, "Refractive Caustics", true);
SOCKET_FLOAT(filter_glossy, "Filter Glossy", 0.0f);
SOCKET_INT(seed, "Seed", 0);
SOCKET_FLOAT(sample_clamp_direct, "Sample Clamp Direct", 0.0f);
SOCKET_FLOAT(sample_clamp_indirect, "Sample Clamp Indirect", 0.0f);
SOCKET_BOOLEAN(motion_blur, "Motion Blur", false);
SOCKET_INT(aa_samples, "AA Samples", 0);
SOCKET_INT(start_sample, "Start Sample", 0);
SOCKET_BOOLEAN(use_adaptive_sampling, "Use Adaptive Sampling", false);
SOCKET_FLOAT(adaptive_threshold, "Adaptive Threshold", 0.0f);
SOCKET_INT(adaptive_min_samples, "Adaptive Min Samples", 0);
SOCKET_FLOAT(light_sampling_threshold, "Light Sampling Threshold", 0.05f);
static NodeEnum sampling_pattern_enum;
sampling_pattern_enum.insert("sobol", SAMPLING_PATTERN_SOBOL);
sampling_pattern_enum.insert("pmj", SAMPLING_PATTERN_PMJ);
SOCKET_ENUM(sampling_pattern, "Sampling Pattern", sampling_pattern_enum, SAMPLING_PATTERN_SOBOL);
static NodeEnum denoiser_type_enum;
denoiser_type_enum.insert("optix", DENOISER_OPTIX);
denoiser_type_enum.insert("openimagedenoise", DENOISER_OPENIMAGEDENOISE);
static NodeEnum denoiser_prefilter_enum;
denoiser_prefilter_enum.insert("none", DENOISER_PREFILTER_NONE);
denoiser_prefilter_enum.insert("fast", DENOISER_PREFILTER_FAST);
denoiser_prefilter_enum.insert("accurate", DENOISER_PREFILTER_ACCURATE);
/* Default to accurate denoising with OpenImageDenoise. For interactive viewport
* it's best use OptiX and disable the normal pass since it does not always have
* the desired effect for that denoiser. */
SOCKET_BOOLEAN(use_denoise, "Use Denoiser", false);
SOCKET_ENUM(denoiser_type, "Denoiser Type", denoiser_type_enum, DENOISER_OPENIMAGEDENOISE);
SOCKET_INT(denoise_start_sample, "Start Sample to Denoise", 0);
SOCKET_BOOLEAN(use_denoise_pass_albedo, "Use Albedo Pass for Denoiser", true);
SOCKET_BOOLEAN(use_denoise_pass_normal, "Use Normal Pass for Denoiser", true);
SOCKET_ENUM(
denoiser_prefilter, "Denoiser Type", denoiser_prefilter_enum, DENOISER_PREFILTER_ACCURATE);
return type;
}
Integrator::Integrator() : Node(get_node_type())
{
}
Integrator::~Integrator()
{
}
void Integrator::device_update(Device *device, DeviceScene *dscene, Scene *scene)
{
if (!is_modified())
return;
scoped_callback_timer timer([scene](double time) {
if (scene->update_stats) {
scene->update_stats->integrator.times.add_entry({"device_update", time});
}
});
KernelIntegrator *kintegrator = &dscene->data.integrator;
/* Adaptive sampling requires PMJ samples.
*
* This also makes detection of sampling pattern a bit more involved: can not rely on the changed
* state of socket, since its value might be different from the effective value used here. So
* instead compare with previous value in the KernelIntegrator. Only do it if the device was
* updated once (in which case the `sample_pattern_lut` will be allocated to a non-zero size). */
const SamplingPattern new_sampling_pattern = (use_adaptive_sampling) ? SAMPLING_PATTERN_PMJ :
sampling_pattern;
const bool need_update_lut = max_bounce_is_modified() || max_transmission_bounce_is_modified() ||
dscene->sample_pattern_lut.size() == 0 ||
kintegrator->sampling_pattern != new_sampling_pattern;
if (need_update_lut) {
dscene->sample_pattern_lut.tag_realloc();
}
device_free(device, dscene);
/* integrator parameters */
kintegrator->min_bounce = min_bounce + 1;
kintegrator->max_bounce = max_bounce + 1;
kintegrator->max_diffuse_bounce = max_diffuse_bounce + 1;
kintegrator->max_glossy_bounce = max_glossy_bounce + 1;
kintegrator->max_transmission_bounce = max_transmission_bounce + 1;
kintegrator->max_volume_bounce = max_volume_bounce + 1;
kintegrator->transparent_min_bounce = transparent_min_bounce + 1;
kintegrator->transparent_max_bounce = transparent_max_bounce + 1;
kintegrator->ao_bounces = ao_bounces;
kintegrator->ao_bounces_distance = ao_distance;
kintegrator->ao_bounces_factor = ao_factor;
kintegrator->ao_additive_factor = ao_additive_factor;
/* Transparent Shadows
* We only need to enable transparent shadows, if we actually have
* transparent shaders in the scene. Otherwise we can disable it
* to improve performance a bit. */
kintegrator->transparent_shadows = false;
foreach (Shader *shader, scene->shaders) {
/* keep this in sync with SD_HAS_TRANSPARENT_SHADOW in shader.cpp */
if ((shader->has_surface_transparent && shader->get_use_transparent_shadow()) ||
shader->has_volume) {
kintegrator->transparent_shadows = true;
break;
}
}
kintegrator->volume_max_steps = volume_max_steps;
kintegrator->volume_step_rate = volume_step_rate;
kintegrator->caustics_reflective = caustics_reflective;
kintegrator->caustics_refractive = caustics_refractive;
kintegrator->filter_glossy = (filter_glossy == 0.0f) ? FLT_MAX : 1.0f / filter_glossy;
kintegrator->seed = seed;
kintegrator->sample_clamp_direct = (sample_clamp_direct == 0.0f) ? FLT_MAX :
sample_clamp_direct * 3.0f;
kintegrator->sample_clamp_indirect = (sample_clamp_indirect == 0.0f) ?
FLT_MAX :
sample_clamp_indirect * 3.0f;
kintegrator->sampling_pattern = new_sampling_pattern;
if (light_sampling_threshold > 0.0f) {
kintegrator->light_inv_rr_threshold = 1.0f / light_sampling_threshold;
}
else {
kintegrator->light_inv_rr_threshold = 0.0f;
}
/* sobol directions table */
int max_samples = max_bounce + transparent_max_bounce + 3 + VOLUME_BOUNDS_MAX +
max(BSSRDF_MAX_HITS, BSSRDF_MAX_BOUNCES);
int dimensions = PRNG_BASE_NUM + max_samples * PRNG_BOUNCE_NUM;
dimensions = min(dimensions, SOBOL_MAX_DIMENSIONS);
if (need_update_lut) {
if (kintegrator->sampling_pattern == SAMPLING_PATTERN_SOBOL) {
uint *directions = (uint *)dscene->sample_pattern_lut.alloc(SOBOL_BITS * dimensions);
sobol_generate_direction_vectors((uint(*)[SOBOL_BITS])directions, dimensions);
dscene->sample_pattern_lut.copy_to_device();
}
else {
constexpr int sequence_size = NUM_PMJ_SAMPLES;
constexpr int num_sequences = NUM_PMJ_PATTERNS;
float2 *directions = (float2 *)dscene->sample_pattern_lut.alloc(sequence_size *
num_sequences * 2);
TaskPool pool;
for (int j = 0; j < num_sequences; ++j) {
float2 *sequence = directions + j * sequence_size;
pool.push(
function_bind(&progressive_multi_jitter_02_generate_2D, sequence, sequence_size, j));
}
pool.wait_work();
dscene->sample_pattern_lut.copy_to_device();
}
}
kintegrator->has_shadow_catcher = scene->has_shadow_catcher();
dscene->sample_pattern_lut.clear_modified();
clear_modified();
}
void Integrator::device_free(Device *, DeviceScene *dscene, bool force_free)
{
dscene->sample_pattern_lut.free_if_need_realloc(force_free);
}
void Integrator::tag_update(Scene *scene, uint32_t flag)
{
if (flag & UPDATE_ALL) {
tag_modified();
}
if (flag & AO_PASS_MODIFIED) {
/* tag only the ao_bounces socket as modified so we avoid updating sample_pattern_lut
* unnecessarily */
tag_ao_bounces_modified();
}
if (filter_glossy_is_modified()) {
foreach (Shader *shader, scene->shaders) {
if (shader->has_integrator_dependency) {
scene->shader_manager->tag_update(scene, ShaderManager::INTEGRATOR_MODIFIED);
break;
}
}
}
if (motion_blur_is_modified()) {
scene->object_manager->tag_update(scene, ObjectManager::MOTION_BLUR_MODIFIED);
scene->camera->tag_modified();
}
}
uint Integrator::get_kernel_features(const Scene *scene) const
{
uint kernel_features = 0;
if (ao_additive_factor != 0.0f) {
kernel_features |= KERNEL_FEATURE_AO_ADDITIVE;
}
return kernel_features;
}
AdaptiveSampling Integrator::get_adaptive_sampling() const
{
AdaptiveSampling adaptive_sampling;
adaptive_sampling.use = use_adaptive_sampling;
if (!adaptive_sampling.use) {
return adaptive_sampling;
}
if (aa_samples > 0 && adaptive_threshold == 0.0f) {
adaptive_sampling.threshold = max(0.001f, 1.0f / (float)aa_samples);
VLOG(1) << "Cycles adaptive sampling: automatic threshold = " << adaptive_sampling.threshold;
}
else {
adaptive_sampling.threshold = adaptive_threshold;
}
if (adaptive_sampling.threshold > 0 && adaptive_min_samples == 0) {
/* Threshold 0.1 -> 32, 0.01 -> 64, 0.001 -> 128.
* This is highly scene dependent, we make a guess that seemed to work well
* in various test scenes. */
const int min_samples = (int)ceilf(16.0f / powf(adaptive_sampling.threshold, 0.3f));
adaptive_sampling.min_samples = max(4, min_samples);
VLOG(1) << "Cycles adaptive sampling: automatic min samples = "
<< adaptive_sampling.min_samples;
}
else {
adaptive_sampling.min_samples = max(4, adaptive_min_samples);
}
/* Arbitrary factor that makes the threshold more similar to what is was before,
* and gives arguably more intuitive values. */
adaptive_sampling.threshold *= 5.0f;
adaptive_sampling.adaptive_step = 16;
DCHECK(is_power_of_two(adaptive_sampling.adaptive_step))
<< "Adaptive step must be a power of two for bitwise operations to work";
return adaptive_sampling;
}
DenoiseParams Integrator::get_denoise_params() const
{
DenoiseParams denoise_params;
denoise_params.use = use_denoise;
denoise_params.type = denoiser_type;
denoise_params.start_sample = denoise_start_sample;
denoise_params.use_pass_albedo = use_denoise_pass_albedo;
denoise_params.use_pass_normal = use_denoise_pass_normal;
denoise_params.prefilter = denoiser_prefilter;
return denoise_params;
}
CCL_NAMESPACE_END