Handle some cases that were missed in previous refactor. And eliminate unnecessary size_t casts as these could hide issues. Pull Request: https://projects.blender.org/blender/blender/pulls/137404
1160 lines
40 KiB
C++
1160 lines
40 KiB
C++
/* SPDX-FileCopyrightText: 2023 Blender Authors
|
|
*
|
|
* SPDX-License-Identifier: GPL-2.0-or-later */
|
|
|
|
/** \file
|
|
* \ingroup modifiers
|
|
*/
|
|
|
|
#include <algorithm>
|
|
|
|
#include "BLI_math_vector.h"
|
|
#include "BLI_utildefines.h"
|
|
|
|
#include "BLI_bitmap.h"
|
|
#include "BLI_math_geom.h"
|
|
#include "BLI_utildefines_stack.h"
|
|
|
|
#include "DNA_mesh_types.h"
|
|
#include "DNA_meshdata_types.h"
|
|
#include "DNA_object_types.h"
|
|
|
|
#include "MEM_guardedalloc.h"
|
|
|
|
#include "BKE_attribute.hh"
|
|
#include "BKE_customdata.hh"
|
|
#include "BKE_deform.hh"
|
|
#include "BKE_mesh.hh"
|
|
|
|
#include "MOD_solidify_util.hh" /* own include */
|
|
#include "MOD_util.hh"
|
|
|
|
/* -------------------------------------------------------------------- */
|
|
/** \name High Quality Normal Calculation Function
|
|
*
|
|
* High quality mesh normal calculation function
|
|
* (could be exposed for other functions to use).
|
|
* \{ */
|
|
|
|
/* skip shell thickness for non-manifold edges, see #35710. */
|
|
#define USE_NONMANIFOLD_WORKAROUND
|
|
|
|
struct EdgeFaceRef {
|
|
int p1; /* init as -1 */
|
|
int p2;
|
|
};
|
|
|
|
BLI_INLINE bool edgeref_is_init(const EdgeFaceRef *edge_ref)
|
|
{
|
|
return !((edge_ref->p1 == 0) && (edge_ref->p2 == 0));
|
|
}
|
|
|
|
/**
|
|
* \param mesh: Mesh to calculate normals for.
|
|
* \param face_normals: Precalculated face normals.
|
|
* \param r_vert_nors: Return vert normals.
|
|
*/
|
|
static void mesh_calc_hq_normal(Mesh *mesh,
|
|
const blender::Span<blender::float3> face_normals,
|
|
float (*r_vert_nors)[3],
|
|
#ifdef USE_NONMANIFOLD_WORKAROUND
|
|
BLI_bitmap *edge_tmp_tag
|
|
#endif
|
|
)
|
|
{
|
|
const int verts_num = mesh->verts_num;
|
|
const blender::Span<blender::int2> edges = mesh->edges();
|
|
const blender::OffsetIndices faces = mesh->faces();
|
|
const blender::Span<int> corner_edges = mesh->corner_edges();
|
|
|
|
{
|
|
EdgeFaceRef *edge_ref_array = MEM_calloc_arrayN<EdgeFaceRef>(edges.size(), __func__);
|
|
EdgeFaceRef *edge_ref;
|
|
float edge_normal[3];
|
|
|
|
/* Add an edge reference if it's not there, pointing back to the face index. */
|
|
for (const int i : faces.index_range()) {
|
|
for (const int edge_i : corner_edges.slice(faces[i])) {
|
|
/* --- add edge ref to face --- */
|
|
edge_ref = &edge_ref_array[edge_i];
|
|
if (!edgeref_is_init(edge_ref)) {
|
|
edge_ref->p1 = i;
|
|
edge_ref->p2 = -1;
|
|
}
|
|
else if ((edge_ref->p1 != -1) && (edge_ref->p2 == -1)) {
|
|
edge_ref->p2 = i;
|
|
}
|
|
else {
|
|
/* 3+ faces using an edge, we can't handle this usefully */
|
|
edge_ref->p1 = edge_ref->p2 = -1;
|
|
#ifdef USE_NONMANIFOLD_WORKAROUND
|
|
BLI_BITMAP_ENABLE(edge_tmp_tag, edge_i);
|
|
#endif
|
|
}
|
|
/* --- done --- */
|
|
}
|
|
}
|
|
|
|
int i;
|
|
const blender::int2 *edge;
|
|
for (i = 0, edge = edges.data(), edge_ref = edge_ref_array; i < edges.size();
|
|
i++, edge++, edge_ref++)
|
|
{
|
|
/* Get the edge vert indices, and edge value (the face indices that use it) */
|
|
|
|
if (edgeref_is_init(edge_ref) && (edge_ref->p1 != -1)) {
|
|
if (edge_ref->p2 != -1) {
|
|
/* We have 2 faces using this edge, calculate the edges normal
|
|
* using the angle between the 2 faces as a weighting */
|
|
#if 0
|
|
add_v3_v3v3(edge_normal, face_nors[edge_ref->f1], face_nors[edge_ref->f2]);
|
|
normalize_v3_length(
|
|
edge_normal,
|
|
angle_normalized_v3v3(face_nors[edge_ref->f1], face_nors[edge_ref->f2]));
|
|
#else
|
|
mid_v3_v3v3_angle_weighted(
|
|
edge_normal, face_normals[edge_ref->p1], face_normals[edge_ref->p2]);
|
|
#endif
|
|
}
|
|
else {
|
|
/* only one face attached to that edge */
|
|
/* an edge without another attached- the weight on this is undefined */
|
|
copy_v3_v3(edge_normal, face_normals[edge_ref->p1]);
|
|
}
|
|
add_v3_v3(r_vert_nors[(*edge)[0]], edge_normal);
|
|
add_v3_v3(r_vert_nors[(*edge)[1]], edge_normal);
|
|
}
|
|
}
|
|
MEM_freeN(edge_ref_array);
|
|
}
|
|
|
|
/* normalize vertex normals and assign */
|
|
const blender::Span<blender::float3> vert_normals = mesh->vert_normals();
|
|
for (int i = 0; i < verts_num; i++) {
|
|
if (normalize_v3(r_vert_nors[i]) == 0.0f) {
|
|
copy_v3_v3(r_vert_nors[i], vert_normals[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
/** \} */
|
|
|
|
/* -------------------------------------------------------------------- */
|
|
/** \name Main Solidify Function
|
|
* \{ */
|
|
|
|
/* NOLINTNEXTLINE: readability-function-size */
|
|
Mesh *MOD_solidify_extrude_modifyMesh(ModifierData *md, const ModifierEvalContext *ctx, Mesh *mesh)
|
|
{
|
|
using namespace blender;
|
|
Mesh *result;
|
|
const SolidifyModifierData *smd = (SolidifyModifierData *)md;
|
|
|
|
const uint verts_num = uint(mesh->verts_num);
|
|
const uint edges_num = uint(mesh->edges_num);
|
|
const uint faces_num = uint(mesh->faces_num);
|
|
const uint loops_num = uint(mesh->corners_num);
|
|
uint newLoops = 0, newPolys = 0, newEdges = 0, newVerts = 0, rimVerts = 0;
|
|
|
|
/* Only use material offsets if we have 2 or more materials. */
|
|
const short mat_nr_max = ctx->object->totcol > 1 ? ctx->object->totcol - 1 : 0;
|
|
const short mat_ofs = mat_nr_max ? smd->mat_ofs : 0;
|
|
const short mat_ofs_rim = mat_nr_max ? smd->mat_ofs_rim : 0;
|
|
|
|
/* use for edges */
|
|
/* Over-allocate new_vert_arr, old_vert_arr. */
|
|
uint *new_vert_arr = nullptr;
|
|
STACK_DECLARE(new_vert_arr);
|
|
|
|
uint *new_edge_arr = nullptr;
|
|
STACK_DECLARE(new_edge_arr);
|
|
|
|
uint *old_vert_arr = MEM_calloc_arrayN<uint>(verts_num, "old_vert_arr in solidify");
|
|
|
|
uint *edge_users = nullptr;
|
|
int *edge_order = nullptr;
|
|
|
|
float(*vert_nors)[3] = nullptr;
|
|
blender::Span<blender::float3> face_normals;
|
|
|
|
const bool need_face_normals = (smd->flag & MOD_SOLIDIFY_NORMAL_CALC) ||
|
|
(smd->flag & MOD_SOLIDIFY_EVEN) ||
|
|
(smd->flag & MOD_SOLIDIFY_OFFSET_ANGLE_CLAMP) ||
|
|
(smd->bevel_convex != 0);
|
|
|
|
const float ofs_orig = -(((-smd->offset_fac + 1.0f) * 0.5f) * smd->offset);
|
|
const float ofs_new = smd->offset + ofs_orig;
|
|
const float offset_fac_vg = smd->offset_fac_vg;
|
|
const float offset_fac_vg_inv = 1.0f - smd->offset_fac_vg;
|
|
const float bevel_convex = smd->bevel_convex;
|
|
const bool do_flip = (smd->flag & MOD_SOLIDIFY_FLIP) != 0;
|
|
const bool do_clamp = (smd->offset_clamp != 0.0f);
|
|
const bool do_angle_clamp = do_clamp && (smd->flag & MOD_SOLIDIFY_OFFSET_ANGLE_CLAMP) != 0;
|
|
const bool do_bevel_convex = bevel_convex != 0.0f;
|
|
const bool do_rim = (smd->flag & MOD_SOLIDIFY_RIM) != 0;
|
|
const bool do_shell = !(do_rim && (smd->flag & MOD_SOLIDIFY_NOSHELL) != 0);
|
|
|
|
/* weights */
|
|
const MDeformVert *dvert;
|
|
const bool defgrp_invert = (smd->flag & MOD_SOLIDIFY_VGROUP_INV) != 0;
|
|
int defgrp_index;
|
|
const int shell_defgrp_index = BKE_id_defgroup_name_index(&mesh->id, smd->shell_defgrp_name);
|
|
const int rim_defgrp_index = BKE_id_defgroup_name_index(&mesh->id, smd->rim_defgrp_name);
|
|
|
|
/* array size is doubled in case of using a shell */
|
|
const uint stride = do_shell ? 2 : 1;
|
|
|
|
const blender::Span<blender::float3> vert_normals = mesh->vert_normals();
|
|
|
|
MOD_get_vgroup(ctx->object, mesh, smd->defgrp_name, &dvert, &defgrp_index);
|
|
|
|
const blender::Span<blender::float3> orig_vert_positions = mesh->vert_positions();
|
|
const blender::Span<blender::int2> orig_edges = mesh->edges();
|
|
const blender::OffsetIndices orig_faces = mesh->faces();
|
|
const blender::Span<int> orig_corner_verts = mesh->corner_verts();
|
|
const blender::Span<int> orig_corner_edges = mesh->corner_edges();
|
|
|
|
if (need_face_normals) {
|
|
/* calculate only face normals */
|
|
face_normals = mesh->face_normals();
|
|
}
|
|
|
|
STACK_INIT(new_vert_arr, verts_num * 2);
|
|
STACK_INIT(new_edge_arr, edges_num * 2);
|
|
|
|
if (do_rim) {
|
|
BLI_bitmap *orig_mvert_tag = BLI_BITMAP_NEW(verts_num, __func__);
|
|
uint eidx;
|
|
uint i;
|
|
|
|
#define INVALID_UNUSED uint(-1)
|
|
#define INVALID_PAIR uint(-2)
|
|
|
|
new_vert_arr = MEM_malloc_arrayN<uint>(2 * verts_num, __func__);
|
|
new_edge_arr = MEM_malloc_arrayN<uint>(((edges_num * 2) + verts_num), __func__);
|
|
|
|
edge_users = MEM_malloc_arrayN<uint>(edges_num, __func__);
|
|
edge_order = MEM_malloc_arrayN<int>(edges_num, __func__);
|
|
|
|
/* save doing 2 loops here... */
|
|
#if 0
|
|
copy_vn_i(edge_users, edges_num, INVALID_UNUSED);
|
|
#endif
|
|
|
|
for (eidx = 0; eidx < edges_num; eidx++) {
|
|
edge_users[eidx] = INVALID_UNUSED;
|
|
}
|
|
|
|
for (const int64_t i : orig_faces.index_range()) {
|
|
const blender::IndexRange face = orig_faces[i];
|
|
int j;
|
|
|
|
int corner_i_prev = face.last();
|
|
|
|
for (j = 0; j < face.size(); j++) {
|
|
const int corner_i = face[j];
|
|
const int vert_i = orig_corner_verts[corner_i];
|
|
const int prev_vert_i = orig_corner_verts[corner_i_prev];
|
|
/* add edge user */
|
|
eidx = int(orig_corner_edges[corner_i_prev]);
|
|
if (edge_users[eidx] == INVALID_UNUSED) {
|
|
const blender::int2 &edge = orig_edges[eidx];
|
|
BLI_assert(ELEM(prev_vert_i, edge[0], edge[1]) && ELEM(vert_i, edge[0], edge[1]));
|
|
edge_users[eidx] = (prev_vert_i > vert_i) == (edge[0] < edge[1]) ? uint(i) :
|
|
(uint(i) + faces_num);
|
|
edge_order[eidx] = j;
|
|
}
|
|
else {
|
|
edge_users[eidx] = INVALID_PAIR;
|
|
}
|
|
corner_i_prev = corner_i;
|
|
}
|
|
}
|
|
|
|
for (eidx = 0; eidx < edges_num; eidx++) {
|
|
if (!ELEM(edge_users[eidx], INVALID_UNUSED, INVALID_PAIR)) {
|
|
BLI_BITMAP_ENABLE(orig_mvert_tag, orig_edges[eidx][0]);
|
|
BLI_BITMAP_ENABLE(orig_mvert_tag, orig_edges[eidx][1]);
|
|
STACK_PUSH(new_edge_arr, eidx);
|
|
newPolys++;
|
|
newLoops += 4;
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < verts_num; i++) {
|
|
if (BLI_BITMAP_TEST(orig_mvert_tag, i)) {
|
|
old_vert_arr[i] = STACK_SIZE(new_vert_arr);
|
|
STACK_PUSH(new_vert_arr, i);
|
|
rimVerts++;
|
|
}
|
|
else {
|
|
old_vert_arr[i] = INVALID_UNUSED;
|
|
}
|
|
}
|
|
|
|
MEM_freeN(orig_mvert_tag);
|
|
}
|
|
|
|
if (do_shell == false) {
|
|
/* only add rim vertices */
|
|
newVerts = rimVerts;
|
|
/* each extruded face needs an opposite edge */
|
|
newEdges = newPolys;
|
|
}
|
|
else {
|
|
/* (stride == 2) in this case, so no need to add newVerts/newEdges */
|
|
BLI_assert(newVerts == 0);
|
|
BLI_assert(newEdges == 0);
|
|
}
|
|
|
|
#ifdef USE_NONMANIFOLD_WORKAROUND
|
|
BLI_bitmap *edge_tmp_tag = BLI_BITMAP_NEW(mesh->edges_num, __func__);
|
|
#endif
|
|
|
|
if (smd->flag & MOD_SOLIDIFY_NORMAL_CALC) {
|
|
vert_nors = MEM_calloc_arrayN<float[3]>(verts_num, __func__);
|
|
mesh_calc_hq_normal(mesh,
|
|
face_normals,
|
|
vert_nors
|
|
#ifdef USE_NONMANIFOLD_WORKAROUND
|
|
,
|
|
edge_tmp_tag
|
|
#endif
|
|
);
|
|
}
|
|
|
|
result = BKE_mesh_new_nomain_from_template(mesh,
|
|
int((verts_num * stride) + newVerts),
|
|
int((edges_num * stride) + newEdges + rimVerts),
|
|
int((faces_num * stride) + newPolys),
|
|
int((loops_num * stride) + newLoops));
|
|
|
|
blender::MutableSpan<blender::float3> vert_positions = result->vert_positions_for_write();
|
|
blender::MutableSpan<blender::int2> edges = result->edges_for_write();
|
|
blender::MutableSpan<int> face_offsets = result->face_offsets_for_write();
|
|
blender::MutableSpan<int> corner_verts = result->corner_verts_for_write();
|
|
blender::MutableSpan<int> corner_edges = result->corner_edges_for_write();
|
|
|
|
if (do_shell) {
|
|
CustomData_copy_data(&mesh->vert_data, &result->vert_data, 0, 0, int(verts_num));
|
|
CustomData_copy_data(&mesh->vert_data, &result->vert_data, 0, int(verts_num), int(verts_num));
|
|
|
|
CustomData_copy_data(&mesh->edge_data, &result->edge_data, 0, 0, int(edges_num));
|
|
CustomData_copy_data(&mesh->edge_data, &result->edge_data, 0, int(edges_num), int(edges_num));
|
|
|
|
CustomData_copy_data(&mesh->corner_data, &result->corner_data, 0, 0, int(loops_num));
|
|
/* DO NOT copy here the 'copied' part of loop data, we want to reverse loops
|
|
* (so that winding of copied face get reversed, so that normals get reversed
|
|
* and point in expected direction...).
|
|
* If we also copy data here, then this data get overwritten
|
|
* (and allocated memory becomes a memory leak). */
|
|
|
|
CustomData_copy_data(&mesh->face_data, &result->face_data, 0, 0, int(faces_num));
|
|
CustomData_copy_data(&mesh->face_data, &result->face_data, 0, int(faces_num), int(faces_num));
|
|
face_offsets.take_front(faces_num).copy_from(mesh->face_offsets().drop_back(1));
|
|
for (const int i : orig_faces.index_range()) {
|
|
face_offsets[faces_num + i] = orig_faces[i].start() + mesh->corners_num;
|
|
}
|
|
}
|
|
else {
|
|
int i, j;
|
|
CustomData_copy_data(&mesh->vert_data, &result->vert_data, 0, 0, int(verts_num));
|
|
for (i = 0, j = int(verts_num); i < verts_num; i++) {
|
|
if (old_vert_arr[i] != INVALID_UNUSED) {
|
|
CustomData_copy_data(&mesh->vert_data, &result->vert_data, i, j, 1);
|
|
j++;
|
|
}
|
|
}
|
|
|
|
CustomData_copy_data(&mesh->edge_data, &result->edge_data, 0, 0, int(edges_num));
|
|
|
|
for (i = 0, j = int(edges_num); i < edges_num; i++) {
|
|
if (!ELEM(edge_users[i], INVALID_UNUSED, INVALID_PAIR)) {
|
|
blender::int2 *ed_src, *ed_dst;
|
|
CustomData_copy_data(&mesh->edge_data, &result->edge_data, i, j, 1);
|
|
|
|
ed_src = &edges[i];
|
|
ed_dst = &edges[j];
|
|
(*ed_dst)[0] = old_vert_arr[(*ed_src)[0]] + verts_num;
|
|
(*ed_dst)[1] = old_vert_arr[(*ed_src)[1]] + verts_num;
|
|
j++;
|
|
}
|
|
}
|
|
|
|
/* will be created later */
|
|
CustomData_copy_data(&mesh->corner_data, &result->corner_data, 0, 0, int(loops_num));
|
|
CustomData_copy_data(&mesh->face_data, &result->face_data, 0, 0, int(faces_num));
|
|
face_offsets.take_front(faces_num).copy_from(mesh->face_offsets().drop_back(1));
|
|
}
|
|
|
|
const float *orig_vert_bweight = static_cast<const float *>(
|
|
CustomData_get_layer_named(&mesh->vert_data, CD_PROP_FLOAT, "bevel_weight_vert"));
|
|
float *result_edge_bweight = static_cast<float *>(CustomData_get_layer_named_for_write(
|
|
&result->edge_data, CD_PROP_FLOAT, "bevel_weight_edge", result->edges_num));
|
|
if (!result_edge_bweight && (do_bevel_convex || orig_vert_bweight)) {
|
|
result_edge_bweight = static_cast<float *>(CustomData_add_layer_named(&result->edge_data,
|
|
CD_PROP_FLOAT,
|
|
CD_SET_DEFAULT,
|
|
result->edges_num,
|
|
"bevel_weight_edge"));
|
|
}
|
|
|
|
/* Initializes: (`i_end`, `do_shell_align`, `vert_index`). */
|
|
#define INIT_VERT_ARRAY_OFFSETS(test) \
|
|
if (((ofs_new >= ofs_orig) == do_flip) == test) { \
|
|
i_end = verts_num; \
|
|
do_shell_align = true; \
|
|
vert_index = 0; \
|
|
} \
|
|
else { \
|
|
if (do_shell) { \
|
|
i_end = verts_num; \
|
|
do_shell_align = true; \
|
|
} \
|
|
else { \
|
|
i_end = newVerts; \
|
|
do_shell_align = false; \
|
|
} \
|
|
vert_index = verts_num; \
|
|
} \
|
|
(void)0
|
|
|
|
bke::MutableAttributeAccessor dst_attributes = result->attributes_for_write();
|
|
bke::SpanAttributeWriter dst_material_index = dst_attributes.lookup_or_add_for_write_span<int>(
|
|
"material_index", bke::AttrDomain::Face);
|
|
|
|
/* flip normals */
|
|
|
|
if (do_shell) {
|
|
for (const int64_t i : blender::IndexRange(mesh->faces_num)) {
|
|
const blender::IndexRange face = orig_faces[i];
|
|
const int loop_end = face.size() - 1;
|
|
int e;
|
|
int j;
|
|
|
|
/* reverses the loop direction (corner verts as well as custom-data)
|
|
* Corner edges also need to be corrected too, done in a separate loop below. */
|
|
const int corner_2 = face.start() + mesh->corners_num;
|
|
#if 0
|
|
for (j = 0; j < face.size(); j++) {
|
|
CustomData_copy_data(&mesh->ldata,
|
|
&result->ldata,
|
|
face.start() + j,
|
|
face.start() + (loop_end - j) + mesh->corners_num,
|
|
1);
|
|
}
|
|
#else
|
|
/* slightly more involved, keep the first vertex the same for the copy,
|
|
* ensures the diagonals in the new face match the original. */
|
|
j = 0;
|
|
for (int j_prev = loop_end; j < face.size(); j_prev = j++) {
|
|
CustomData_copy_data(&mesh->corner_data,
|
|
&result->corner_data,
|
|
face.start() + j,
|
|
face.start() + (loop_end - j_prev) + mesh->corners_num,
|
|
1);
|
|
}
|
|
#endif
|
|
|
|
if (mat_ofs) {
|
|
dst_material_index.span[faces_num + i] += mat_ofs;
|
|
CLAMP(dst_material_index.span[faces_num + i], 0, mat_nr_max);
|
|
}
|
|
|
|
e = corner_edges[corner_2 + 0];
|
|
for (j = 0; j < loop_end; j++) {
|
|
corner_edges[corner_2 + j] = corner_edges[corner_2 + j + 1];
|
|
}
|
|
corner_edges[corner_2 + loop_end] = e;
|
|
|
|
for (j = 0; j < face.size(); j++) {
|
|
corner_verts[corner_2 + j] += verts_num;
|
|
corner_edges[corner_2 + j] += edges_num;
|
|
}
|
|
}
|
|
|
|
for (blender::int2 &edge : edges.slice(edges_num, edges_num)) {
|
|
edge += verts_num;
|
|
}
|
|
}
|
|
|
|
/* NOTE: copied vertex layers don't have flipped normals yet. do this after applying offset. */
|
|
if ((smd->flag & MOD_SOLIDIFY_EVEN) == 0) {
|
|
/* no even thickness, very simple */
|
|
float ofs_new_vgroup;
|
|
|
|
/* for clamping */
|
|
float *vert_lens = nullptr;
|
|
float *vert_angs = nullptr;
|
|
const float offset = fabsf(smd->offset) * smd->offset_clamp;
|
|
const float offset_sq = offset * offset;
|
|
|
|
/* for bevel weight */
|
|
float *edge_angs = nullptr;
|
|
|
|
if (do_clamp) {
|
|
vert_lens = MEM_malloc_arrayN<float>(verts_num, "vert_lens");
|
|
copy_vn_fl(vert_lens, int(verts_num), FLT_MAX);
|
|
for (uint i = 0; i < edges_num; i++) {
|
|
const float ed_len_sq = len_squared_v3v3(vert_positions[edges[i][0]],
|
|
vert_positions[edges[i][1]]);
|
|
vert_lens[edges[i][0]] = min_ff(vert_lens[edges[i][0]], ed_len_sq);
|
|
vert_lens[edges[i][1]] = min_ff(vert_lens[edges[i][1]], ed_len_sq);
|
|
}
|
|
}
|
|
|
|
if (do_angle_clamp || do_bevel_convex) {
|
|
uint eidx;
|
|
if (do_angle_clamp) {
|
|
vert_angs = MEM_malloc_arrayN<float>(verts_num, "vert_angs");
|
|
copy_vn_fl(vert_angs, int(verts_num), 0.5f * M_PI);
|
|
}
|
|
if (do_bevel_convex) {
|
|
edge_angs = MEM_malloc_arrayN<float>(edges_num, "edge_angs");
|
|
if (!do_rim) {
|
|
edge_users = MEM_malloc_arrayN<uint>(edges_num, "solid_mod edges");
|
|
}
|
|
}
|
|
uint(*edge_user_pairs)[2] = MEM_malloc_arrayN<uint[2]>(edges_num, "edge_user_pairs");
|
|
for (eidx = 0; eidx < edges_num; eidx++) {
|
|
edge_user_pairs[eidx][0] = INVALID_UNUSED;
|
|
edge_user_pairs[eidx][1] = INVALID_UNUSED;
|
|
}
|
|
for (const int64_t i : orig_faces.index_range()) {
|
|
const blender::IndexRange face = orig_faces[i];
|
|
int prev_corner_i = face.last();
|
|
for (const int corner_i : face) {
|
|
const int vert_i = orig_corner_verts[corner_i];
|
|
const int prev_vert_i = orig_corner_verts[prev_corner_i];
|
|
/* add edge user */
|
|
eidx = orig_corner_edges[prev_corner_i];
|
|
const blender::int2 &ed = orig_edges[eidx];
|
|
BLI_assert(ELEM(prev_vert_i, ed[0], ed[1]) && ELEM(vert_i, ed[0], ed[1]));
|
|
char flip = char((prev_vert_i > vert_i) == (ed[0] < ed[1]));
|
|
if (edge_user_pairs[eidx][flip] == INVALID_UNUSED) {
|
|
edge_user_pairs[eidx][flip] = uint(i);
|
|
}
|
|
else {
|
|
edge_user_pairs[eidx][0] = INVALID_PAIR;
|
|
edge_user_pairs[eidx][1] = INVALID_PAIR;
|
|
}
|
|
prev_corner_i = corner_i;
|
|
}
|
|
}
|
|
float e[3];
|
|
for (uint i = 0; i < edges_num; i++) {
|
|
const blender::int2 &edge = orig_edges[i];
|
|
if (!ELEM(edge_user_pairs[i][0], INVALID_UNUSED, INVALID_PAIR) &&
|
|
!ELEM(edge_user_pairs[i][1], INVALID_UNUSED, INVALID_PAIR))
|
|
{
|
|
const float *n0 = face_normals[edge_user_pairs[i][0]];
|
|
const float *n1 = face_normals[edge_user_pairs[i][1]];
|
|
sub_v3_v3v3(e, orig_vert_positions[edge[0]], orig_vert_positions[edge[1]]);
|
|
normalize_v3(e);
|
|
const float angle = angle_signed_on_axis_v3v3_v3(n0, n1, e);
|
|
if (do_angle_clamp) {
|
|
vert_angs[edge[0]] = max_ff(vert_angs[edge[0]], angle);
|
|
vert_angs[edge[1]] = max_ff(vert_angs[edge[1]], angle);
|
|
}
|
|
if (do_bevel_convex) {
|
|
edge_angs[i] = angle;
|
|
if (!do_rim) {
|
|
edge_users[i] = INVALID_PAIR;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
MEM_freeN(edge_user_pairs);
|
|
}
|
|
|
|
if (ofs_new != 0.0f) {
|
|
uint i_orig, i_end;
|
|
bool do_shell_align;
|
|
|
|
ofs_new_vgroup = ofs_new;
|
|
|
|
uint vert_index;
|
|
INIT_VERT_ARRAY_OFFSETS(false);
|
|
|
|
for (i_orig = 0; i_orig < i_end; i_orig++, vert_index++) {
|
|
const uint i = do_shell_align ? i_orig : new_vert_arr[i_orig];
|
|
if (dvert) {
|
|
const MDeformVert *dv = &dvert[i];
|
|
if (defgrp_invert) {
|
|
ofs_new_vgroup = 1.0f - BKE_defvert_find_weight(dv, defgrp_index);
|
|
}
|
|
else {
|
|
ofs_new_vgroup = BKE_defvert_find_weight(dv, defgrp_index);
|
|
}
|
|
ofs_new_vgroup = (offset_fac_vg + (ofs_new_vgroup * offset_fac_vg_inv)) * ofs_new;
|
|
}
|
|
if (do_clamp && offset > FLT_EPSILON) {
|
|
/* always reset because we may have set before */
|
|
if (dvert == nullptr) {
|
|
ofs_new_vgroup = ofs_new;
|
|
}
|
|
if (do_angle_clamp) {
|
|
float cos_ang = cosf(((2 * M_PI) - vert_angs[i]) * 0.5f);
|
|
if (cos_ang > 0) {
|
|
float max_off = sqrtf(vert_lens[i]) * 0.5f / cos_ang;
|
|
if (max_off < offset * 0.5f) {
|
|
ofs_new_vgroup *= max_off / offset * 2;
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
if (vert_lens[i] < offset_sq) {
|
|
float scalar = sqrtf(vert_lens[i]) / offset;
|
|
ofs_new_vgroup *= scalar;
|
|
}
|
|
}
|
|
}
|
|
if (vert_nors) {
|
|
madd_v3_v3fl(vert_positions[vert_index], vert_nors[i], ofs_new_vgroup);
|
|
}
|
|
else {
|
|
madd_v3_v3fl(vert_positions[vert_index], vert_normals[i], ofs_new_vgroup);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (ofs_orig != 0.0f) {
|
|
uint i_orig, i_end;
|
|
bool do_shell_align;
|
|
|
|
ofs_new_vgroup = ofs_orig;
|
|
|
|
/* as above but swapped */
|
|
uint vert_index;
|
|
INIT_VERT_ARRAY_OFFSETS(true);
|
|
|
|
for (i_orig = 0; i_orig < i_end; i_orig++, vert_index++) {
|
|
const uint i = do_shell_align ? i_orig : new_vert_arr[i_orig];
|
|
if (dvert) {
|
|
const MDeformVert *dv = &dvert[i];
|
|
if (defgrp_invert) {
|
|
ofs_new_vgroup = 1.0f - BKE_defvert_find_weight(dv, defgrp_index);
|
|
}
|
|
else {
|
|
ofs_new_vgroup = BKE_defvert_find_weight(dv, defgrp_index);
|
|
}
|
|
ofs_new_vgroup = (offset_fac_vg + (ofs_new_vgroup * offset_fac_vg_inv)) * ofs_orig;
|
|
}
|
|
if (do_clamp && offset > FLT_EPSILON) {
|
|
/* always reset because we may have set before */
|
|
if (dvert == nullptr) {
|
|
ofs_new_vgroup = ofs_orig;
|
|
}
|
|
if (do_angle_clamp) {
|
|
float cos_ang = cosf(vert_angs[i_orig] * 0.5f);
|
|
if (cos_ang > 0) {
|
|
float max_off = sqrtf(vert_lens[i]) * 0.5f / cos_ang;
|
|
if (max_off < offset * 0.5f) {
|
|
ofs_new_vgroup *= max_off / offset * 2;
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
if (vert_lens[i] < offset_sq) {
|
|
float scalar = sqrtf(vert_lens[i]) / offset;
|
|
ofs_new_vgroup *= scalar;
|
|
}
|
|
}
|
|
}
|
|
if (vert_nors) {
|
|
madd_v3_v3fl(vert_positions[vert_index], vert_nors[i], ofs_new_vgroup);
|
|
}
|
|
else {
|
|
madd_v3_v3fl(vert_positions[vert_index], vert_normals[i], ofs_new_vgroup);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (do_bevel_convex) {
|
|
for (uint i = 0; i < edges_num; i++) {
|
|
if (edge_users[i] == INVALID_PAIR) {
|
|
float angle = edge_angs[i];
|
|
result_edge_bweight[i] = clamp_f(result_edge_bweight[i] +
|
|
(angle < M_PI ? clamp_f(bevel_convex, 0.0f, 1.0f) :
|
|
clamp_f(bevel_convex, -1.0f, 0.0f)),
|
|
0.0f,
|
|
1.0f);
|
|
if (do_shell) {
|
|
result_edge_bweight[i + edges_num] = clamp_f(
|
|
result_edge_bweight[i + edges_num] + (angle > M_PI ?
|
|
clamp_f(bevel_convex, 0.0f, 1.0f) :
|
|
clamp_f(bevel_convex, -1.0f, 0.0f)),
|
|
0,
|
|
1.0f);
|
|
}
|
|
}
|
|
}
|
|
if (!do_rim) {
|
|
MEM_freeN(edge_users);
|
|
}
|
|
MEM_freeN(edge_angs);
|
|
}
|
|
|
|
if (do_clamp) {
|
|
MEM_freeN(vert_lens);
|
|
if (do_angle_clamp) {
|
|
MEM_freeN(vert_angs);
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
#ifdef USE_NONMANIFOLD_WORKAROUND
|
|
const bool check_non_manifold = (smd->flag & MOD_SOLIDIFY_NORMAL_CALC) != 0;
|
|
#endif
|
|
/* same as EM_solidify() in editmesh_lib.c */
|
|
float *vert_angles = MEM_calloc_arrayN<float>(2 * verts_num, "mod_solid_pair"); /* 2 in 1 */
|
|
float *vert_accum = vert_angles + verts_num;
|
|
uint vidx;
|
|
uint i;
|
|
|
|
if (vert_nors == nullptr) {
|
|
vert_nors = MEM_malloc_arrayN<float[3]>(verts_num, "mod_solid_vno");
|
|
for (i = 0; i < verts_num; i++) {
|
|
copy_v3_v3(vert_nors[i], vert_normals[i]);
|
|
}
|
|
}
|
|
|
|
for (const int64_t i : blender::IndexRange(faces_num)) {
|
|
const blender::IndexRange face = orig_faces[i];
|
|
/* #bke::mesh::face_angles_calc logic is inlined here */
|
|
float nor_prev[3];
|
|
float nor_next[3];
|
|
|
|
int i_curr = face.size() - 1;
|
|
int i_next = 0;
|
|
|
|
const int *face_verts = &corner_verts[face.start()];
|
|
const int *face_edges = &corner_edges[face.start()];
|
|
|
|
sub_v3_v3v3(
|
|
nor_prev, vert_positions[face_verts[i_curr - 1]], vert_positions[face_verts[i_curr]]);
|
|
normalize_v3(nor_prev);
|
|
|
|
while (i_next < face.size()) {
|
|
float angle;
|
|
sub_v3_v3v3(
|
|
nor_next, vert_positions[face_verts[i_curr]], vert_positions[face_verts[i_next]]);
|
|
normalize_v3(nor_next);
|
|
angle = angle_normalized_v3v3(nor_prev, nor_next);
|
|
|
|
/* --- not related to angle calc --- */
|
|
angle = std::max(angle, FLT_EPSILON);
|
|
|
|
vidx = face_verts[i_curr];
|
|
vert_accum[vidx] += angle;
|
|
|
|
#ifdef USE_NONMANIFOLD_WORKAROUND
|
|
/* skip 3+ face user edges */
|
|
if ((check_non_manifold == false) ||
|
|
LIKELY(!BLI_BITMAP_TEST(edge_tmp_tag, face_edges[i_curr]) &&
|
|
!BLI_BITMAP_TEST(edge_tmp_tag, face_edges[i_next])))
|
|
{
|
|
vert_angles[vidx] += shell_v3v3_normalized_to_dist(vert_nors[vidx], face_normals[i]) *
|
|
angle;
|
|
}
|
|
else {
|
|
vert_angles[vidx] += angle;
|
|
}
|
|
#else
|
|
vert_angles[vidx] += shell_v3v3_normalized_to_dist(vert_nors[vidx], face_normals[i]) *
|
|
angle;
|
|
#endif
|
|
/* --- end non-angle-calc section --- */
|
|
|
|
/* step */
|
|
copy_v3_v3(nor_prev, nor_next);
|
|
i_curr = i_next;
|
|
i_next++;
|
|
}
|
|
}
|
|
|
|
/* vertex group support */
|
|
if (dvert) {
|
|
const MDeformVert *dv = dvert;
|
|
float scalar;
|
|
|
|
if (defgrp_invert) {
|
|
for (i = 0; i < verts_num; i++, dv++) {
|
|
scalar = 1.0f - BKE_defvert_find_weight(dv, defgrp_index);
|
|
scalar = offset_fac_vg + (scalar * offset_fac_vg_inv);
|
|
vert_angles[i] *= scalar;
|
|
}
|
|
}
|
|
else {
|
|
for (i = 0; i < verts_num; i++, dv++) {
|
|
scalar = BKE_defvert_find_weight(dv, defgrp_index);
|
|
scalar = offset_fac_vg + (scalar * offset_fac_vg_inv);
|
|
vert_angles[i] *= scalar;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* for angle clamp */
|
|
float *vert_angs = nullptr;
|
|
/* for bevel convex */
|
|
float *edge_angs = nullptr;
|
|
|
|
if (do_angle_clamp || do_bevel_convex) {
|
|
uint eidx;
|
|
if (do_angle_clamp) {
|
|
vert_angs = MEM_malloc_arrayN<float>(verts_num, "vert_angs even");
|
|
copy_vn_fl(vert_angs, int(verts_num), 0.5f * M_PI);
|
|
}
|
|
if (do_bevel_convex) {
|
|
edge_angs = MEM_malloc_arrayN<float>(edges_num, "edge_angs even");
|
|
if (!do_rim) {
|
|
edge_users = MEM_malloc_arrayN<uint>(edges_num, "solid_mod edges");
|
|
}
|
|
}
|
|
uint(*edge_user_pairs)[2] = MEM_malloc_arrayN<uint[2]>(edges_num, "edge_user_pairs");
|
|
for (eidx = 0; eidx < edges_num; eidx++) {
|
|
edge_user_pairs[eidx][0] = INVALID_UNUSED;
|
|
edge_user_pairs[eidx][1] = INVALID_UNUSED;
|
|
}
|
|
for (const int i : orig_faces.index_range()) {
|
|
const blender::IndexRange face = orig_faces[i];
|
|
int prev_corner_i = face.start() + face.size() - 1;
|
|
for (int j = 0; j < face.size(); j++) {
|
|
const int corner_i = face.start() + j;
|
|
const int vert_i = orig_corner_verts[corner_i];
|
|
const int prev_vert_i = orig_corner_verts[prev_corner_i];
|
|
|
|
/* add edge user */
|
|
eidx = orig_corner_edges[prev_corner_i];
|
|
const blender::int2 &edge = orig_edges[eidx];
|
|
BLI_assert(ELEM(prev_vert_i, edge[0], edge[1]) && ELEM(vert_i, edge[0], edge[1]));
|
|
char flip = char((prev_vert_i > vert_i) == (edge[0] < edge[1]));
|
|
if (edge_user_pairs[eidx][flip] == INVALID_UNUSED) {
|
|
edge_user_pairs[eidx][flip] = uint(i);
|
|
}
|
|
else {
|
|
edge_user_pairs[eidx][0] = INVALID_PAIR;
|
|
edge_user_pairs[eidx][1] = INVALID_PAIR;
|
|
}
|
|
prev_corner_i = corner_i;
|
|
}
|
|
}
|
|
float e[3];
|
|
for (i = 0; i < edges_num; i++) {
|
|
const blender::int2 &edge = orig_edges[i];
|
|
if (!ELEM(edge_user_pairs[i][0], INVALID_UNUSED, INVALID_PAIR) &&
|
|
!ELEM(edge_user_pairs[i][1], INVALID_UNUSED, INVALID_PAIR))
|
|
{
|
|
const float *n0 = face_normals[edge_user_pairs[i][0]];
|
|
const float *n1 = face_normals[edge_user_pairs[i][1]];
|
|
if (do_angle_clamp) {
|
|
const float angle = M_PI - angle_normalized_v3v3(n0, n1);
|
|
vert_angs[edge[0]] = max_ff(vert_angs[edge[0]], angle);
|
|
vert_angs[edge[1]] = max_ff(vert_angs[edge[1]], angle);
|
|
}
|
|
if (do_bevel_convex) {
|
|
sub_v3_v3v3(e, orig_vert_positions[edge[0]], orig_vert_positions[edge[1]]);
|
|
normalize_v3(e);
|
|
edge_angs[i] = angle_signed_on_axis_v3v3_v3(n0, n1, e);
|
|
if (!do_rim) {
|
|
edge_users[i] = INVALID_PAIR;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
MEM_freeN(edge_user_pairs);
|
|
}
|
|
|
|
if (do_clamp) {
|
|
const float clamp_fac = 1 + (do_angle_clamp ? fabsf(smd->offset_fac) : 0);
|
|
const float offset = fabsf(smd->offset) * smd->offset_clamp * clamp_fac;
|
|
if (offset > FLT_EPSILON) {
|
|
float *vert_lens_sq = MEM_malloc_arrayN<float>(verts_num, "vert_lens_sq");
|
|
const float offset_sq = offset * offset;
|
|
copy_vn_fl(vert_lens_sq, int(verts_num), FLT_MAX);
|
|
for (i = 0; i < edges_num; i++) {
|
|
const float ed_len = len_squared_v3v3(vert_positions[edges[i][0]],
|
|
vert_positions[edges[i][1]]);
|
|
vert_lens_sq[edges[i][0]] = min_ff(vert_lens_sq[edges[i][0]], ed_len);
|
|
vert_lens_sq[edges[i][1]] = min_ff(vert_lens_sq[edges[i][1]], ed_len);
|
|
}
|
|
if (do_angle_clamp) {
|
|
for (i = 0; i < verts_num; i++) {
|
|
float cos_ang = cosf(vert_angs[i] * 0.5f);
|
|
if (cos_ang > 0) {
|
|
float max_off = sqrtf(vert_lens_sq[i]) * 0.5f / cos_ang;
|
|
if (max_off < offset * 0.5f) {
|
|
vert_angles[i] *= max_off / offset * 2;
|
|
}
|
|
}
|
|
}
|
|
MEM_freeN(vert_angs);
|
|
}
|
|
else {
|
|
for (i = 0; i < verts_num; i++) {
|
|
if (vert_lens_sq[i] < offset_sq) {
|
|
float scalar = sqrtf(vert_lens_sq[i]) / offset;
|
|
vert_angles[i] *= scalar;
|
|
}
|
|
}
|
|
}
|
|
MEM_freeN(vert_lens_sq);
|
|
}
|
|
}
|
|
|
|
if (do_bevel_convex) {
|
|
for (i = 0; i < edges_num; i++) {
|
|
if (edge_users[i] == INVALID_PAIR) {
|
|
float angle = edge_angs[i];
|
|
result_edge_bweight[i] = clamp_f(result_edge_bweight[i] +
|
|
(angle < M_PI ? clamp_f(bevel_convex, 0.0f, 1.0f) :
|
|
clamp_f(bevel_convex, -1.0f, 0.0f)),
|
|
0.0f,
|
|
1.0f);
|
|
if (do_shell) {
|
|
result_edge_bweight[i + edges_num] = clamp_f(
|
|
result_edge_bweight[i + edges_num] +
|
|
(angle > M_PI ? clamp_f(bevel_convex, 0, 1) : clamp_f(bevel_convex, -1, 0)),
|
|
0.0f,
|
|
1.0f);
|
|
}
|
|
}
|
|
}
|
|
if (!do_rim) {
|
|
MEM_freeN(edge_users);
|
|
}
|
|
MEM_freeN(edge_angs);
|
|
}
|
|
|
|
#undef INVALID_UNUSED
|
|
#undef INVALID_PAIR
|
|
|
|
if (ofs_new != 0.0f) {
|
|
uint i_orig, i_end;
|
|
bool do_shell_align;
|
|
|
|
uint vert_index;
|
|
INIT_VERT_ARRAY_OFFSETS(false);
|
|
|
|
for (i_orig = 0; i_orig < i_end; i_orig++, vert_index++) {
|
|
const uint i_other = do_shell_align ? i_orig : new_vert_arr[i_orig];
|
|
if (vert_accum[i_other]) { /* zero if unselected */
|
|
madd_v3_v3fl(vert_positions[vert_index],
|
|
vert_nors[i_other],
|
|
ofs_new * (vert_angles[i_other] / vert_accum[i_other]));
|
|
}
|
|
}
|
|
}
|
|
|
|
if (ofs_orig != 0.0f) {
|
|
uint i_orig, i_end;
|
|
bool do_shell_align;
|
|
|
|
/* same as above but swapped, intentional use of 'ofs_new' */
|
|
uint vert_index;
|
|
INIT_VERT_ARRAY_OFFSETS(true);
|
|
|
|
for (i_orig = 0; i_orig < i_end; i_orig++, vert_index++) {
|
|
const uint i_other = do_shell_align ? i_orig : new_vert_arr[i_orig];
|
|
if (vert_accum[i_other]) { /* zero if unselected */
|
|
madd_v3_v3fl(vert_positions[vert_index],
|
|
vert_nors[i_other],
|
|
ofs_orig * (vert_angles[i_other] / vert_accum[i_other]));
|
|
}
|
|
}
|
|
}
|
|
|
|
MEM_freeN(vert_angles);
|
|
}
|
|
|
|
#ifdef USE_NONMANIFOLD_WORKAROUND
|
|
MEM_SAFE_FREE(edge_tmp_tag);
|
|
#endif
|
|
|
|
if (vert_nors) {
|
|
MEM_freeN(vert_nors);
|
|
}
|
|
|
|
/* Add vertex weights for rim and shell vgroups. */
|
|
if (shell_defgrp_index != -1 || rim_defgrp_index != -1) {
|
|
MDeformVert *dst_dvert = result->deform_verts_for_write().data();
|
|
|
|
/* Ultimate security check. */
|
|
if (dst_dvert != nullptr) {
|
|
|
|
if (rim_defgrp_index != -1) {
|
|
for (uint i = 0; i < rimVerts; i++) {
|
|
BKE_defvert_ensure_index(&dst_dvert[new_vert_arr[i]], rim_defgrp_index)->weight = 1.0f;
|
|
BKE_defvert_ensure_index(&dst_dvert[(do_shell ? new_vert_arr[i] : i) + verts_num],
|
|
rim_defgrp_index)
|
|
->weight = 1.0f;
|
|
}
|
|
}
|
|
|
|
if (shell_defgrp_index != -1) {
|
|
for (uint i = verts_num; i < result->verts_num; i++) {
|
|
BKE_defvert_ensure_index(&dst_dvert[i], shell_defgrp_index)->weight = 1.0f;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (do_rim) {
|
|
uint i;
|
|
|
|
const float crease_rim = smd->crease_rim;
|
|
const float crease_outer = smd->crease_outer;
|
|
const float crease_inner = smd->crease_inner;
|
|
|
|
int *origindex_edge;
|
|
int *orig_ed;
|
|
uint j;
|
|
|
|
float *result_edge_crease = nullptr;
|
|
if (crease_rim || crease_outer || crease_inner) {
|
|
result_edge_crease = static_cast<float *>(CustomData_get_layer_named_for_write(
|
|
&result->edge_data, CD_PROP_FLOAT, "crease_edge", result->edges_num));
|
|
if (!result_edge_crease) {
|
|
result_edge_crease = static_cast<float *>(CustomData_add_layer_named(
|
|
&result->edge_data, CD_PROP_FLOAT, CD_SET_DEFAULT, result->edges_num, "crease_edge"));
|
|
}
|
|
}
|
|
|
|
/* add faces & edges */
|
|
origindex_edge = static_cast<int *>(
|
|
CustomData_get_layer_for_write(&result->edge_data, CD_ORIGINDEX, result->edges_num));
|
|
orig_ed = (origindex_edge) ? &origindex_edge[(edges_num * stride) + newEdges] : nullptr;
|
|
/* Start after copied edges. */
|
|
int new_edge_index = int(edges_num * stride + newEdges);
|
|
for (i = 0; i < rimVerts; i++) {
|
|
edges[new_edge_index][0] = new_vert_arr[i];
|
|
edges[new_edge_index][1] = (do_shell ? new_vert_arr[i] : i) + verts_num;
|
|
|
|
if (orig_vert_bweight) {
|
|
result_edge_bweight[new_edge_index] = orig_vert_bweight[new_vert_arr[i]];
|
|
}
|
|
|
|
if (orig_ed) {
|
|
*orig_ed = ORIGINDEX_NONE;
|
|
orig_ed++;
|
|
}
|
|
|
|
if (crease_rim) {
|
|
result_edge_crease[new_edge_index] = crease_rim;
|
|
}
|
|
new_edge_index++;
|
|
}
|
|
|
|
/* faces */
|
|
int new_face_index = int(faces_num * stride);
|
|
blender::MutableSpan<int> new_corner_verts = corner_verts.drop_front(loops_num * stride);
|
|
blender::MutableSpan<int> new_corner_edges = corner_edges.drop_front(loops_num * stride);
|
|
j = 0;
|
|
for (i = 0; i < newPolys; i++) {
|
|
uint eidx = new_edge_arr[i];
|
|
uint pidx = edge_users[eidx];
|
|
int k1, k2;
|
|
bool flip;
|
|
|
|
if (pidx >= faces_num) {
|
|
pidx -= faces_num;
|
|
flip = true;
|
|
}
|
|
else {
|
|
flip = false;
|
|
}
|
|
|
|
const blender::int2 &edge = edges[eidx];
|
|
|
|
/* copy most of the face settings */
|
|
CustomData_copy_data(
|
|
&mesh->face_data, &result->face_data, int(pidx), int((faces_num * stride) + i), 1);
|
|
|
|
const int old_face_size = orig_faces[pidx].size();
|
|
face_offsets[new_face_index] = int(j + (loops_num * stride));
|
|
|
|
/* prev loop */
|
|
k1 = face_offsets[pidx] + (((edge_order[eidx] - 1) + old_face_size) % old_face_size);
|
|
|
|
k2 = face_offsets[pidx] + (edge_order[eidx]);
|
|
|
|
CustomData_copy_data(
|
|
&mesh->corner_data, &result->corner_data, k2, int((loops_num * stride) + j + 0), 1);
|
|
CustomData_copy_data(
|
|
&mesh->corner_data, &result->corner_data, k1, int((loops_num * stride) + j + 1), 1);
|
|
CustomData_copy_data(
|
|
&mesh->corner_data, &result->corner_data, k1, int((loops_num * stride) + j + 2), 1);
|
|
CustomData_copy_data(
|
|
&mesh->corner_data, &result->corner_data, k2, int((loops_num * stride) + j + 3), 1);
|
|
|
|
if (flip == false) {
|
|
new_corner_verts[j] = edge[0];
|
|
new_corner_edges[j++] = eidx;
|
|
|
|
new_corner_verts[j] = edge[1];
|
|
new_corner_edges[j++] = (edges_num * stride) + old_vert_arr[edge[1]] + newEdges;
|
|
|
|
new_corner_verts[j] = (do_shell ? edge[1] : old_vert_arr[edge[1]]) + verts_num;
|
|
new_corner_edges[j++] = (do_shell ? eidx : i) + edges_num;
|
|
|
|
new_corner_verts[j] = (do_shell ? edge[0] : old_vert_arr[edge[0]]) + verts_num;
|
|
new_corner_edges[j++] = (edges_num * stride) + old_vert_arr[edge[0]] + newEdges;
|
|
}
|
|
else {
|
|
new_corner_verts[j] = edge[1];
|
|
new_corner_edges[j++] = eidx;
|
|
|
|
new_corner_verts[j] = edge[0];
|
|
new_corner_edges[j++] = (edges_num * stride) + old_vert_arr[edge[0]] + newEdges;
|
|
|
|
new_corner_verts[j] = (do_shell ? edge[0] : old_vert_arr[edge[0]]) + verts_num;
|
|
new_corner_edges[j++] = (do_shell ? eidx : i) + edges_num;
|
|
|
|
new_corner_verts[j] = (do_shell ? edge[1] : old_vert_arr[edge[1]]) + verts_num;
|
|
new_corner_edges[j++] = (edges_num * stride) + old_vert_arr[edge[1]] + newEdges;
|
|
}
|
|
|
|
if (origindex_edge) {
|
|
origindex_edge[new_corner_edges[j - 3]] = ORIGINDEX_NONE;
|
|
origindex_edge[new_corner_edges[j - 1]] = ORIGINDEX_NONE;
|
|
}
|
|
|
|
/* use the next material index if option enabled */
|
|
if (mat_ofs_rim) {
|
|
dst_material_index.span[new_face_index] += mat_ofs_rim;
|
|
CLAMP(dst_material_index.span[new_face_index], 0, mat_nr_max);
|
|
}
|
|
if (crease_outer) {
|
|
/* crease += crease_outer; without wrapping */
|
|
float *cr = &(result_edge_crease[eidx]);
|
|
float tcr = *cr + crease_outer;
|
|
*cr = tcr > 1.0f ? 1.0f : tcr;
|
|
}
|
|
|
|
if (crease_inner) {
|
|
/* crease += crease_inner; without wrapping */
|
|
float *cr = &(result_edge_crease[edges_num + (do_shell ? eidx : i)]);
|
|
float tcr = *cr + crease_inner;
|
|
*cr = tcr > 1.0f ? 1.0f : tcr;
|
|
}
|
|
|
|
new_face_index++;
|
|
}
|
|
|
|
MEM_freeN(new_vert_arr);
|
|
MEM_freeN(new_edge_arr);
|
|
|
|
MEM_freeN(edge_users);
|
|
MEM_freeN(edge_order);
|
|
}
|
|
|
|
if (old_vert_arr) {
|
|
MEM_freeN(old_vert_arr);
|
|
}
|
|
|
|
dst_material_index.finish();
|
|
|
|
return result;
|
|
}
|
|
|
|
/** \} */
|