This PR adds a new `fresnel_conductor_polarized` function, which calculates reflectance and phase shift (if requested) for both parallel and perpendicular polarized light. This is needed for applying thin film iridescence to conductors (see !141131).
For consistency, this PR also makes `fresnel_conductor` call `fresnel_conductor_polarized` instead of using a fast approximation of the Fresnel equations that is inaccurate at lower n and k values. This will change the output of some Metallic BSDF renders using Physical Conductor and prevent discrepancies when enabling thin film iridescence.
I didn't do any rigorous performance testing, but from timing the functions outside of Blender, `fresnel_conductor_polarized` is significantly slower than the approximation, between 1.5-3x depending on the compiler. This makes sense because it has three square roots and the approximation has none. In some informal tests with metallic_multiggx_physical.blend modified to have more spheres, the new renders took around 1-2% longer on both CPU and GPU.
There are some avoidable inefficiencies in this approach of just calling `fresnel_conductor_polarized`:
- one of the three square roots could be saved since `fresnel_conductor` never needs the phase shift and there are simplifications possible when only calculating the reflectance
- there are several unnecessary multiplications by 1.0 since `fresnel_conductor` uses relative IOR and `fresnel_conductor_polarized` doesn't, though those could get optimized out if inlined
Pull Request: https://projects.blender.org/blender/blender/pulls/143903