Files
test2/source/blender/draw/intern/draw_cache_impl_pointcloud.cc
Hans Goudey a9e6417e19 Cleanup: Remove unnecessary mutex for draw attribute requests
As noted in [0], locking or atomics are not required for merging
requests for a single mesh, because there is no multithreaded iteration
over objects that will process the same mesh in multiple threads. This
locking was  added preemptively over the years and has made code
needlessly complicated, even while the final design for parallel object
iteration isn't completely clear. This PR removes the locks to simplify
some changes necessary for mesh attribute storage refactors.

[0]: b6764e77ef

Pull Request: https://projects.blender.org/blender/blender/pulls/141405
2025-07-03 19:14:26 +02:00

499 lines
16 KiB
C++

/* SPDX-FileCopyrightText: 2017 Blender Authors
*
* SPDX-License-Identifier: GPL-2.0-or-later */
/** \file
* \ingroup draw
*
* \brief PointCloud API for render engines
*/
#include <cstring>
#include "MEM_guardedalloc.h"
#include "BLI_color.hh"
#include "BLI_listbase.h"
#include "BLI_task.hh"
#include "BLI_utildefines.h"
#include "DNA_object_types.h"
#include "DNA_pointcloud_types.h"
#include "DNA_userdef_types.h"
#include "BKE_attribute.hh"
#include "BKE_material.hh"
#include "BKE_pointcloud.hh"
#include "GPU_batch.hh"
#include "GPU_material.hh"
#include "DRW_render.hh"
#include "draw_attributes.hh"
#include "draw_cache_impl.hh"
#include "draw_cache_inline.hh"
#include "draw_pointcloud_private.hh" /* own include */
namespace blender::draw {
/* -------------------------------------------------------------------- */
/** \name gpu::Batch cache management
* \{ */
struct PointCloudEvalCache {
/* Dot primitive types. */
gpu::Batch *dots;
/* Triangle primitive types. */
gpu::Batch *surface;
gpu::Batch **surface_per_mat;
/* Triangles indices to draw the points. */
gpu::IndexBuf *geom_indices;
/* Position and radius. */
gpu::VertBuf *pos_rad;
/* Active attribute in 3D view. */
gpu::VertBuf *attr_viewer;
/* Requested attributes */
gpu::VertBuf *attributes_buf[GPU_MAX_ATTR];
/** Attributes currently being drawn or about to be drawn. */
VectorSet<std::string> attr_used;
/**
* Attributes that were used at some point. This is used for garbage collection, to remove
* attributes that are not used in shaders anymore due to user edits.
*/
VectorSet<std::string> attr_used_over_time;
/**
* The last time in seconds that the `attr_used` and `attr_used_over_time` were exactly the same.
* If the delta between this time and the current scene time is greater than the timeout set in
* user preferences (`U.vbotimeout`) then garbage collection is performed.
*/
int last_attr_matching_time;
int mat_len;
};
struct PointCloudBatchCache {
PointCloudEvalCache eval_cache;
gpu::IndexBuf *edit_selection_indices = nullptr;
gpu::Batch *edit_selection = nullptr;
/* settings to determine if cache is invalid */
bool is_dirty;
};
static PointCloudBatchCache *pointcloud_batch_cache_get(PointCloud &pointcloud)
{
return static_cast<PointCloudBatchCache *>(pointcloud.batch_cache);
}
static bool pointcloud_batch_cache_valid(PointCloud &pointcloud)
{
PointCloudBatchCache *cache = pointcloud_batch_cache_get(pointcloud);
if (cache == nullptr) {
return false;
}
if (cache->eval_cache.mat_len != BKE_id_material_used_with_fallback_eval(pointcloud.id)) {
return false;
}
return cache->is_dirty == false;
}
static void pointcloud_batch_cache_init(PointCloud &pointcloud)
{
PointCloudBatchCache *cache = pointcloud_batch_cache_get(pointcloud);
if (!cache) {
cache = MEM_new<PointCloudBatchCache>(__func__);
pointcloud.batch_cache = cache;
}
else {
cache->eval_cache = {};
cache->edit_selection = nullptr;
cache->edit_selection_indices = nullptr;
}
cache->eval_cache.mat_len = BKE_id_material_used_with_fallback_eval(pointcloud.id);
cache->eval_cache.surface_per_mat = static_cast<gpu::Batch **>(
MEM_callocN(sizeof(gpu::Batch *) * cache->eval_cache.mat_len, __func__));
cache->is_dirty = false;
}
void DRW_pointcloud_batch_cache_dirty_tag(PointCloud *pointcloud, int mode)
{
PointCloudBatchCache *cache = pointcloud_batch_cache_get(*pointcloud);
if (cache == nullptr) {
return;
}
switch (mode) {
case BKE_POINTCLOUD_BATCH_DIRTY_ALL:
cache->is_dirty = true;
break;
default:
BLI_assert(0);
}
}
static void pointcloud_discard_attributes(PointCloudBatchCache &cache)
{
for (const int j : IndexRange(GPU_MAX_ATTR)) {
GPU_VERTBUF_DISCARD_SAFE(cache.eval_cache.attributes_buf[j]);
}
cache.eval_cache.attr_used.clear();
}
static void pointcloud_batch_cache_clear(PointCloud &pointcloud)
{
PointCloudBatchCache *cache = pointcloud_batch_cache_get(pointcloud);
if (!cache) {
return;
}
GPU_BATCH_DISCARD_SAFE(cache->eval_cache.dots);
GPU_BATCH_DISCARD_SAFE(cache->eval_cache.surface);
GPU_VERTBUF_DISCARD_SAFE(cache->eval_cache.pos_rad);
GPU_VERTBUF_DISCARD_SAFE(cache->eval_cache.attr_viewer);
GPU_INDEXBUF_DISCARD_SAFE(cache->eval_cache.geom_indices);
GPU_INDEXBUF_DISCARD_SAFE(cache->edit_selection_indices);
GPU_BATCH_DISCARD_SAFE(cache->edit_selection);
if (cache->eval_cache.surface_per_mat) {
for (int i = 0; i < cache->eval_cache.mat_len; i++) {
GPU_BATCH_DISCARD_SAFE(cache->eval_cache.surface_per_mat[i]);
}
}
MEM_SAFE_FREE(cache->eval_cache.surface_per_mat);
pointcloud_discard_attributes(*cache);
}
void DRW_pointcloud_batch_cache_validate(PointCloud *pointcloud)
{
if (!pointcloud_batch_cache_valid(*pointcloud)) {
pointcloud_batch_cache_clear(*pointcloud);
pointcloud_batch_cache_init(*pointcloud);
}
}
void DRW_pointcloud_batch_cache_free(PointCloud *pointcloud)
{
pointcloud_batch_cache_clear(*pointcloud);
MEM_delete(static_cast<PointCloudBatchCache *>(pointcloud->batch_cache));
pointcloud->batch_cache = nullptr;
}
void DRW_pointcloud_batch_cache_free_old(PointCloud *pointcloud, int ctime)
{
PointCloudBatchCache *cache = pointcloud_batch_cache_get(*pointcloud);
if (!cache) {
return;
}
bool do_discard = false;
if (drw_attributes_overlap(&cache->eval_cache.attr_used_over_time, &cache->eval_cache.attr_used))
{
cache->eval_cache.last_attr_matching_time = ctime;
}
if (ctime - cache->eval_cache.last_attr_matching_time > U.vbotimeout) {
do_discard = true;
}
cache->eval_cache.attr_used_over_time.clear();
if (do_discard) {
pointcloud_discard_attributes(*cache);
}
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name PointCloud extraction
* \{ */
static const uint half_octahedron_tris[4][3] = {
{0, 1, 2},
{0, 2, 3},
{0, 3, 4},
{0, 4, 1},
};
static void pointcloud_extract_indices(const PointCloud &pointcloud, PointCloudBatchCache &cache)
{
/* Overlap shape and point indices to avoid both having to store the indices into a separate
* buffer and avoid rendering points as instances. */
uint32_t vertid_max = pointcloud.totpoint << 3;
constexpr uint32_t tri_count_per_point = ARRAY_SIZE(half_octahedron_tris);
uint32_t primitive_len = pointcloud.totpoint * tri_count_per_point;
GPUIndexBufBuilder builder;
GPU_indexbuf_init(&builder, GPU_PRIM_TRIS, primitive_len, vertid_max);
MutableSpan<uint3> data = GPU_indexbuf_get_data(&builder).cast<uint3>();
/* TODO(fclem): Could be build on GPU or not be built at all. */
threading::parallel_for(IndexRange(pointcloud.totpoint), 1024, [&](const IndexRange range) {
for (int p : range) {
for (int i : IndexRange(tri_count_per_point)) {
data[p * tri_count_per_point + i] = uint3(half_octahedron_tris[i]) | (p << 3);
}
}
});
GPU_indexbuf_build_in_place_ex(
&builder, 0, primitive_len * 3, false, cache.eval_cache.geom_indices);
}
static void pointcloud_extract_position_and_radius(const PointCloud &pointcloud,
PointCloudBatchCache &cache)
{
const bke::AttributeAccessor attributes = pointcloud.attributes();
const Span<float3> positions = pointcloud.positions();
const VArray<float> radii = *attributes.lookup<float>("radius");
static const GPUVertFormat format = [&]() {
GPUVertFormat format{};
GPU_vertformat_attr_add(&format, "pos", gpu::VertAttrType::SFLOAT_32_32_32_32);
GPU_vertformat_alias_add(&format, "pos_rad");
return format;
}();
GPUUsageType usage_flag = GPU_USAGE_STATIC | GPU_USAGE_FLAG_BUFFER_TEXTURE_ONLY;
GPU_vertbuf_init_with_format_ex(*cache.eval_cache.pos_rad, format, usage_flag);
GPU_vertbuf_data_alloc(*cache.eval_cache.pos_rad, positions.size());
MutableSpan<float4> vbo_data = cache.eval_cache.pos_rad->data<float4>();
if (radii) {
const VArraySpan<float> radii_span(std::move(radii));
threading::parallel_for(vbo_data.index_range(), 4096, [&](IndexRange range) {
for (const int i : range) {
vbo_data[i].x = positions[i].x;
vbo_data[i].y = positions[i].y;
vbo_data[i].z = positions[i].z;
vbo_data[i].w = radii_span[i];
}
});
}
else {
threading::parallel_for(vbo_data.index_range(), 4096, [&](IndexRange range) {
for (const int i : range) {
vbo_data[i].x = positions[i].x;
vbo_data[i].y = positions[i].y;
vbo_data[i].z = positions[i].z;
vbo_data[i].w = 0.01f;
}
});
}
}
static void pointcloud_extract_attribute(const PointCloud &pointcloud,
PointCloudBatchCache &cache,
const StringRef name,
int index)
{
gpu::VertBuf &attr_buf = *cache.eval_cache.attributes_buf[index];
const bke::AttributeAccessor attributes = pointcloud.attributes();
/* TODO(@kevindietrich): float4 is used for scalar attributes as the implicit conversion done
* by OpenGL to float4 for a scalar `s` will produce a `float4(s, 0, 0, 1)`. However, following
* the Blender convention, it should be `float4(s, s, s, 1)`. This could be resolved using a
* similar texture state swizzle to map the attribute correctly as for volume attributes, so we
* can control the conversion ourselves. */
bke::AttributeReader<ColorGeometry4f> attribute = attributes.lookup_or_default<ColorGeometry4f>(
name, bke::AttrDomain::Point, {0.0f, 0.0f, 0.0f, 1.0f});
static const GPUVertFormat format = [&]() {
GPUVertFormat format{};
GPU_vertformat_attr_add(&format, "attr", gpu::VertAttrType::SFLOAT_32_32_32_32);
return format;
}();
GPUUsageType usage_flag = GPU_USAGE_STATIC | GPU_USAGE_FLAG_BUFFER_TEXTURE_ONLY;
GPU_vertbuf_init_with_format_ex(attr_buf, format, usage_flag);
GPU_vertbuf_data_alloc(attr_buf, pointcloud.totpoint);
attribute.varray.materialize(attr_buf.data<ColorGeometry4f>());
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Private API
* \{ */
gpu::VertBuf *pointcloud_position_and_radius_get(PointCloud *pointcloud)
{
PointCloudBatchCache *cache = pointcloud_batch_cache_get(*pointcloud);
DRW_vbo_request(nullptr, &cache->eval_cache.pos_rad);
return cache->eval_cache.pos_rad;
}
gpu::Batch **pointcloud_surface_shaded_get(PointCloud *pointcloud,
GPUMaterial **gpu_materials,
int mat_len)
{
const bke::AttributeAccessor attributes = pointcloud->attributes();
PointCloudBatchCache *cache = pointcloud_batch_cache_get(*pointcloud);
VectorSet<std::string> attrs_needed;
for (GPUMaterial *gpu_material : Span<GPUMaterial *>(gpu_materials, mat_len)) {
ListBase gpu_attrs = GPU_material_attributes(gpu_material);
LISTBASE_FOREACH (GPUMaterialAttribute *, gpu_attr, &gpu_attrs) {
const StringRef name = gpu_attr->name;
if (!attributes.contains(name)) {
continue;
}
drw_attributes_add_request(&attrs_needed, name);
}
}
if (!drw_attributes_overlap(&cache->eval_cache.attr_used, &attrs_needed)) {
/* Some new attributes have been added, free all and start over. */
for (const int i : IndexRange(GPU_MAX_ATTR)) {
GPU_VERTBUF_DISCARD_SAFE(cache->eval_cache.attributes_buf[i]);
}
drw_attributes_merge(&cache->eval_cache.attr_used, &attrs_needed);
}
drw_attributes_merge(&cache->eval_cache.attr_used_over_time, &attrs_needed);
DRW_batch_request(&cache->eval_cache.surface_per_mat[0]);
return cache->eval_cache.surface_per_mat;
}
gpu::Batch *pointcloud_surface_get(PointCloud *pointcloud)
{
PointCloudBatchCache *cache = pointcloud_batch_cache_get(*pointcloud);
return DRW_batch_request(&cache->eval_cache.surface);
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name API
* \{ */
gpu::Batch *DRW_pointcloud_batch_cache_get_dots(Object *ob)
{
PointCloud &pointcloud = DRW_object_get_data_for_drawing<PointCloud>(*ob);
PointCloudBatchCache *cache = pointcloud_batch_cache_get(pointcloud);
return DRW_batch_request(&cache->eval_cache.dots);
}
gpu::VertBuf *DRW_pointcloud_position_and_radius_buffer_get(Object *ob)
{
PointCloud &pointcloud = DRW_object_get_data_for_drawing<PointCloud>(*ob);
return pointcloud_position_and_radius_get(&pointcloud);
}
gpu::VertBuf **DRW_pointcloud_evaluated_attribute(PointCloud *pointcloud, const StringRef name)
{
const bke::AttributeAccessor attributes = pointcloud->attributes();
PointCloudBatchCache &cache = *pointcloud_batch_cache_get(*pointcloud);
if (!attributes.contains(name)) {
return nullptr;
}
{
VectorSet<std::string> requests{};
drw_attributes_add_request(&requests, name);
drw_attributes_merge(&cache.eval_cache.attr_used, &requests);
}
int request_i = -1;
for (const int i : IndexRange(cache.eval_cache.attr_used.index_range())) {
if (cache.eval_cache.attr_used[i] == name) {
request_i = i;
break;
}
}
if (request_i == -1) {
return nullptr;
}
return &cache.eval_cache.attributes_buf[request_i];
}
static void index_mask_to_ibo(const IndexMask &mask, gpu::IndexBuf &ibo)
{
const int max_index = mask.min_array_size();
GPUIndexBufBuilder builder;
GPU_indexbuf_init(&builder, GPU_PRIM_POINTS, mask.size(), max_index);
MutableSpan<uint> data = GPU_indexbuf_get_data(&builder);
mask.to_indices<int>(data.cast<int>());
GPU_indexbuf_build_in_place_ex(&builder, 0, max_index, false, &ibo);
}
static void build_edit_selection_indices(const PointCloud &pointcloud, gpu::IndexBuf &ibo)
{
const VArray selection = *pointcloud.attributes().lookup_or_default<bool>(
".selection", bke::AttrDomain::Point, true);
IndexMaskMemory memory;
const IndexMask mask = IndexMask::from_bools(selection, memory);
if (mask.is_empty()) {
return;
}
index_mask_to_ibo(mask, ibo);
}
void DRW_pointcloud_batch_cache_create_requested(Object *ob)
{
PointCloud &pointcloud = DRW_object_get_data_for_drawing<PointCloud>(*ob);
PointCloudBatchCache &cache = *pointcloud_batch_cache_get(pointcloud);
if (DRW_batch_requested(cache.eval_cache.dots, GPU_PRIM_POINTS)) {
DRW_vbo_request(cache.eval_cache.dots, &cache.eval_cache.pos_rad);
}
if (DRW_batch_requested(cache.edit_selection, GPU_PRIM_POINTS)) {
DRW_ibo_request(cache.edit_selection, &cache.edit_selection_indices);
DRW_vbo_request(cache.edit_selection, &cache.eval_cache.pos_rad);
}
if (DRW_batch_requested(cache.eval_cache.surface, GPU_PRIM_TRIS)) {
DRW_ibo_request(cache.eval_cache.surface, &cache.eval_cache.geom_indices);
DRW_vbo_request(cache.eval_cache.surface, &cache.eval_cache.pos_rad);
}
for (int i = 0; i < cache.eval_cache.mat_len; i++) {
if (DRW_batch_requested(cache.eval_cache.surface_per_mat[i], GPU_PRIM_TRIS)) {
/* TODO(fclem): Per material ranges. */
DRW_ibo_request(cache.eval_cache.surface_per_mat[i], &cache.eval_cache.geom_indices);
}
}
for (const int j : cache.eval_cache.attr_used.index_range()) {
DRW_vbo_request(nullptr, &cache.eval_cache.attributes_buf[j]);
if (DRW_vbo_requested(cache.eval_cache.attributes_buf[j])) {
pointcloud_extract_attribute(pointcloud, cache, cache.eval_cache.attr_used[j], j);
}
}
if (DRW_ibo_requested(cache.edit_selection_indices)) {
build_edit_selection_indices(pointcloud, *cache.edit_selection_indices);
}
if (DRW_ibo_requested(cache.eval_cache.geom_indices)) {
pointcloud_extract_indices(pointcloud, cache);
}
if (DRW_vbo_requested(cache.eval_cache.pos_rad)) {
pointcloud_extract_position_and_radius(pointcloud, cache);
}
}
gpu::Batch *DRW_pointcloud_batch_cache_get_edit_dots(PointCloud *pointcloud)
{
PointCloudBatchCache *cache = pointcloud_batch_cache_get(*pointcloud);
return DRW_batch_request(&cache->edit_selection);
}
/** \} */
} // namespace blender::draw