Files
test2/source/blender/gpu/vulkan/vk_vertex_attribute_object.cc
Jeroen Bakker 62912594d1 Cleanup: Remove instance rate vertex
Instance vertex buffers have been removed in Blender 5.0 due to limited
support in certain drivers. The Vulkan backend still had code in place.

Pull Request: https://projects.blender.org/blender/blender/pulls/145913
2025-09-08 12:46:47 +02:00

325 lines
10 KiB
C++

/* SPDX-FileCopyrightText: 2023 Blender Authors All rights reserved.
*
* SPDX-License-Identifier: GPL-2.0-or-later */
#include "vk_vertex_attribute_object.hh"
#include "vk_batch.hh"
#include "vk_context.hh"
#include "vk_immediate.hh"
#include "vk_shader.hh"
#include "vk_shader_interface.hh"
#include "vk_vertex_buffer.hh"
#include "BLI_bit_vector.hh"
#include "BLI_math_vector_types.hh"
namespace blender::gpu {
VKVertexAttributeObject::VKVertexAttributeObject()
{
clear();
}
void VKVertexAttributeObject::clear()
{
is_valid = false;
info.pNext = nullptr;
bindings.clear();
attributes.clear();
vbos.clear();
buffers.clear();
}
VKVertexAttributeObject &VKVertexAttributeObject::operator=(const VKVertexAttributeObject &other)
{
if (this == &other) {
return *this;
}
is_valid = other.is_valid;
info = other.info;
bindings.clear();
bindings.extend(other.bindings);
attributes.clear();
attributes.extend(other.attributes);
vbos.clear();
vbos.extend(other.vbos);
buffers.clear();
buffers.extend(other.buffers);
return *this;
}
/* -------------------------------------------------------------------- */
/** \name Bind resources
* \{ */
void VKVertexAttributeObject::bind(
render_graph::VKVertexBufferBindings &r_vertex_buffer_bindings) const
{
BitVector visited_bindings(bindings.size());
const VKBuffer &dummy = VKBackend::get().device.dummy_buffer;
for (VkVertexInputAttributeDescription attribute : attributes) {
if (visited_bindings[attribute.binding]) {
continue;
}
visited_bindings[attribute.binding].set(true);
VkBuffer buffer = dummy.vk_handle();
VkDeviceSize offset = 0;
if (attribute.binding < buffers.size()) {
buffer = buffers[attribute.binding].buffer;
offset = buffers[attribute.binding].offset;
}
r_vertex_buffer_bindings.buffer[attribute.binding] = buffer;
r_vertex_buffer_bindings.offset[attribute.binding] = offset;
r_vertex_buffer_bindings.buffer_count = max_ii(r_vertex_buffer_bindings.buffer_count,
attribute.binding + 1);
}
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Update bindings
* \{ */
void VKVertexAttributeObject::update_bindings(const VKContext &context, VKBatch &batch)
{
clear();
const VKShaderInterface &interface = unwrap(context.shader)->interface_get();
AttributeMask occupied_attributes = 0;
for (int v = 0; v < GPU_BATCH_VBO_MAX_LEN; v++) {
VKVertexBuffer *vbo = batch.vertex_buffer_get(v);
if (vbo) {
update_bindings(vbo->format, vbo, nullptr, vbo->vertex_len, interface, occupied_attributes);
}
}
if (occupied_attributes != interface.enabled_attr_mask_) {
fill_unused_bindings(interface, occupied_attributes);
}
is_valid = true;
}
/* Determine the number of binding location the given attribute uses. */
static uint32_t to_binding_location_len(const GPUVertAttr &attribute)
{
return ceil_division(attribute.type.comp_len(), 4);
}
/* Determine the number of binding location the given type uses. */
static uint32_t to_binding_location_len(const shader::Type type)
{
switch (type) {
case shader::Type::float_t:
case shader::Type::float2_t:
case shader::Type::float3_t:
case shader::Type::float4_t:
case shader::Type::uint_t:
case shader::Type::uint2_t:
case shader::Type::uint3_t:
case shader::Type::uint4_t:
case shader::Type::int_t:
case shader::Type::int2_t:
case shader::Type::int3_t:
case shader::Type::int4_t:
case shader::Type::bool_t:
case shader::Type::float3_10_10_10_2_t:
case shader::Type::uchar_t:
case shader::Type::uchar2_t:
case shader::Type::uchar3_t:
case shader::Type::uchar4_t:
case shader::Type::char_t:
case shader::Type::char2_t:
case shader::Type::char3_t:
case shader::Type::char4_t:
case shader::Type::short_t:
case shader::Type::short2_t:
case shader::Type::short3_t:
case shader::Type::short4_t:
case shader::Type::ushort_t:
case shader::Type::ushort2_t:
case shader::Type::ushort3_t:
case shader::Type::ushort4_t:
return 1;
case shader::Type::float3x3_t:
return 3;
case shader::Type::float4x4_t:
return 4;
}
return 1;
}
void VKVertexAttributeObject::fill_unused_bindings(const VKShaderInterface &interface,
const AttributeMask occupied_attributes)
{
for (int location : IndexRange(16)) {
AttributeMask location_mask = 1 << location;
/* Skip occupied slots */
if (occupied_attributes & location_mask) {
continue;
}
/* Skip slots that are not used by the vertex shader. */
if ((interface.enabled_attr_mask_ & location_mask) == 0) {
continue;
}
/* Use dummy binding. */
shader::Type attribute_type = interface.get_attribute_type(location);
const uint32_t num_locations = to_binding_location_len(attribute_type);
for (const uint32_t location_offset : IndexRange(num_locations)) {
const uint32_t binding = bindings.size();
VkVertexInputAttributeDescription attribute_description = {};
attribute_description.binding = binding;
attribute_description.location = location + location_offset;
attribute_description.offset = 0;
attribute_description.format = to_vk_format(attribute_type);
attributes.append(attribute_description);
VkVertexInputBindingDescription vk_binding_descriptor = {};
vk_binding_descriptor.binding = binding;
vk_binding_descriptor.stride = 0;
vk_binding_descriptor.inputRate = VK_VERTEX_INPUT_RATE_INSTANCE;
bindings.append(vk_binding_descriptor);
}
}
}
void VKVertexAttributeObject::update_bindings(VKImmediate &immediate)
{
clear();
const VKShaderInterface &interface = unwrap(unwrap(immediate.shader))->interface_get();
AttributeMask occupied_attributes = 0;
VKBufferWithOffset immediate_buffer = immediate.active_buffer();
update_bindings(immediate.vertex_format,
nullptr,
&immediate_buffer,
immediate.vertex_len,
interface,
occupied_attributes);
is_valid = true;
BLI_assert(interface.enabled_attr_mask_ == occupied_attributes);
}
void VKVertexAttributeObject::update_bindings(const GPUVertFormat &vertex_format,
VKVertexBuffer *vertex_buffer,
VKBufferWithOffset *immediate_vertex_buffer,
const int64_t vertex_len,
const VKShaderInterface &interface,
AttributeMask &r_occupied_attributes)
{
BLI_assert(vertex_buffer || immediate_vertex_buffer);
BLI_assert(!(vertex_buffer && immediate_vertex_buffer));
if (vertex_format.attr_len <= 0) {
return;
}
/* Interleaved offset is added to the buffer binding. Attribute offsets are hardware
* restricted (ref: VUID-VkVertexInputAttributeDescription-offset-00622). */
uint32_t buffer_offset = 0;
uint32_t attribute_offset = 0;
uint32_t stride = vertex_format.stride;
bool add_vbo = false;
for (uint32_t attribute_index = 0; attribute_index < vertex_format.attr_len; attribute_index++) {
const GPUVertAttr &attribute = vertex_format.attrs[attribute_index];
if (vertex_format.deinterleaved) {
buffer_offset += ((attribute_index == 0) ?
0 :
vertex_format.attrs[attribute_index - 1].type.size()) *
vertex_len;
stride = attribute.type.size();
}
else {
attribute_offset = attribute.offset;
}
for (uint32_t name_index = 0; name_index < attribute.name_len; name_index++) {
const char *name = GPU_vertformat_attr_name_get(&vertex_format, &attribute, name_index);
const ShaderInput *shader_input = interface.attr_get(name);
if (shader_input == nullptr || shader_input->location == -1) {
continue;
}
/* Don't overwrite attributes that are already occupied. */
AttributeMask attribute_mask = 1 << shader_input->location;
if (r_occupied_attributes & attribute_mask) {
continue;
}
r_occupied_attributes |= attribute_mask;
const uint32_t num_locations = to_binding_location_len(attribute);
for (const uint32_t location_offset : IndexRange(num_locations)) {
const uint32_t binding = bindings.size();
VkVertexInputAttributeDescription attribute_description = {};
attribute_description.binding = binding;
attribute_description.location = shader_input->location + location_offset;
attribute_description.offset = attribute_offset + location_offset * sizeof(float4);
attribute_description.format = to_vk_format(
attribute.type.comp_type(), attribute.type.size(), attribute.type.fetch_mode());
attributes.append(attribute_description);
VkVertexInputBindingDescription vk_binding_descriptor = {};
vk_binding_descriptor.binding = binding;
vk_binding_descriptor.stride = stride;
vk_binding_descriptor.inputRate = VK_VERTEX_INPUT_RATE_VERTEX;
bindings.append(vk_binding_descriptor);
if (vertex_buffer) {
add_vbo = true;
vertex_buffer->upload();
buffers.append({vertex_buffer->vk_handle(), buffer_offset});
}
if (immediate_vertex_buffer) {
buffers.append(*immediate_vertex_buffer);
}
}
}
}
if (add_vbo) {
BLI_assert(vertex_buffer != nullptr);
vbos.append(vertex_buffer);
}
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Debugging
* \{ */
void VKVertexAttributeObject::debug_print() const
{
std::cout << __FILE__ << "::" << __func__ << "\n";
BitVector visited_bindings(bindings.size());
for (VkVertexInputAttributeDescription attribute : attributes) {
std::cout << " - attribute(binding=" << attribute.binding
<< ", location=" << attribute.location << ")";
if (visited_bindings[attribute.binding]) {
std::cout << " WARNING: Already bound\n";
continue;
}
visited_bindings[attribute.binding].set(true);
if (attribute.binding < vbos.size()) {
std::cout << " Attach to Buffer\n";
}
else {
std::cout << " WARNING: Attach to dummy\n";
}
}
}
/** \} */
} // namespace blender::gpu