Python API

----------
Conversion of Curve module to tp_getseters.
This commit is contained in:
Ken Hughes
2007-03-05 03:44:48 +00:00
parent e276a6f748
commit 5dfd59239b

View File

@@ -31,7 +31,6 @@
#include "Curve.h" /*This must come first*/
#include "BLI_blenlib.h"
#include "BKE_main.h"
#include "BKE_displist.h"
#include "BKE_global.h"
@@ -110,7 +109,6 @@ static PyObject *Curve_appendPoint( BPy_Curve * self, PyObject * args );
static PyObject *Curve_appendNurb( BPy_Curve * self, PyObject * args );
static PyObject *Curve_getMaterials( BPy_Curve * self );
static PyObject *Curve_setMaterials( BPy_Curve * self, PyObject * args );
static PyObject *Curve_getBevOb( BPy_Curve * self );
static PyObject *Curve_setBevOb( BPy_Curve * self, PyObject * args );
@@ -127,8 +125,1318 @@ static int Curve_length( PyInstanceObject * inst );
struct chartrans *text_to_curve( Object * ob, int mode );
/*****************************************************************************/
/* Python BPy_Curve methods: */
/* gives access to */
/* name, pathlen totcol flag bevresol */
/* resolu resolv width ext1 ext2 */
/* controlpoint loc rot size */
/* numpts */
/*****************************************************************************/
PyObject *Curve_getName( BPy_Curve * self )
{
PyObject *attr = PyString_FromString( self->curve->id.name + 2 );
if( attr )
return attr;
return EXPP_ReturnPyObjError( PyExc_RuntimeError,
"couldn't get Curve.name attribute" );
}
static int Curve_newsetName( BPy_Curve * self, PyObject * args )
{
char *name;
name = PyString_AsString( args );
if( !name )
return EXPP_ReturnIntError( PyExc_TypeError,
"expected string argument" );
rename_id( &self->curve->id, name ); /* proper way in Blender */
Curve_update( self );
return 0;
}
static PyObject *Curve_getPathLen( BPy_Curve * self )
{
PyObject *attr = PyInt_FromLong( ( long ) self->curve->pathlen );
if( attr )
return attr;
return EXPP_ReturnPyObjError( PyExc_RuntimeError,
"couldn't get Curve.pathlen attribute" );
}
static int Curve_newsetPathLen( BPy_Curve * self, PyObject * args )
{
PyObject *num;
if( !PyNumber_Check( args ) )
return EXPP_ReturnIntError( PyExc_TypeError,
"expected int argument" );
num = PyNumber_Int( args );
self->curve->pathlen = (short)PyInt_AS_LONG( num );
Py_DECREF( num );
return 0;
}
static PyObject *Curve_getTotcol( BPy_Curve * self )
{
PyObject *attr = PyInt_FromLong( ( long ) self->curve->totcol );
if( attr )
return attr;
return EXPP_ReturnPyObjError( PyExc_RuntimeError,
"couldn't get Curve.totcol attribute" );
}
PyObject *Curve_getMode( BPy_Curve * self )
{
PyObject *attr = PyInt_FromLong( ( long ) self->curve->flag );
if( attr )
return attr;
return EXPP_ReturnPyObjError( PyExc_RuntimeError,
"couldn't get Curve.flag attribute" );
}
static int Curve_newsetMode( BPy_Curve * self, PyObject * args )
{
PyObject *num;
if( !PyNumber_Check( args ) )
return EXPP_ReturnIntError( PyExc_TypeError,
"expected int argument" );
num = PyNumber_Int( args );
self->curve->flag = (short)PyInt_AS_LONG( num );
Py_DECREF( num );
return 0;
}
PyObject *Curve_getBevresol( BPy_Curve * self )
{
PyObject *attr = PyInt_FromLong( ( long ) self->curve->bevresol );
if( attr )
return attr;
return EXPP_ReturnPyObjError( PyExc_RuntimeError,
"couldn't get Curve.bevresol attribute" );
}
static int Curve_newsetBevresol( BPy_Curve * self, PyObject * args )
{
short value;
PyObject *num;
if( !PyNumber_Check( args ) )
return EXPP_ReturnIntError( PyExc_TypeError,
"expected int argument" );
num = PyNumber_Int( args );
value = (short)PyInt_AS_LONG( num );
Py_DECREF( num );
if( value > 10 || value < 0 )
return EXPP_ReturnIntError( PyExc_ValueError,
"acceptable values are between 0 and 10" );
self->curve->bevresol = value;
return 0;
}
PyObject *Curve_getResolu( BPy_Curve * self )
{
PyObject *attr = PyInt_FromLong( ( long ) self->curve->resolu );
if( attr )
return attr;
return EXPP_ReturnPyObjError( PyExc_RuntimeError,
"couldn't get Curve.resolu attribute" );
}
static int Curve_newsetResolu( BPy_Curve * self, PyObject * args )
{
short value;
Nurb *nu;
PyObject *num;
if( !PyNumber_Check( args ) )
return EXPP_ReturnIntError( PyExc_TypeError,
"expected int argument" );
num = PyNumber_Int( args );
value = (short)PyInt_AS_LONG( num );
Py_DECREF( num );
if( value > 128 || value < 1 )
return EXPP_ReturnIntError( PyExc_ValueError,
"acceptable values are between 1 and 128" );
self->curve->resolu = value;
/* propagate the change through all the curves */
for( nu = self->curve->nurb.first; nu; nu = nu->next )
nu->resolu = value;
return 0;
}
PyObject *Curve_getResolv( BPy_Curve * self )
{
PyObject *attr = PyInt_FromLong( ( long ) self->curve->resolv );
if( attr )
return attr;
return EXPP_ReturnPyObjError( PyExc_RuntimeError,
"couldn't get Curve.resolv attribute" );
}
static int Curve_newsetResolv( BPy_Curve * self, PyObject * args )
{
short value;
PyObject *num;
if( !PyNumber_Check( args ) )
return EXPP_ReturnIntError( PyExc_TypeError,
"expected int argument" );
num = PyNumber_Int( args );
value = (short)PyInt_AS_LONG( num );
Py_DECREF( num );
if(value > 128 || value < 1)
return EXPP_ReturnIntError( PyExc_ValueError,
"acceptable values are between 1 and 128" );
self->curve->resolv = value;
return 0;
}
PyObject *Curve_getWidth( BPy_Curve * self )
{
PyObject *attr = PyFloat_FromDouble( ( double ) self->curve->width );
if( attr )
return attr;
return EXPP_ReturnPyObjError( PyExc_RuntimeError,
"couldn't get Curve.width attribute" );
}
static int Curve_newsetWidth( BPy_Curve * self, PyObject * args )
{
float value;
PyObject *num;
if( !PyNumber_Check( args ) )
return EXPP_ReturnIntError( PyExc_TypeError,
"expected float argument" );
num = PyNumber_Float( args );
value = (float)PyFloat_AS_DOUBLE( num );
Py_DECREF( num );
if(value > 2.0f || value < 0.0f)
return EXPP_ReturnIntError( PyExc_ValueError,
"acceptable values are between 2.0 and 0.0" );
self->curve->width = value;
return 0;
}
PyObject *Curve_getExt1( BPy_Curve * self )
{
PyObject *attr = PyFloat_FromDouble( ( double ) self->curve->ext1 );
if( attr )
return attr;
return EXPP_ReturnPyObjError( PyExc_RuntimeError,
"couldn't get Curve.ext1 attribute" );
}
static int Curve_newsetExt1( BPy_Curve * self, PyObject * args )
{
float value;
PyObject *num;
if( !PyNumber_Check( args ) )
return EXPP_ReturnIntError( PyExc_TypeError,
"expected float argument" );
num = PyNumber_Float( args );
value = (float)PyFloat_AS_DOUBLE( num );
Py_DECREF( num );
if(value > 5.0f || value < 0.0f)
return EXPP_ReturnIntError( PyExc_ValueError,
"acceptable values are between 0.0 and 5.0" );
self->curve->ext1 = value;
return 0;
}
PyObject *Curve_getExt2( BPy_Curve * self )
{
PyObject *attr = PyFloat_FromDouble( ( double ) self->curve->ext2 );
if( attr )
return attr;
return EXPP_ReturnPyObjError( PyExc_RuntimeError,
"couldn't get Curve.ext2 attribute" );
}
static int Curve_newsetExt2( BPy_Curve * self, PyObject * args )
{
float value;
PyObject *num;
if( !PyNumber_Check( args ) )
return EXPP_ReturnIntError( PyExc_TypeError,
"expected float argument" );
num = PyNumber_Float( args );
value = (float)PyFloat_AS_DOUBLE( num );
Py_DECREF( num );
if(value > 2.0f || value < 0.0f)
return EXPP_ReturnIntError( PyExc_ValueError,
"acceptable values are between 0.0 and 2.0" );
self->curve->ext2 = value;
return 0;
}
/*
* Curve_setControlPoint
* this function sets an EXISTING control point.
* it does NOT add a new one.
*/
static PyObject *Curve_setControlPoint( BPy_Curve * self, PyObject * args )
{
PyObject *listargs = 0;
Nurb *ptrnurb = self->curve->nurb.first;
int numcourbe = 0, numpoint = 0, i, j;
if( !ptrnurb )
Py_RETURN_NONE;
if( ptrnurb->bp )
if( !PyArg_ParseTuple
( args, "iiO", &numcourbe, &numpoint, &listargs ) )
return ( EXPP_ReturnPyObjError
( PyExc_TypeError,
"expected int, int, list arguments" ) );
if( ptrnurb->bezt )
if( !PyArg_ParseTuple
( args, "iiO", &numcourbe, &numpoint, &listargs ) )
return ( EXPP_ReturnPyObjError
( PyExc_TypeError,
"expected int, int, list arguments" ) );
for( i = 0; i < numcourbe; i++ )
ptrnurb = ptrnurb->next;
if( ptrnurb->bp )
for( i = 0; i < 4; i++ )
ptrnurb->bp[numpoint].vec[i] =
(float)PyFloat_AsDouble( PyList_GetItem ( listargs, i ) );
if( ptrnurb->bezt )
for( i = 0; i < 3; i++ )
for( j = 0; j < 3; j++ )
ptrnurb->bezt[numpoint].vec[i][j] =
(float)PyFloat_AsDouble( PyList_GetItem
( listargs,
i * 3 + j ) );
Py_RETURN_NONE;
}
static PyObject *Curve_getControlPoint( BPy_Curve * self, PyObject * args )
{
PyObject *liste = PyList_New( 0 ); /* return values */
PyObject *item;
Nurb *ptrnurb;
int i, j;
/* input args: requested curve and point number on curve */
int numcourbe, numpoint;
if( !PyArg_ParseTuple( args, "ii", &numcourbe, &numpoint ) )
return ( EXPP_ReturnPyObjError( PyExc_TypeError,
"expected int int arguments" ) );
if( ( numcourbe < 0 ) || ( numpoint < 0 ) )
return ( EXPP_ReturnPyObjError( PyExc_ValueError,
"arguments must be non-negative" ) );
/* if no nurbs in this curve obj */
if( !self->curve->nurb.first )
return liste;
/* walk the list of nurbs to find requested numcourbe */
ptrnurb = self->curve->nurb.first;
for( i = 0; i < numcourbe; i++ ) {
ptrnurb = ptrnurb->next;
if( !ptrnurb ) /* if zero, we ran just ran out of curves */
return ( EXPP_ReturnPyObjError( PyExc_ValueError,
"curve index out of range" ) );
}
/* check numpoint param against pntsu */
if( numpoint >= ptrnurb->pntsu )
return ( EXPP_ReturnPyObjError( PyExc_ValueError,
"point index out of range" ) );
if( ptrnurb->bp ) { /* if we are a nurb curve, you get 4 values */
for( i = 0; i < 4; i++ ) {
item = PyFloat_FromDouble( ptrnurb->bp[numpoint].vec[i] );
PyList_Append( liste, item );
Py_DECREF(item);
}
} else if( ptrnurb->bezt ) { /* if we are a bezier, you get 9 values */
for( i = 0; i < 3; i++ )
for( j = 0; j < 3; j++ ) {
item = PyFloat_FromDouble( ptrnurb->bezt[numpoint].vec[i][j] );
PyList_Append( liste, item );
Py_DECREF(item);
}
}
return liste;
}
static PyObject *Curve_getLoc( BPy_Curve * self )
{
PyObject *attr = Py_BuildValue( "[f,f,f]", self->curve->loc[0],
self->curve->loc[1], self->curve->loc[2] );
if( attr )
return attr;
return EXPP_ReturnPyObjError( PyExc_RuntimeError,
"couldn't get Curve.loc attribute" );
}
static int Curve_newsetLoc( BPy_Curve * self, PyObject * args )
{
float loc[3];
int i;
if( ( !PyList_Check( args ) && !PyTuple_Check( args ) ) ||
PySequence_Size( args ) != 3 ) {
TypeError:
return EXPP_ReturnIntError( PyExc_TypeError,
"expected a sequence of three floats" );
}
for( i = 0; i < 3; i++ ) {
PyObject *item = PySequence_GetItem( args, i );
PyObject *num = PyNumber_Float( item );
Py_DECREF( item );
if( !num )
goto TypeError;
loc[i] = PyFloat_AS_DOUBLE( num );
Py_DECREF( num );
}
memcpy( self->curve->loc, loc, sizeof( loc ) );
return 0;
}
static PyObject *Curve_getRot( BPy_Curve * self )
{
PyObject *attr = Py_BuildValue( "[f,f,f]", self->curve->rot[0],
self->curve->rot[1], self->curve->rot[2] );
if( attr )
return attr;
return EXPP_ReturnPyObjError( PyExc_RuntimeError,
"couldn't get Curve.rot attribute" );
}
static int Curve_newsetRot( BPy_Curve * self, PyObject * args )
{
float rot[3];
int i;
if( ( !PyList_Check( args ) && !PyTuple_Check( args ) ) ||
PySequence_Size( args ) != 3 ) {
TypeError:
return EXPP_ReturnIntError( PyExc_TypeError,
"expected a sequence of three floats" );
}
for( i = 0; i < 3; i++ ) {
PyObject *item = PySequence_GetItem( args, i );
PyObject *num = PyNumber_Float( item );
Py_DECREF( item );
if( !num )
goto TypeError;
rot[i] = PyFloat_AS_DOUBLE( num );
Py_DECREF( num );
}
memcpy( self->curve->rot, rot, sizeof( rot ) );
return 0;
}
static PyObject *Curve_getSize( BPy_Curve * self )
{
PyObject *attr = Py_BuildValue( "[f,f,f]", self->curve->size[0],
self->curve->size[1], self->curve->size[2] );
if( attr )
return attr;
return EXPP_ReturnPyObjError( PyExc_RuntimeError,
"couldn't get Curve.size attribute" );
}
static int Curve_newsetSize( BPy_Curve * self, PyObject * args )
{
float size[3];
int i;
if( ( !PyList_Check( args ) && !PyTuple_Check( args ) ) ||
PySequence_Size( args ) != 3 ) {
TypeError:
return EXPP_ReturnIntError( PyExc_TypeError,
"expected a sequence of three floats" );
}
for( i = 0; i < 3; i++ ) {
PyObject *item = PySequence_GetItem( args, i );
PyObject *num = PyNumber_Float( item );
Py_DECREF( item );
if( !num )
goto TypeError;
size[i] = PyFloat_AS_DOUBLE( num );
Py_DECREF( num );
}
memcpy( self->curve->size, size, sizeof( size ) );
return 0;
}
/*
* Count the number of splines in a Curve Object
* int getNumCurves()
*/
static PyObject *Curve_getNumCurves( BPy_Curve * self )
{
Nurb *ptrnurb;
PyObject *ret_val;
int num_curves = 0; /* start with no splines */
/* get curve */
ptrnurb = self->curve->nurb.first;
if( ptrnurb ) { /* we have some nurbs in this curve */
for(;;) {
++num_curves;
ptrnurb = ptrnurb->next;
if( !ptrnurb ) /* no more curves */
break;
}
}
ret_val = PyInt_FromLong( ( long ) num_curves );
if( ret_val )
return ret_val;
/* oops! */
return EXPP_ReturnPyObjError( PyExc_RuntimeError,
"couldn't get number of curves" );
}
/*
* get the key object linked to this curve
*/
static PyObject *Curve_getKey( BPy_Curve * self )
{
PyObject *keyObj;
if (self->curve->key)
keyObj = Key_CreatePyObject(self->curve->key);
else keyObj = EXPP_incr_ret(Py_None);
return keyObj;
}
/*
* count the number of points in a given spline
* int getNumPoints( curve_num=0 )
*
*/
static PyObject *Curve_getNumPoints( BPy_Curve * self, PyObject * args )
{
Nurb *ptrnurb;
PyObject *ret_val;
int curve_num = 0; /* default spline number */
int i;
/* parse input arg */
if( !PyArg_ParseTuple( args, "|i", &curve_num ) )
return ( EXPP_ReturnPyObjError( PyExc_TypeError,
"expected int argument" ) );
/* check arg - must be non-negative */
if( curve_num < 0 )
return ( EXPP_ReturnPyObjError( PyExc_ValueError,
"argument must be non-negative" ) );
/* walk the list of curves looking for our curve */
ptrnurb = self->curve->nurb.first;
if( !ptrnurb ) { /* no splines in this Curve */
return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
"no splines in this Curve" ) );
}
for( i = 0; i < curve_num; i++ ) {
ptrnurb = ptrnurb->next;
if( !ptrnurb ) /* if zero, we ran just ran out of curves */
return ( EXPP_ReturnPyObjError( PyExc_ValueError,
"curve index out of range" ) );
}
/* pntsu is the number of points in curve */
ret_val = PyInt_FromLong( ( long ) ptrnurb->pntsu );
if( ret_val )
return ret_val;
/* oops! */
return EXPP_ReturnPyObjError( PyExc_RuntimeError,
"couldn't get number of points for curve" );
}
/*
* Test whether a given spline of a Curve is a nurb
* as opposed to a bezier
* int isNurb( curve_num=0 )
*/
static PyObject *Curve_isNurb( BPy_Curve * self, PyObject * args )
{
int curve_num = 0; /* default value */
int is_nurb;
Nurb *ptrnurb;
PyObject *ret_val;
int i;
/* parse and check input args */
if( !PyArg_ParseTuple( args, "|i", &curve_num ) ) {
return ( EXPP_ReturnPyObjError( PyExc_TypeError,
"expected int argument" ) );
}
if( curve_num < 0 ) {
return ( EXPP_ReturnPyObjError( PyExc_ValueError,
"curve number must be non-negative" ) );
}
ptrnurb = self->curve->nurb.first;
if( !ptrnurb ) /* no splines in this curve */
return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
"no splines in this Curve" ) );
for( i = 0; i < curve_num; i++ ) {
ptrnurb = ptrnurb->next;
if( !ptrnurb ) /* if zero, we ran just ran out of curves */
return ( EXPP_ReturnPyObjError( PyExc_ValueError,
"curve index out of range" ) );
}
/* right now, there are only two curve types, nurb and bezier. */
is_nurb = ptrnurb->bp ? 1 : 0;
ret_val = PyInt_FromLong( ( long ) is_nurb );
if( ret_val )
return ret_val;
/* oops */
return ( EXPP_ReturnPyObjError( PyExc_RuntimeError,
"couldn't get curve type" ) );
}
/* trying to make a check for closedness (cyclic), following on isNurb (above)
copy-pasting done by antont@kyperjokki.fi */
static PyObject *Curve_isCyclic( BPy_Curve * self, PyObject * args )
{
int curve_num = 0; /* default value */
/* unused:*/
/* int is_cyclic;
* PyObject *ret_val;*/
Nurb *ptrnurb;
int i;
/* parse and check input args */
if( !PyArg_ParseTuple( args, "|i", &curve_num ) ) {
return ( EXPP_ReturnPyObjError( PyExc_TypeError,
"expected int argument" ) );
}
if( curve_num < 0 ) {
return ( EXPP_ReturnPyObjError( PyExc_ValueError,
"curve number must be non-negative" ) );
}
ptrnurb = self->curve->nurb.first;
if( !ptrnurb ) /* no splines in this curve */
return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
"no splines in this Curve" ) );
for( i = 0; i < curve_num; i++ ) {
ptrnurb = ptrnurb->next;
if( !ptrnurb ) /* if zero, we ran just ran out of curves */
return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
"curve index out of range" ) );
}
if( ptrnurb->flagu & CU_CYCLIC ){
return EXPP_incr_ret_True();
} else {
return EXPP_incr_ret_False();
}
}
/*
* Curve_appendPoint( numcurve, new_point )
* append a new point to indicated spline
*/
static PyObject *Curve_appendPoint( BPy_Curve * self, PyObject * args )
{
int i;
int nurb_num; /* index of curve we append to */
PyObject *coord_args; /* coords for new point */
PyObject *retval = NULL;
PyObject *valtuple;
Nurb *nurb = self->curve->nurb.first; /* first nurb in Curve */
/* fixme - need to malloc new Nurb */
if( !nurb )
return ( EXPP_ReturnPyObjError
( PyExc_AttributeError, "no nurbs in this Curve" ) );
if( !PyArg_ParseTuple( args, "iO", &nurb_num, &coord_args ) )
return ( EXPP_ReturnPyObjError
( PyExc_TypeError,
"expected int, coords as arguments" ) );
/*
chase down the list of Nurbs looking for our curve.
*/
for( i = 0; i < nurb_num; i++ ) {
nurb = nurb->next;
if( !nurb ) /* we ran off end of list */
return EXPP_ReturnPyObjError( PyExc_ValueError,
"curve index out of range" );
}
/* rebuild our arg tuple for appendPointToNurb() */
valtuple = Py_BuildValue( "(O)", coord_args );
retval = CurNurb_appendPointToNurb( nurb, valtuple );
Py_DECREF( valtuple );
return retval;
}
/****
appendNurb( new_point )
create a new nurb in the Curve and add the point param to it.
returns a refernce to the newly created nurb.
*****/
static PyObject *Curve_appendNurb( BPy_Curve * self, PyObject * args )
{
Nurb *nurb_ptr = self->curve->nurb.first;
Nurb **pptr = ( Nurb ** ) & ( self->curve->nurb.first );
Nurb *new_nurb;
/* walk to end of nurblist */
if( nurb_ptr ) {
while( nurb_ptr->next ) {
nurb_ptr = nurb_ptr->next;
}
pptr = &nurb_ptr->next;
}
/* malloc new nurb */
new_nurb = ( Nurb * ) MEM_callocN( sizeof( Nurb ), "appendNurb" );
if( !new_nurb )
return EXPP_ReturnPyObjError
( PyExc_MemoryError, "unable to malloc Nurb" );
if( CurNurb_appendPointToNurb( new_nurb, args ) ) {
*pptr = new_nurb;
new_nurb->resolu = self->curve->resolu;
new_nurb->resolv = self->curve->resolv;
new_nurb->hide = 0;
new_nurb->flag = 1;
if( new_nurb->bezt ) { /* do setup for bezt */
new_nurb->type = CU_BEZIER;
new_nurb->bezt->h1 = HD_ALIGN;
new_nurb->bezt->h2 = HD_ALIGN;
new_nurb->bezt->f1 = 1;
new_nurb->bezt->f2 = 1;
new_nurb->bezt->f3 = 1;
new_nurb->bezt->hide = 0;
/* calchandlesNurb( new_nurb ); */
} else { /* set up bp */
new_nurb->pntsv = 1;
new_nurb->type = CU_NURBS;
new_nurb->orderu = 4;
new_nurb->flagu = 0;
new_nurb->flagv = 0;
new_nurb->bp->f1 = 0;
new_nurb->bp->hide = 0;
new_nurb->knotsu = 0;
/*makenots( new_nurb, 1, new_nurb->flagu >> 1); */
}
} else {
freeNurb( new_nurb );
return NULL; /* with PyErr already set */
}
return CurNurb_CreatePyObject( new_nurb );
}
/*
* Curve_update( )
* method to update display list for a Curve.
* used. after messing with control points
*/
PyObject *Curve_update( BPy_Curve * self )
{
Nurb *nu = self->curve->nurb.first;
/* recalculate handles for each curve: calchandlesNurb() will make
* sure curves are bezier first */
while( nu ) {
calchandlesNurb ( nu );
nu = nu->next;
}
Object_updateDag( (void*) self->curve );
Py_RETURN_NONE;
}
/*
* Curve_getMaterials
*
*/
static PyObject *Curve_getMaterials( BPy_Curve * self )
{
return EXPP_PyList_fromMaterialList( self->curve->mat,
self->curve->totcol, 1 );
}
static int Curve_setMaterials( BPy_Curve *self, PyObject * value )
{
Material **matlist;
int len;
if( !PySequence_Check( value ) ||
!EXPP_check_sequence_consistency( value, &Material_Type ) )
return EXPP_ReturnIntError( PyExc_TypeError,
"sequence should only contain materials or None)" );
len = PySequence_Size( value );
if( len > 16 )
return EXPP_ReturnIntError( PyExc_TypeError,
"list can't have more than 16 materials" );
/* free old material list (if it exists) and adjust user counts */
if( self->curve->mat ) {
Curve *cur = self->curve;
int i;
for( i = cur->totcol; i-- > 0; )
if( cur->mat[i] )
cur->mat[i]->id.us--;
MEM_freeN( cur->mat );
}
/* build the new material list, increment user count, store it */
matlist = EXPP_newMaterialList_fromPyList( value );
EXPP_incr_mats_us( matlist, len );
self->curve->mat = matlist;
self->curve->totcol = (short)len;
/**@ This is another ugly fix due to the weird material handling of blender.
* it makes sure that object material lists get updated (by their length)
* according to their data material lists, otherwise blender crashes.
* It just stupidly runs through all objects...BAD BAD BAD.
*/
test_object_materials( ( ID * ) self->curve );
return 0;
}
/*****************************************************************************/
/* Function: Curve_getBevOb */
/* Description: Get the bevel object assign to the curve. */
/*****************************************************************************/
static PyObject *Curve_getBevOb( BPy_Curve * self)
{
if( self->curve->bevobj ) {
return Object_CreatePyObject( self->curve->bevobj );
}
return EXPP_incr_ret( Py_None );
}
/*****************************************************************************/
/* Function: Curve_newsetBevOb */
/* Description: Assign a bevel object to the curve. */
/*****************************************************************************/
static int Curve_newsetBevOb( BPy_Curve * self, PyObject * args )
{
BPy_Object *pybevobj = (BPy_Object *) args;
if( args == Py_None ) { /* Accept None */
self->curve->bevobj = (Object *)NULL;
} else { /* Accept Object with type 'Curve' */
if( !Object_CheckPyObject( args ) ||
pybevobj->object->type != OB_CURVE )
return EXPP_ReturnIntError( PyExc_TypeError,
"expected Curve object type or None argument" );
if( pybevobj->object->data == self->curve )
return EXPP_ReturnIntError( PyExc_ValueError,
"Can't bevel an object to itself" );
self->curve->bevobj = Object_FromPyObject( args );
}
return 0;
}
/*****************************************************************************/
/* Function: Curve_getTaperOb */
/* Description: Get the taper object assign to the curve. */
/*****************************************************************************/
static PyObject *Curve_getTaperOb( BPy_Curve * self)
{
if( self->curve->taperobj )
return Object_CreatePyObject( self->curve->taperobj );
Py_RETURN_NONE;
}
/*****************************************************************************/
/* Function: Curve_newsetTaperOb */
/* Description: Assign a taper object to the curve. */
/*****************************************************************************/
static int Curve_newsetTaperOb( BPy_Curve * self, PyObject * args )
{
BPy_Object *pytaperobj = (BPy_Object *) args;
if( args == Py_None ) { /* Accept None */
self->curve->taperobj = (Object *)NULL;
} else { /* Accept Object with type 'Curve' */
if( !Object_CheckPyObject( args ) ||
pytaperobj->object->type != OB_CURVE )
return EXPP_ReturnIntError( PyExc_TypeError,
"expected Curve object type or None argument" );
if( pytaperobj->object->data == self->curve )
return EXPP_ReturnIntError( PyExc_ValueError,
"Can't bevel an object to itself" );
self->curve->taperobj = Object_FromPyObject( args );
}
return 0;
}
/*****************************************************************************/
/* Function: Curve_copy */
/* Description: Return a copy of this curve data. */
/*****************************************************************************/
PyObject *Curve_copy( BPy_Curve * self )
{
BPy_Curve *pycurve; /* for Curve Data object wrapper in Python */
Curve *blcurve = 0; /* for actual Curve Data we create in Blender */
/* copies the data */
blcurve = copy_curve( self->curve ); /* first create the Curve Data in Blender */
if( blcurve == NULL ) /* bail out if add_curve() failed */
return ( EXPP_ReturnPyObjError
( PyExc_RuntimeError,
"couldn't create Curve Data in Blender" ) );
/* return user count to zero because add_curve() inc'd it */
blcurve->id.us = 0;
/* create python wrapper obj */
pycurve = ( BPy_Curve * ) PyObject_NEW( BPy_Curve, &Curve_Type );
if( pycurve == NULL )
return ( EXPP_ReturnPyObjError
( PyExc_MemoryError,
"couldn't create Curve Data object" ) );
pycurve->curve = blcurve; /* link Python curve wrapper to Blender Curve */
return ( PyObject * ) pycurve;
}
/*
* Curve_getIter
*
* create an iterator for our Curve.
* this iterator returns the Nurbs for this Curve.
* the iter_pointer always points to the next available item or null
*/
static PyObject *Curve_getIter( BPy_Curve * self )
{
self->iter_pointer = self->curve->nurb.first;
Py_INCREF( self );
return ( PyObject * ) self;
}
/*
* Curve_iterNext
* get the next item.
* iter_pointer always points to the next available element
* or NULL if at the end of the list.
*/
static PyObject *Curve_iterNext( BPy_Curve * self )
{
Nurb *pnurb;
if( self->iter_pointer ) {
pnurb = self->iter_pointer;
self->iter_pointer = pnurb->next; /* advance iterator */
if( (pnurb->type & 7) == CU_BEZIER || pnurb->pntsv <= 1 )
return CurNurb_CreatePyObject( pnurb ); /* make a bpy_curnurb */
else
return SurfNurb_CreatePyObject( pnurb ); /* make a bpy_surfnurb */
}
/* if iter_pointer was null, we are at end */
return EXPP_ReturnPyObjError( PyExc_StopIteration,
"iterator at end" );
}
/* tp_sequence methods */
/*
* Curve_length
* returns the number of curves in a Curve
* this is a tp_as_sequence method, not a regular instance method.
*/
static int Curve_length( PyInstanceObject * inst )
{
if( Curve_CheckPyObject( ( PyObject * ) inst ) )
return ( ( int ) PyInt_AsLong
( Curve_getNumCurves( ( BPy_Curve * ) inst ) ) );
return EXPP_ReturnIntError( PyExc_RuntimeError,
"arg is not a BPy_Curve" );
}
/*
* Curve_getNurb
* returns the Nth nurb in a Curve.
* this is one of the tp_as_sequence methods, hence the int N argument.
* it is called via the [] operator, not as a usual instance method.
*/
PyObject *Curve_getNurb( BPy_Curve * self, int n )
{
Nurb *pNurb;
int i;
/* bail if index < 0 */
if( n < 0 )
return ( EXPP_ReturnPyObjError( PyExc_IndexError,
"index less than 0" ) );
/* bail if no Nurbs in Curve */
if( self->curve->nurb.first == 0 )
return ( EXPP_ReturnPyObjError( PyExc_IndexError,
"no Nurbs in this Curve" ) );
/* set pointer to nth Nurb */
for( pNurb = self->curve->nurb.first, i = 0;
pNurb != 0 && i < n; pNurb = pNurb->next, ++i )
/**/;
if( !pNurb ) /* we came to the end of the list */
return ( EXPP_ReturnPyObjError( PyExc_IndexError,
"index out of range" ) );
/* until there is a Surface BPyType, distinquish between a curve and a
* surface based on whether it's a Bezier and the v size */
if( (pNurb->type & 7) == CU_BEZIER || pNurb->pntsv <= 1 )
return CurNurb_CreatePyObject( pNurb ); /* make a bpy_curnurb */
else
return SurfNurb_CreatePyObject( pNurb ); /* make a bpy_surfnurb */
}
/*****************************************************************************/
/* Function: Curve_dealloc */
/* Description: This is a callback function for the BPy_Curve type. It is */
/* the destructor function. */
/*****************************************************************************/
static void Curve_dealloc( BPy_Curve * self )
{
PyObject_DEL( self );
}
/*****************************************************************************/
/* Function: Curve_compare */
/* Description: This compares 2 curve python types, == or != only. */
/*****************************************************************************/
static int Curve_compare( BPy_Curve * a, BPy_Curve * b )
{
return ( a->curve == b->curve ) ? 0 : -1;
}
/*****************************************************************************/
/* Function: Curve_repr */
/* Description: This is a callback function for the BPy_Curve type. It */
/* builds a meaninful string to represent curve objects. */
/*****************************************************************************/
static PyObject *Curve_repr( BPy_Curve * self )
{ /* used by 'repr' */
return PyString_FromFormat( "[Curve \"%s\"]",
self->curve->id.name + 2 );
}
/* attributes for curves */
static PyGetSetDef Curve_getseters[] = {
GENERIC_LIB_GETSETATTR,
{"pathlen",
(getter)Curve_getPathLen, (setter)Curve_newsetPathLen,
"",
NULL},
{"totcol",
(getter)Curve_getTotcol, (setter)NULL,
"",
NULL},
{"flag",
(getter)Curve_getMode, (setter)Curve_newsetMode,
"",
NULL},
{"bevresol",
(getter)Curve_getBevresol, (setter)Curve_newsetBevresol,
"",
NULL},
{"resolu",
(getter)Curve_getResolu, (setter)Curve_newsetResolu,
"",
NULL},
{"resolv",
(getter)Curve_getResolv, (setter)Curve_newsetResolv,
"",
NULL},
{"width",
(getter)Curve_getWidth, (setter)Curve_newsetWidth,
"",
NULL},
{"ext1",
(getter)Curve_getExt1, (setter)Curve_newsetExt1,
"",
NULL},
{"ext2",
(getter)Curve_getExt2, (setter)Curve_newsetExt2,
"",
NULL},
{"loc",
(getter)Curve_getLoc, (setter)Curve_newsetLoc,
"",
NULL},
{"rot",
(getter)Curve_getRot, (setter)Curve_newsetRot,
"",
NULL},
{"size",
(getter)Curve_getSize, (setter)Curve_newsetSize,
"",
NULL},
{"bevob",
(getter)Curve_getBevOb, (setter)Curve_newsetBevOb,
"",
NULL},
{"taperob",
(getter)Curve_getTaperOb, (setter)Curve_newsetTaperOb,
"",
NULL},
{"key",
(getter)Curve_getKey, (setter)NULL,
"",
NULL},
{"materials",
(getter)Curve_getMaterials, (setter)Curve_setMaterials,
"",
NULL}
};
/*****************************************************************************/
/* Function: M_Curve_New */
/* Python equivalent: Blender.Curve.New */
/*****************************************************************************/
static PyObject *M_Curve_New( PyObject * self, PyObject * args )
{
char buf[24];
char *name = NULL;
BPy_Curve *pycurve; /* for Curve Data object wrapper in Python */
Curve *blcurve = 0; /* for actual Curve Data we create in Blender */
if( !PyArg_ParseTuple( args, "|s", &name ) )
return ( EXPP_ReturnPyObjError
( PyExc_TypeError,
"expected string argument or no argument" ) );
blcurve = add_curve( OB_CURVE ); /* first create the Curve Data in Blender */
if( blcurve == NULL ) /* bail out if add_curve() failed */
return ( EXPP_ReturnPyObjError
( PyExc_RuntimeError,
"couldn't create Curve Data in Blender" ) );
/* return user count to zero because add_curve() inc'd it */
blcurve->id.us = 0;
/* create python wrapper obj */
pycurve = ( BPy_Curve * ) PyObject_NEW( BPy_Curve, &Curve_Type );
if( pycurve == NULL )
return ( EXPP_ReturnPyObjError
( PyExc_MemoryError,
"couldn't create Curve Data object" ) );
pycurve->curve = blcurve; /* link Python curve wrapper to Blender Curve */
if( name ) {
PyOS_snprintf( buf, sizeof( buf ), "%s", name );
rename_id( &blcurve->id, buf );
}
return ( PyObject * ) pycurve;
}
/*****************************************************************************/
/* Function: M_Curve_Get */
/* Python equivalent: Blender.Curve.Get */
/*****************************************************************************/
static PyObject *M_Curve_Get( PyObject * self, PyObject * args )
{
char *name = NULL;
Curve *curv_iter;
BPy_Curve *wanted_curv;
if( !PyArg_ParseTuple( args, "|s", &name ) ) /* expects nothing or a string */
return ( EXPP_ReturnPyObjError( PyExc_TypeError,
"expected string argument" ) );
if( name ) { /*a name has been given */
/* Use the name to search for the curve requested */
wanted_curv = NULL;
curv_iter = G.main->curve.first;
while( ( curv_iter ) && ( wanted_curv == NULL ) ) {
if( strcmp( name, curv_iter->id.name + 2 ) == 0 ) {
wanted_curv = ( BPy_Curve * )
PyObject_NEW( BPy_Curve, &Curve_Type );
if( wanted_curv )
wanted_curv->curve = curv_iter;
}
curv_iter = curv_iter->id.next;
}
if( wanted_curv == NULL ) { /* Requested curve doesn't exist */
char error_msg[64];
PyOS_snprintf( error_msg, sizeof( error_msg ),
"Curve \"%s\" not found", name );
return ( EXPP_ReturnPyObjError
( PyExc_NameError, error_msg ) );
}
return ( PyObject * ) wanted_curv;
} /* end of if(name) */
else {
/* no name has been given; return a list of all curves by name. */
PyObject *curvlist;
curv_iter = G.main->curve.first;
curvlist = PyList_New( 0 );
if( curvlist == NULL )
return ( EXPP_ReturnPyObjError( PyExc_MemoryError,
"couldn't create PyList" ) );
while( curv_iter ) {
BPy_Curve *found_cur =
( BPy_Curve * ) PyObject_NEW( BPy_Curve,
&Curve_Type );
found_cur->curve = curv_iter;
PyList_Append( curvlist, ( PyObject * ) found_cur );
curv_iter = curv_iter->id.next;
}
return ( curvlist );
} /* end of else */
}
/*****************************************************************************/
/* Python method definitions for Blender.Curve module: */
/*****************************************************************************/
@@ -240,12 +1548,9 @@ Sets a control point "},
/*****************************************************************************/
/* Python Curve_Type callback function prototypes: */
/*****************************************************************************/
static void CurveDeAlloc( BPy_Curve * msh );
/* static int CurvePrint (BPy_Curve *msh, FILE *fp, int flags); */
static int CurveSetAttr( BPy_Curve * msh, char *name, PyObject * v );
static PyObject *CurveGetAttr( BPy_Curve * msh, char *name );
static int CurveCopmpare( BPy_Curve * a, BPy_Curve * b );
static PyObject *CurveRepr( BPy_Curve * msh );
static void Curve_dealloc( BPy_Curve * msh );
static int Curve_compare( BPy_Curve * a, BPy_Curve * b );
static PyObject *Curve_repr( BPy_Curve * msh );
static PySequenceMethods Curve_as_sequence = {
( inquiry ) Curve_length, /* sq_length */
@@ -260,175 +1565,87 @@ static PySequenceMethods Curve_as_sequence = {
0
};
/*****************************************************************************/
/* Python Curve_Type structure definition: */
/*****************************************************************************/
PyTypeObject Curve_Type = {
PyObject_HEAD_INIT( NULL ) /* required macro */
0, /* ob_size */
"Curve", /* tp_name - for printing */
sizeof( BPy_Curve ), /* tp_basicsize - for allocation */
0, /* tp_itemsize - for allocation */
/* methods for standard operations */
( destructor ) CurveDeAlloc, /* tp_dealloc */
0, /* tp_print */
( getattrfunc ) CurveGetAttr, /* tp_getattr */
( setattrfunc ) CurveSetAttr, /* tp_setattr */
( cmpfunc ) CurveCopmpare, /* tp_compare */
( reprfunc ) CurveRepr, /* tp_repr */
/* methods for standard classes */
0, /* tp_as_number */
&Curve_as_sequence, /* tp_as_sequence */
0, /* tp_as_mapping */
0, /* tp_as_hash */
0, /* tp_call */
0, /* tp_str */
0, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
/* Flags to define presence of optional/expaned features */
Py_TPFLAGS_HAVE_ITER, /* tp_flags */
0, /* tp_doc - documentation string */
0, /* tp_traverse */
PyObject_HEAD_INIT( NULL ) /* required macro */
0, /* ob_size */
"Curve", /* tp_name */
sizeof( BPy_Curve ), /* tp_basicsize */
0, /* tp_itemsize */
/* methods */
( destructor ) Curve_dealloc, /* tp_dealloc */
0, /* tp_print */
( getattrfunc ) NULL, /* tp_getattr */
( setattrfunc ) NULL, /* tp_setattr */
( cmpfunc ) Curve_compare, /* tp_compare */
( reprfunc ) Curve_repr, /* tp_repr */
/* Method suites for standard classes */
NULL, /* PyNumberMethods *tp_as_number; */
&Curve_as_sequence, /* PySequenceMethods *tp_as_sequence; */
NULL, /* PyMappingMethods *tp_as_mapping; */
/* More standard operations (here for binary compatibility) */
NULL, /* hashfunc tp_hash; */
NULL, /* ternaryfunc tp_call; */
NULL, /* reprfunc tp_str; */
NULL, /* getattrofunc tp_getattro; */
NULL, /* setattrofunc tp_setattro; */
/* Functions to access object as input/output buffer */
NULL, /* PyBufferProcs *tp_as_buffer; */
/*** Flags to define presence of optional/expanded features ***/
Py_TPFLAGS_DEFAULT, /* long tp_flags; */
NULL, /* char *tp_doc; */
/*** Assigned meaning in release 2.0 ***/
/* call function for all accessible objects */
NULL, /* traverseproc tp_traverse; */
/* delete references to contained objects */
0, /* tp_clear */
NULL, /* inquiry tp_clear; */
0, /* tp_richcompare - rich comparisions */
0, /* tp_weaklistoffset - weak reference enabler */
/*** Assigned meaning in release 2.1 ***/
/*** rich comparisons ***/
NULL, /* richcmpfunc tp_richcompare; */
/* new release 2.2 stuff - Iterators */
( getiterfunc ) Curve_getIter, /* tp_iter */
( iternextfunc ) Curve_iterNext, /* tp_iternext */
/*** weak reference enabler ***/
0, /* long tp_weaklistoffset; */
/* Attribute descriptor and subclassing stuff */
BPy_Curve_methods, /* tp_methods */
0, /* tp_members */
0, /* tp_getset; */
0, /* tp_base; */
0, /* tp_dict; */
0, /* tp_descr_get; */
0, /* tp_descr_set; */
0, /* tp_dictoffset; */
0, /* tp_init; */
0, /* tp_alloc; */
0, /* tp_new; */
0, /* tp_free; Low-level free-memory routine */
0, /* tp_is_gc */
0, /* tp_bases; */
0, /* tp_mro; method resolution order */
0, /* tp_defined; */
0, /* tp_weakllst */
0,
0
/*** Added in release 2.2 ***/
/* Iterators */
( getiterfunc ) Curve_getIter, /* getiterfunc tp_iter; */
( iternextfunc ) Curve_iterNext, /* iternextfunc tp_iternext; */
/*** Attribute descriptor and subclassing stuff ***/
BPy_Curve_methods, /* struct PyMethodDef *tp_methods; */
NULL, /* struct PyMemberDef *tp_members; */
Curve_getseters, /* struct PyGetSetDef *tp_getset; */
NULL, /* struct _typeobject *tp_base; */
NULL, /* PyObject *tp_dict; */
NULL, /* descrgetfunc tp_descr_get; */
NULL, /* descrsetfunc tp_descr_set; */
0, /* long tp_dictoffset; */
NULL, /* initproc tp_init; */
NULL, /* allocfunc tp_alloc; */
NULL, /* newfunc tp_new; */
/* Low-level free-memory routine */
NULL, /* freefunc tp_free; */
/* For PyObject_IS_GC */
NULL, /* inquiry tp_is_gc; */
NULL, /* PyObject *tp_bases; */
/* method resolution order */
NULL, /* PyObject *tp_mro; */
NULL, /* PyObject *tp_cache; */
NULL, /* PyObject *tp_subclasses; */
NULL, /* PyObject *tp_weaklist; */
NULL
};
/*****************************************************************************/
/* Function: M_Curve_New */
/* Python equivalent: Blender.Curve.New */
/*****************************************************************************/
static PyObject *M_Curve_New( PyObject * self, PyObject * args )
{
char *name = NULL;
BPy_Curve *pycurve; /* for Curve Data object wrapper in Python */
Curve *blcurve = 0; /* for actual Curve Data we create in Blender */
if( !PyArg_ParseTuple( args, "|s", &name ) )
return ( EXPP_ReturnPyObjError
( PyExc_AttributeError,
"expected string argument or no argument" ) );
blcurve = add_curve( OB_CURVE ); /* first create the Curve Data in Blender */
if( blcurve == NULL ) /* bail out if add_curve() failed */
return ( EXPP_ReturnPyObjError
( PyExc_RuntimeError,
"couldn't create Curve Data in Blender" ) );
/* return user count to zero because add_curve() inc'd it */
blcurve->id.us = 0;
/* create python wrapper obj */
pycurve = ( BPy_Curve * ) PyObject_NEW( BPy_Curve, &Curve_Type );
if( pycurve == NULL )
return ( EXPP_ReturnPyObjError
( PyExc_MemoryError,
"couldn't create Curve Data object" ) );
pycurve->curve = blcurve; /* link Python curve wrapper to Blender Curve */
if( name )
rename_id( &blcurve->id, name );
return ( PyObject * ) pycurve;
}
/*****************************************************************************/
/* Function: M_Curve_Get */
/* Python equivalent: Blender.Curve.Get */
/*****************************************************************************/
static PyObject *M_Curve_Get( PyObject * self, PyObject * args )
{
char *name = NULL;
Curve *curv_iter;
BPy_Curve *wanted_curv;
if( !PyArg_ParseTuple( args, "|s", &name ) ) /* expects nothing or a string */
return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
"expected string argument" ) );
if( name ) { /*a name has been given */
/* Use the name to search for the curve requested */
wanted_curv = NULL;
curv_iter = G.main->curve.first;
while( ( curv_iter ) && ( wanted_curv == NULL ) ) {
if( strcmp( name, curv_iter->id.name + 2 ) == 0 ) {
wanted_curv = ( BPy_Curve * )
PyObject_NEW( BPy_Curve, &Curve_Type );
if( wanted_curv )
wanted_curv->curve = curv_iter;
}
curv_iter = curv_iter->id.next;
}
if( wanted_curv == NULL ) { /* Requested curve doesn't exist */
char error_msg[64];
PyOS_snprintf( error_msg, sizeof( error_msg ),
"Curve \"%s\" not found", name );
return ( EXPP_ReturnPyObjError
( PyExc_NameError, error_msg ) );
}
return ( PyObject * ) wanted_curv;
} /* end of if(name) */
else {
/* no name has been given; return a list of all curves by name. */
PyObject *curvlist;
curv_iter = G.main->curve.first;
curvlist = PyList_New( 0 );
if( curvlist == NULL )
return ( EXPP_ReturnPyObjError( PyExc_MemoryError,
"couldn't create PyList" ) );
while( curv_iter ) {
BPy_Curve *found_cur =
( BPy_Curve * ) PyObject_NEW( BPy_Curve,
&Curve_Type );
found_cur->curve = curv_iter;
PyList_Append( curvlist, ( PyObject * ) found_cur );
curv_iter = curv_iter->id.next;
}
return ( curvlist );
} /* end of else */
}
/*****************************************************************************/
/* Function: Curve_Init */
@@ -446,1253 +1663,6 @@ PyObject *Curve_Init( void )
return ( submodule );
}
/*****************************************************************************/
/* Python BPy_Curve methods: */
/* gives access to */
/* name, pathlen totcol flag bevresol */
/* resolu resolv width ext1 ext2 */
/* controlpoint loc rot size */
/* numpts */
/*****************************************************************************/
PyObject *Curve_getName( BPy_Curve * self )
{
PyObject *attr = PyString_FromString( self->curve->id.name + 2 );
if( attr )
return attr;
return ( EXPP_ReturnPyObjError( PyExc_RuntimeError,
"couldn't get Curve.name attribute" ) );
}
PyObject *Curve_setName( BPy_Curve * self, PyObject * args )
{
char *name;
if( !PyArg_ParseTuple( args, "s", &( name ) ) )
return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
"expected string argument" ) );
rename_id( &self->curve->id, name ); /* proper way in Blender */
Curve_update( self );
Py_RETURN_NONE;
}
static PyObject *Curve_getPathLen( BPy_Curve * self )
{
PyObject *attr = PyInt_FromLong( ( long ) self->curve->pathlen );
if( attr )
return attr;
return ( EXPP_ReturnPyObjError( PyExc_RuntimeError,
"couldn't get Curve.pathlen attribute" ) );
}
static PyObject *Curve_setPathLen( BPy_Curve * self, PyObject * args )
{
if( !PyArg_ParseTuple( args, "i", &( self->curve->pathlen ) ) )
return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
"expected int argument" ) );
Py_RETURN_NONE;
}
static PyObject *Curve_getTotcol( BPy_Curve * self )
{
PyObject *attr = PyInt_FromLong( ( long ) self->curve->totcol );
if( attr )
return attr;
return ( EXPP_ReturnPyObjError( PyExc_RuntimeError,
"couldn't get Curve.totcol attribute" ) );
}
static PyObject *Curve_setTotcol( BPy_Curve * self, PyObject * args )
{
if( !PyArg_ParseTuple( args, "i", &( self->curve->totcol ) ) )
return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
"expected int argument" ) );
Py_RETURN_NONE;
}
PyObject *Curve_getMode( BPy_Curve * self )
{
PyObject *attr = PyInt_FromLong( ( long ) self->curve->flag );
if( attr )
return attr;
return ( EXPP_ReturnPyObjError( PyExc_RuntimeError,
"couldn't get Curve.flag attribute" ) );
}
PyObject *Curve_setMode( BPy_Curve * self, PyObject * args )
{
if( !PyArg_ParseTuple( args, "i", &( self->curve->flag ) ) )
return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
"expected int argument" ) );
Py_RETURN_NONE;
}
PyObject *Curve_getBevresol( BPy_Curve * self )
{
PyObject *attr = PyInt_FromLong( ( long ) self->curve->bevresol );
if( attr )
return attr;
return ( EXPP_ReturnPyObjError( PyExc_RuntimeError,
"couldn't get Curve.bevresol attribute" ) );
}
PyObject *Curve_setBevresol( BPy_Curve * self, PyObject * args )
{
short value;
if( !PyArg_ParseTuple( args, "h", &value ) )
return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
"expected integer argument" ) );
if(value > 10 || value < 0)
return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
"acceptable values are between 10 and 0" ) );
self->curve->bevresol = value;
return EXPP_incr_ret( Py_None );
}
PyObject *Curve_getResolu( BPy_Curve * self )
{
PyObject *attr = PyInt_FromLong( ( long ) self->curve->resolu );
if( attr )
return attr;
return ( EXPP_ReturnPyObjError( PyExc_RuntimeError,
"couldn't get Curve.resolu attribute" ) );
}
PyObject *Curve_setResolu( BPy_Curve * self, PyObject * args )
{
short value;
Nurb *nu;
if( !PyArg_ParseTuple( args, "h", &value ) )
return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
"expected integer argument" ) );
if(value > 128 || value < 1)
return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
"acceptable values are between 128 and 1" ) );
self->curve->resolu = value;
/* propagate the change through all the curves */
for ( nu = self->curve->nurb.first; nu; nu = nu->next )
nu->resolu = value;
return EXPP_incr_ret( Py_None );
}
PyObject *Curve_getResolv( BPy_Curve * self )
{
PyObject *attr = PyInt_FromLong( ( long ) self->curve->resolv );
if( attr )
return attr;
return ( EXPP_ReturnPyObjError( PyExc_RuntimeError,
"couldn't get Curve.resolv attribute" ) );
}
PyObject *Curve_setResolv( BPy_Curve * self, PyObject * args )
{
short value;
if( !PyArg_ParseTuple( args, "h", &value ) )
return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
"expected integer argument" ) );
if(value > 128 || value < 1)
return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
"acceptable values are between 128 and 1" ) );
self->curve->resolv = value;
return EXPP_incr_ret( Py_None );
}
PyObject *Curve_getWidth( BPy_Curve * self )
{
PyObject *attr = PyFloat_FromDouble( ( double ) self->curve->width );
if( attr )
return attr;
return ( EXPP_ReturnPyObjError( PyExc_RuntimeError,
"couldn't get Curve.width attribute" ) );
}
PyObject *Curve_setWidth( BPy_Curve * self, PyObject * args )
{
float value;
if( !PyArg_ParseTuple( args, "f", &value ) )
return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
"expected float argument" ) );
if(value > 2.0f || value < 0.0f)
return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
"acceptable values are between 2.0 and 0.0" ) );
self->curve->width = value;
return EXPP_incr_ret( Py_None );
}
PyObject *Curve_getExt1( BPy_Curve * self )
{
PyObject *attr = PyFloat_FromDouble( ( double ) self->curve->ext1 );
if( attr )
return attr;
return ( EXPP_ReturnPyObjError( PyExc_RuntimeError,
"couldn't get Curve.ext1 attribute" ) );
}
PyObject *Curve_setExt1( BPy_Curve * self, PyObject * args )
{
float value;
if( !PyArg_ParseTuple( args, "f", &value ) )
return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
"expected float argument" ) );
if(value > 5.0f || value < 0.0f)
return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
"acceptable values are between 5.0 and 0.0" ) );
self->curve->ext1 = value;
return EXPP_incr_ret( Py_None );
}
PyObject *Curve_getExt2( BPy_Curve * self )
{
PyObject *attr = PyFloat_FromDouble( ( double ) self->curve->ext2 );
if( attr )
return attr;
return ( EXPP_ReturnPyObjError( PyExc_RuntimeError,
"couldn't get Curve.ext2 attribute" ) );
}
PyObject *Curve_setExt2( BPy_Curve * self, PyObject * args )
{
float value;
if( !PyArg_ParseTuple( args, "f", &value ) )
return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
"expected float argument" ) );
if(value > 2.0f || value < 0.0f)
return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
"acceptable values are between 2.0 and 0.0" ) );
self->curve->ext2 = value;
return EXPP_incr_ret( Py_None );
}
/*
* Curve_setControlPoint
* this function sets an EXISTING control point.
* it does NOT add a new one.
*/
static PyObject *Curve_setControlPoint( BPy_Curve * self, PyObject * args )
{
PyObject *listargs = 0;
Nurb *ptrnurb = self->curve->nurb.first;
int numcourbe = 0, numpoint = 0, i, j;
if( !ptrnurb )
Py_RETURN_NONE;
if( ptrnurb->bp )
if( !PyArg_ParseTuple
( args, "iiO", &numcourbe, &numpoint, &listargs ) )
return ( EXPP_ReturnPyObjError
( PyExc_AttributeError,
"expected int int list arguments" ) );
if( ptrnurb->bezt )
if( !PyArg_ParseTuple
( args, "iiO", &numcourbe, &numpoint, &listargs ) )
return ( EXPP_ReturnPyObjError
( PyExc_AttributeError,
"expected int int list arguments" ) );
for( i = 0; i < numcourbe; i++ )
ptrnurb = ptrnurb->next;
if( ptrnurb->bp )
for( i = 0; i < 4; i++ )
ptrnurb->bp[numpoint].vec[i] =
(float)PyFloat_AsDouble( PyList_GetItem
( listargs, i ) );
if( ptrnurb->bezt )
for( i = 0; i < 3; i++ )
for( j = 0; j < 3; j++ )
ptrnurb->bezt[numpoint].vec[i][j] =
(float)PyFloat_AsDouble( PyList_GetItem
( listargs,
i * 3 + j ) );
Py_RETURN_NONE;
}
static PyObject *Curve_getControlPoint( BPy_Curve * self, PyObject * args )
{
PyObject *liste = PyList_New( 0 ); /* return values */
PyObject *item;
Nurb *ptrnurb;
int i, j;
/* input args: requested curve and point number on curve */
int numcourbe, numpoint;
if( !PyArg_ParseTuple( args, "ii", &numcourbe, &numpoint ) )
return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
"expected int int arguments" ) );
if( ( numcourbe < 0 ) || ( numpoint < 0 ) )
return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
" arguments must be non-negative" ) );
/* if no nurbs in this curve obj */
if( !self->curve->nurb.first )
return liste;
/* walk the list of nurbs to find requested numcourbe */
ptrnurb = self->curve->nurb.first;
for( i = 0; i < numcourbe; i++ ) {
ptrnurb = ptrnurb->next;
if( !ptrnurb ) /* if zero, we ran just ran out of curves */
return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
"curve index out of range" ) );
}
/* check numpoint param against pntsu */
if( numpoint >= ptrnurb->pntsu )
return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
"point index out of range" ) );
if( ptrnurb->bp ) { /* if we are a nurb curve, you get 4 values */
for( i = 0; i < 4; i++ ) {
item = PyFloat_FromDouble( ptrnurb->bp[numpoint].vec[i] );
PyList_Append( liste, item );
Py_DECREF(item);
}
} else if( ptrnurb->bezt ) { /* if we are a bezier, you get 9 values */
for( i = 0; i < 3; i++ )
for( j = 0; j < 3; j++ ) {
item = PyFloat_FromDouble( ptrnurb->bezt[numpoint].vec[i][j] );
PyList_Append( liste, item );
Py_DECREF(item);
}
}
return liste;
}
static PyObject *Curve_getLoc( BPy_Curve * self )
{
int i;
PyObject *liste = PyList_New( 3 );
for( i = 0; i < 3; i++ )
PyList_SetItem( liste, i,
PyFloat_FromDouble( self->curve->loc[i] ) );
return liste;
}
static PyObject *Curve_setLoc( BPy_Curve * self, PyObject * args )
{
PyObject *listargs = 0;
int i;
if( !PyArg_ParseTuple( args, "O", &listargs ) )
return EXPP_ReturnPyObjError( PyExc_AttributeError,
"expected list argument" );
if( !PyList_Check( listargs ) )
return ( EXPP_ReturnPyObjError
( PyExc_TypeError, "expected a list" ) );
for( i = 0; i < 3; i++ ) {
PyObject *xx = PyList_GetItem( listargs, i );
self->curve->loc[i] = (float)PyFloat_AsDouble( xx );
}
Py_RETURN_NONE;
}
static PyObject *Curve_getRot( BPy_Curve * self )
{
int i;
PyObject *liste = PyList_New( 3 );
for( i = 0; i < 3; i++ )
PyList_SetItem( liste, i,
PyFloat_FromDouble( self->curve->rot[i] ) );
return liste;
}
static PyObject *Curve_setRot( BPy_Curve * self, PyObject * args )
{
PyObject *listargs = 0;
int i;
if( !PyArg_ParseTuple( args, "O", &listargs ) )
return EXPP_ReturnPyObjError( PyExc_AttributeError,
"expected list argument" );
if( !PyList_Check( listargs ) )
return ( EXPP_ReturnPyObjError
( PyExc_TypeError, "expected a list" ) );
for( i = 0; i < 3; i++ ) {
PyObject *xx = PyList_GetItem( listargs, i );
self->curve->rot[i] = (float)PyFloat_AsDouble( xx );
}
Py_RETURN_NONE;
}
static PyObject *Curve_getSize( BPy_Curve * self )
{
int i;
PyObject *liste = PyList_New( 3 );
for( i = 0; i < 3; i++ )
PyList_SetItem( liste, i,
PyFloat_FromDouble( self->curve->size[i] ) );
return liste;
}
static PyObject *Curve_setSize( BPy_Curve * self, PyObject * args )
{
PyObject *listargs = 0;
int i;
if( !PyArg_ParseTuple( args, "O", &listargs ) )
return EXPP_ReturnPyObjError( PyExc_AttributeError,
"expected list argument" );
if( !PyList_Check( listargs ) )
return ( EXPP_ReturnPyObjError
( PyExc_TypeError, "expected a list" ) );
for( i = 0; i < 3; i++ ) {
PyObject *xx = PyList_GetItem( listargs, i );
self->curve->size[i] = (float)PyFloat_AsDouble( xx );
}
Py_RETURN_NONE;
}
/*
* Count the number of splines in a Curve Object
* int getNumCurves()
*/
static PyObject *Curve_getNumCurves( BPy_Curve * self )
{
Nurb *ptrnurb;
PyObject *ret_val;
int num_curves = 0; /* start with no splines */
/* get curve */
ptrnurb = self->curve->nurb.first;
if( ptrnurb ) { /* we have some nurbs in this curve */
for(;;) {
++num_curves;
ptrnurb = ptrnurb->next;
if( !ptrnurb ) /* no more curves */
break;
}
}
ret_val = PyInt_FromLong( ( long ) num_curves );
if( ret_val )
return ret_val;
/* oops! */
return ( EXPP_ReturnPyObjError( PyExc_RuntimeError,
"couldn't get number of curves" ) );
}
/*
* get the key object linked to this curve
*/
static PyObject *Curve_getKey( BPy_Curve * self )
{
PyObject *keyObj;
if (self->curve->key)
keyObj = Key_CreatePyObject(self->curve->key);
else keyObj = EXPP_incr_ret(Py_None);
return keyObj;
}
/*
* count the number of points in a given spline
* int getNumPoints( curve_num=0 )
*
*/
static PyObject *Curve_getNumPoints( BPy_Curve * self, PyObject * args )
{
Nurb *ptrnurb;
PyObject *ret_val;
int curve_num = 0; /* default spline number */
int i;
/* parse input arg */
if( !PyArg_ParseTuple( args, "|i", &curve_num ) )
return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
"expected int argument" ) );
/* check arg - must be non-negative */
if( curve_num < 0 )
return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
"argument must be non-negative" ) );
/* walk the list of curves looking for our curve */
ptrnurb = self->curve->nurb.first;
if( !ptrnurb ) { /* no splines in this Curve */
return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
"no splines in this Curve" ) );
}
for( i = 0; i < curve_num; i++ ) {
ptrnurb = ptrnurb->next;
if( !ptrnurb ) /* if zero, we ran just ran out of curves */
return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
"curve index out of range" ) );
}
/* pntsu is the number of points in curve */
ret_val = PyInt_FromLong( ( long ) ptrnurb->pntsu );
if( ret_val )
return ret_val;
/* oops! */
return ( EXPP_ReturnPyObjError( PyExc_RuntimeError,
"couldn't get number of points for curve" ) );
}
/*
* Test whether a given spline of a Curve is a nurb
* as opposed to a bezier
* int isNurb( curve_num=0 )
*/
static PyObject *Curve_isNurb( BPy_Curve * self, PyObject * args )
{
int curve_num = 0; /* default value */
int is_nurb;
Nurb *ptrnurb;
PyObject *ret_val;
int i;
/* parse and check input args */
if( !PyArg_ParseTuple( args, "|i", &curve_num ) ) {
return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
"expected int argument" ) );
}
if( curve_num < 0 ) {
return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
"curve number must be non-negative" ) );
}
ptrnurb = self->curve->nurb.first;
if( !ptrnurb ) /* no splines in this curve */
return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
"no splines in this Curve" ) );
for( i = 0; i < curve_num; i++ ) {
ptrnurb = ptrnurb->next;
if( !ptrnurb ) /* if zero, we ran just ran out of curves */
return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
"curve index out of range" ) );
}
/* right now, there are only two curve types, nurb and bezier. */
is_nurb = ptrnurb->bp ? 1 : 0;
ret_val = PyInt_FromLong( ( long ) is_nurb );
if( ret_val )
return ret_val;
/* oops */
return ( EXPP_ReturnPyObjError( PyExc_RuntimeError,
"couldn't get curve type" ) );
}
/* trying to make a check for closedness (cyclic), following on isNurb (above)
copy-pasting done by antont@kyperjokki.fi */
static PyObject *Curve_isCyclic( BPy_Curve * self, PyObject * args )
{
int curve_num = 0; /* default value */
/* unused:*/
/* int is_cyclic;
* PyObject *ret_val;*/
Nurb *ptrnurb;
int i;
/* parse and check input args */
if( !PyArg_ParseTuple( args, "|i", &curve_num ) ) {
return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
"expected int argument" ) );
}
if( curve_num < 0 ) {
return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
"curve number must be non-negative" ) );
}
ptrnurb = self->curve->nurb.first;
if( !ptrnurb ) /* no splines in this curve */
return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
"no splines in this Curve" ) );
for( i = 0; i < curve_num; i++ ) {
ptrnurb = ptrnurb->next;
if( !ptrnurb ) /* if zero, we ran just ran out of curves */
return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
"curve index out of range" ) );
}
if( ptrnurb->flagu & CU_CYCLIC ){
return EXPP_incr_ret_True();
} else {
return EXPP_incr_ret_False();
}
}
/*
* Curve_appendPoint( numcurve, new_point )
* append a new point to indicated spline
*/
static PyObject *Curve_appendPoint( BPy_Curve * self, PyObject * args )
{
int i;
int nurb_num; /* index of curve we append to */
PyObject *coord_args; /* coords for new point */
PyObject *retval = NULL;
PyObject *valtuple;
Nurb *nurb = self->curve->nurb.first; /* first nurb in Curve */
/* fixme - need to malloc new Nurb */
if( !nurb )
return ( EXPP_ReturnPyObjError
( PyExc_AttributeError, "no nurbs in this Curve" ) );
if( !PyArg_ParseTuple( args, "iO", &nurb_num, &coord_args ) )
return ( EXPP_ReturnPyObjError
( PyExc_AttributeError,
"expected int, coords as arguments" ) );
/*
chase down the list of Nurbs looking for our curve.
*/
for( i = 0; i < nurb_num; i++ ) {
nurb = nurb->next;
if( !nurb ) /* we ran off end of list */
return ( EXPP_ReturnPyObjError
( PyExc_AttributeError,
"curve index out of range" ) );
}
/* rebuild our arg tuple for appendPointToNurb() */
valtuple = Py_BuildValue( "(O)", coord_args );
retval = CurNurb_appendPointToNurb( nurb, valtuple );
Py_DECREF( valtuple );
return retval;
}
/****
*
* appendNurb( new_point )
*
* create a new nurb in the Curve and add the point param to it.
* returns a refernce to the newly created nurb.
*
*****/
static PyObject *Curve_appendNurb( BPy_Curve * self, PyObject * args )
{
ListBase *nurb_ptr = &(self->curve->nurb);
Nurb *new_nurb;
/* malloc new nurb */
new_nurb = ( Nurb * ) MEM_callocN( sizeof( Nurb ), "appendNurb" );
if( !new_nurb )
return EXPP_ReturnPyObjError
( PyExc_MemoryError, "unable to malloc Nurb" );
if( CurNurb_appendPointToNurb( new_nurb, args ) ) {
// add nurb to curve
BLI_addtail( nurb_ptr, new_nurb);
new_nurb->resolu = self->curve->resolu;
new_nurb->resolv = self->curve->resolv;
new_nurb->hide = 0;
new_nurb->flag = 1;
if( new_nurb->bezt ) { /* do setup for bezt */
new_nurb->type = CU_BEZIER;
new_nurb->bezt->h1 = HD_ALIGN;
new_nurb->bezt->h2 = HD_ALIGN;
new_nurb->bezt->f1 = 1;
new_nurb->bezt->f2 = 1;
new_nurb->bezt->f3 = 1;
new_nurb->bezt->hide = 0;
/* calchandlesNurb( new_nurb ); */
} else { /* set up bp */
new_nurb->pntsv = 1;
new_nurb->type = CU_NURBS;
new_nurb->orderu = 4;
new_nurb->flagu = 0;
new_nurb->flagv = 0;
new_nurb->bp->f1 = 0;
new_nurb->bp->hide = 0;
new_nurb->knotsu = 0;
/*makenots( new_nurb, 1, new_nurb->flagu >> 1); */
}
} else {
freeNurb( new_nurb );
return NULL; /* with PyErr already set */
}
return CurNurb_CreatePyObject( new_nurb );
}
/*
* Curve_update( )
* method to update display list for a Curve.
* used. after messing with control points
*/
PyObject *Curve_update( BPy_Curve * self )
{
Nurb *nu = self->curve->nurb.first;
/* recalculate handles for each curve: calchandlesNurb() will make
* sure curves are bezier first */
while( nu ) {
calchandlesNurb ( nu );
nu = nu->next;
}
Object_updateDag( (void*) self->curve );
Py_RETURN_NONE;
}
/*
* Curve_getMaterials
*
*/
static PyObject *Curve_getMaterials( BPy_Curve * self )
{
return EXPP_PyList_fromMaterialList( self->curve->mat,
self->curve->totcol, 1 );
}
static PyObject *Curve_setMaterials( BPy_Curve *self, PyObject * value )
{
Material **matlist;
int len;
if( !PySequence_Check( value ) ||
!EXPP_check_sequence_consistency( value, &Material_Type ) )
return EXPP_ReturnPyObjError( PyExc_TypeError,
"sequence should only contain materials or None)" );
len = PySequence_Size( value );
if( len > 16 )
return EXPP_ReturnPyObjError( PyExc_TypeError,
"list can't have more than 16 materials" );
/* free old material list (if it exists) and adjust user counts */
if( self->curve->mat ) {
Curve *cur = self->curve;
int i;
for( i = cur->totcol; i-- > 0; )
if( cur->mat[i] )
cur->mat[i]->id.us--;
MEM_freeN( cur->mat );
}
/* build the new material list, increment user count, store it */
matlist = EXPP_newMaterialList_fromPyList( value );
EXPP_incr_mats_us( matlist, len );
self->curve->mat = matlist;
self->curve->totcol = (short)len;
/**@ This is another ugly fix due to the weird material handling of blender.
* it makes sure that object material lists get updated (by their length)
* according to their data material lists, otherwise blender crashes.
* It just stupidly runs through all objects...BAD BAD BAD.
*/
test_object_materials( ( ID * ) self->curve );
Py_RETURN_NONE;
}
/*****************************************************************************/
/* Function: Curve_getBevOb */
/* Description: Get the bevel object assign to the curve. */
/*****************************************************************************/
static PyObject *Curve_getBevOb( BPy_Curve * self)
{
if( self->curve->bevobj ) {
return Object_CreatePyObject( self->curve->bevobj );
}
return EXPP_incr_ret( Py_None );
}
/*****************************************************************************/
/* Function: Curve_setBevOb */
/* Description: Assign a bevel object to the curve. */
/*****************************************************************************/
PyObject *Curve_setBevOb( BPy_Curve * self, PyObject * args )
{
BPy_Object *pybevobj;
/* Parse and check input args */
if( !PyArg_ParseTuple( args, "O", &pybevobj) ) {
return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
"expected object or None argument" ) );
}
/* Accept None */
if( (PyObject *)pybevobj == Py_None ) {
self->curve->bevobj = (Object *)NULL;
} else {
/* Accept Object with type 'Curve' */
if( Object_CheckPyObject( ( PyObject * ) pybevobj ) &&
pybevobj->object->type == OB_CURVE) {
if(self->curve == pybevobj->object->data )
return EXPP_ReturnPyObjError( PyExc_ValueError,
"objects cannot bevel themselves" );
self->curve->bevobj =
Object_FromPyObject( ( PyObject * ) pybevobj );
} else {
return ( EXPP_ReturnPyObjError( PyExc_TypeError,
"expected Curve object type or None argument" ) );
}
}
return EXPP_incr_ret( Py_None );
}
/*****************************************************************************/
/* Function: Curve_getTaperOb */
/* Description: Get the taper object assign to the curve. */
/*****************************************************************************/
static PyObject *Curve_getTaperOb( BPy_Curve * self)
{
if( self->curve->taperobj ) {
return Object_CreatePyObject( self->curve->taperobj );
}
return EXPP_incr_ret( Py_None );
}
/*****************************************************************************/
/* Function: Curve_setTaperOb */
/* Description: Assign a taper object to the curve. */
/*****************************************************************************/
PyObject *Curve_setTaperOb( BPy_Curve * self, PyObject * args )
{
BPy_Object *pytaperobj;
/* Parse and check input args */
if( !PyArg_ParseTuple( args, "O", &pytaperobj) ) {
return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
"expected object or None argument" ) );
}
/* Accept None */
if( (PyObject *)pytaperobj == Py_None ) {
self->curve->taperobj = (Object *)NULL;
} else {
/* Accept Object with type 'Curve' */
if( Object_CheckPyObject( ( PyObject * ) pytaperobj ) &&
pytaperobj->object->type == OB_CURVE) {
if(self->curve == pytaperobj->object->data )
return EXPP_ReturnPyObjError( PyExc_ValueError,
"objects cannot taper themselves" );
self->curve->taperobj =
Object_FromPyObject( ( PyObject * ) pytaperobj );
} else {
return ( EXPP_ReturnPyObjError( PyExc_TypeError,
"expected Curve object type or None argument" ) );
}
}
return EXPP_incr_ret( Py_None );
}
/*****************************************************************************/
/* Function: Curve_copy */
/* Description: Return a copy of this curve data. */
/*****************************************************************************/
PyObject *Curve_copy( BPy_Curve * self )
{
BPy_Curve *pycurve; /* for Curve Data object wrapper in Python */
Curve *blcurve = 0; /* for actual Curve Data we create in Blender */
/* copies the data */
blcurve = copy_curve( self->curve ); /* first create the Curve Data in Blender */
if( blcurve == NULL ) /* bail out if add_curve() failed */
return ( EXPP_ReturnPyObjError
( PyExc_RuntimeError,
"couldn't create Curve Data in Blender" ) );
/* return user count to zero because add_curve() inc'd it */
blcurve->id.us = 0;
/* create python wrapper obj */
pycurve = ( BPy_Curve * ) PyObject_NEW( BPy_Curve, &Curve_Type );
if( pycurve == NULL )
return ( EXPP_ReturnPyObjError
( PyExc_MemoryError,
"couldn't create Curve Data object" ) );
pycurve->curve = blcurve; /* link Python curve wrapper to Blender Curve */
return ( PyObject * ) pycurve;
}
/*
* Curve_getIter
*
* create an iterator for our Curve.
* this iterator returns the Nurbs for this Curve.
* the iter_pointer always points to the next available item or null
*/
static PyObject *Curve_getIter( BPy_Curve * self )
{
self->iter_pointer = self->curve->nurb.first;
Py_INCREF( self );
return ( PyObject * ) self;
}
/*
* Curve_iterNext
* get the next item.
* iter_pointer always points to the next available element
* or NULL if at the end of the list.
*/
static PyObject *Curve_iterNext( BPy_Curve * self )
{
Nurb *pnurb;
if( self->iter_pointer ) {
pnurb = self->iter_pointer;
self->iter_pointer = pnurb->next; /* advance iterator */
if( (pnurb->type & 7) == CU_BEZIER || pnurb->pntsv <= 1 )
return CurNurb_CreatePyObject( pnurb ); /* make a bpy_curnurb */
else
return SurfNurb_CreatePyObject( pnurb ); /* make a bpy_surfnurb */
}
/* if iter_pointer was null, we are at end */
return EXPP_ReturnPyObjError( PyExc_StopIteration,
"iterator at end" );
}
/* tp_sequence methods */
/*
* Curve_length
* returns the number of curves in a Curve
* this is a tp_as_sequence method, not a regular instance method.
*/
static int Curve_length( PyInstanceObject * inst )
{
if( Curve_CheckPyObject( ( PyObject * ) inst ) )
return ( ( int ) PyInt_AsLong
( Curve_getNumCurves( ( BPy_Curve * ) inst ) ) );
return EXPP_ReturnIntError( PyExc_RuntimeError,
"arg is not a BPy_Curve" );
}
/*
* Curve_getNurb
* returns the Nth nurb in a Curve.
* this is one of the tp_as_sequence methods, hence the int N argument.
* it is called via the [] operator, not as a usual instance method.
*/
PyObject *Curve_getNurb( BPy_Curve * self, int n )
{
Nurb *pNurb;
int i;
/* bail if index < 0 */
if( n < 0 )
return ( EXPP_ReturnPyObjError( PyExc_IndexError,
"index less than 0" ) );
/* bail if no Nurbs in Curve */
if( self->curve->nurb.first == 0 )
return ( EXPP_ReturnPyObjError( PyExc_IndexError,
"no Nurbs in this Curve" ) );
/* set pointer to nth Nurb */
for( pNurb = self->curve->nurb.first, i = 0;
pNurb != 0 && i < n; pNurb = pNurb->next, ++i )
/**/;
if( !pNurb ) /* we came to the end of the list */
return ( EXPP_ReturnPyObjError( PyExc_IndexError,
"index out of range" ) );
/* until there is a Surface BPyType, distinquish between a curve and a
* surface based on whether it's a Bezier and the v size */
if( (pNurb->type & 7) == CU_BEZIER || pNurb->pntsv <= 1 )
return CurNurb_CreatePyObject( pNurb ); /* make a bpy_curnurb */
else
return SurfNurb_CreatePyObject( pNurb ); /* make a bpy_surfnurb */
}
/*****************************************************************************/
/* Function: CurveDeAlloc */
/* Description: This is a callback function for the BPy_Curve type. It is */
/* the destructor function. */
/*****************************************************************************/
static void CurveDeAlloc( BPy_Curve * self )
{
PyObject_DEL( self );
}
/*****************************************************************************/
/* Function: CurveGetAttr */
/* Description: This is a callback function for the BPy_Curve type. It is */
/* the function that accesses BPy_Curve "member variables" and */
/* methods. */
/*****************************************************************************/
static PyObject *CurveGetAttr( BPy_Curve * self, char *name )
{ /* getattr */
PyObject *attr = Py_None;
if( strcmp( name, "name" ) == 0 )
attr = PyString_FromString( self->curve->id.name + 2 );
else if( strcmp( name, "lib" ) == 0 ) {
/* WARNING - Not standard, until we move to get/setattrs
at the moment we cant return None at the end because it raises an error */
attr = EXPP_GetIdLib((ID *)self->curve);
if (attr) return attr;
} else if( strcmp( name, "pathlen" ) == 0 )
attr = PyInt_FromLong( self->curve->pathlen );
else if( strcmp( name, "totcol" ) == 0 )
attr = PyInt_FromLong( self->curve->totcol );
else if( strcmp( name, "flag" ) == 0 )
attr = PyInt_FromLong( self->curve->flag );
else if( strcmp( name, "bevresol" ) == 0 )
attr = PyInt_FromLong( self->curve->bevresol );
else if( strcmp( name, "resolu" ) == 0 )
attr = PyInt_FromLong( self->curve->resolu );
else if( strcmp( name, "resolv" ) == 0 )
attr = PyInt_FromLong( self->curve->resolv );
else if( strcmp( name, "width" ) == 0 )
attr = PyFloat_FromDouble( self->curve->width );
else if( strcmp( name, "ext1" ) == 0 )
attr = PyFloat_FromDouble( self->curve->ext1 );
else if( strcmp( name, "ext2" ) == 0 )
attr = PyFloat_FromDouble( self->curve->ext2 );
else if( strcmp( name, "loc" ) == 0 )
return Curve_getLoc( self );
else if( strcmp( name, "rot" ) == 0 )
return Curve_getRot( self );
else if( strcmp( name, "size" ) == 0 )
return Curve_getSize( self );
else if( strcmp( name, "bevob" ) == 0 )
return Curve_getBevOb( self );
else if( strcmp( name, "taperob" ) == 0 )
return Curve_getTaperOb( self );
else if( strcmp( name, "key" ) == 0 )
return Curve_getKey( self );
else if( strcmp( name, "materials" ) == 0 )
return Curve_getMaterials( self );
#if 0
else if( strcmp( name, "numpts" ) == 0 )
return Curve_getNumPoints( self );
#endif
if( !attr )
return ( EXPP_ReturnPyObjError( PyExc_MemoryError,
"couldn't create PyObject" ) );
if( attr != Py_None )
return attr; /* member attribute found, return it */
/* not an attribute, search the methods table */
return Py_FindMethod( BPy_Curve_methods, ( PyObject * ) self, name );
}
/*****************************************************************************/
/* Function: CurveSetAttr */
/* Description: This is a callback function for the BPy_Curve type. It */
/* sets Curve Data attributes (member variables). */
/*****************************************************************************/
static int CurveSetAttr( BPy_Curve * self, char *name, PyObject * value )
{
PyObject *valtuple;
PyObject *error = NULL;
valtuple = Py_BuildValue( "(O)", value );
/* resolu resolv width ext1 ext2 */
if( !valtuple )
return EXPP_ReturnIntError( PyExc_MemoryError,
"CurveSetAttr: couldn't create PyTuple" );
if( strcmp( name, "name" ) == 0 )
error = Curve_setName( self, valtuple );
else if( strcmp( name, "pathlen" ) == 0 )
error = Curve_setPathLen( self, valtuple );
else if( strcmp( name, "bevresol" ) == 0 )
error = Curve_setBevresol( self, valtuple );
else if( strcmp( name, "resolu" ) == 0 )
error = Curve_setResolu( self, valtuple );
else if( strcmp( name, "resolv" ) == 0 )
error = Curve_setResolv( self, valtuple );
else if( strcmp( name, "width" ) == 0 )
error = Curve_setWidth( self, valtuple );
else if( strcmp( name, "ext1" ) == 0 )
error = Curve_setExt1( self, valtuple );
else if( strcmp( name, "ext2" ) == 0 )
error = Curve_setExt2( self, valtuple );
else if( strcmp( name, "loc" ) == 0 )
error = Curve_setLoc( self, valtuple );
else if( strcmp( name, "rot" ) == 0 )
error = Curve_setRot( self, valtuple );
else if( strcmp( name, "size" ) == 0 )
error = Curve_setSize( self, valtuple );
else if( strcmp( name, "bevob" ) == 0 )
error = Curve_setBevOb( self, valtuple );
else if( strcmp( name, "taperob" ) == 0 )
error = Curve_setTaperOb( self, valtuple );
else if( strcmp( name, "materials" ) == 0 )
error = Curve_setMaterials( self, value );
else { /* Error */
Py_DECREF( valtuple );
if( ( strcmp( name, "Types" ) == 0 )
|| ( strcmp( name, "Modes" ) == 0 ) )
return ( EXPP_ReturnIntError
( PyExc_AttributeError,
"constant dictionary -- cannot be changed" ) );
else
return ( EXPP_ReturnIntError
( PyExc_KeyError, "attribute not found" ) );
}
Py_DECREF( valtuple );
if( error != Py_None )
return -1;
Py_DECREF( Py_None );
return 0;
}
/*****************************************************************************/
/* Function: CurveCopmpare */
/* Description: This compares 2 curve python types, == or != only. */
/*****************************************************************************/
static int CurveCopmpare( BPy_Curve * a, BPy_Curve * b )
{
return ( a->curve == b->curve ) ? 0 : -1;
}
/*****************************************************************************/
/* Function: CurveRepr */
/* Description: This is a callback function for the BPy_Curve type. It */
/* builds a meaninful string to represent curve objects. */
/*****************************************************************************/
static PyObject *CurveRepr( BPy_Curve * self )
{ /* used by 'repr' */
return PyString_FromFormat( "[Curve \"%s\"]",
self->curve->id.name + 2 );
}
/*
* Curve_CreatePyObject
@@ -1728,3 +1698,96 @@ struct Curve *Curve_FromPyObject( PyObject * py_obj )
}
/* #####DEPRECATED###### */
PyObject *Curve_setName( BPy_Curve * self, PyObject * args )
{
return EXPP_setterWrapper( (void *)self, args, (setter)Curve_newsetName );
}
static PyObject *Curve_setPathLen( BPy_Curve * self, PyObject * args )
{
return EXPP_setterWrapper( (void *)self, args,
(setter)Curve_newsetPathLen );
}
static PyObject *Curve_setTotcol( BPy_Curve * self, PyObject * args )
{
if( !PyArg_ParseTuple( args, "i", &( self->curve->totcol ) ) )
return EXPP_ReturnPyObjError( PyExc_TypeError,
"expected int argument" );
Py_RETURN_NONE;
}
PyObject *Curve_setMode( BPy_Curve * self, PyObject * args )
{
return EXPP_setterWrapper( (void *)self, args,
(setter)Curve_newsetMode );
}
PyObject *Curve_setBevresol( BPy_Curve * self, PyObject * args )
{
return EXPP_setterWrapper( (void *)self, args,
(setter)Curve_newsetBevresol);
}
PyObject *Curve_setResolu( BPy_Curve * self, PyObject * args )
{
return EXPP_setterWrapper( (void *)self, args,
(setter)Curve_newsetResolu );
}
PyObject *Curve_setResolv( BPy_Curve * self, PyObject * args )
{
return EXPP_setterWrapper( (void *)self, args,
(setter)Curve_newsetResolv );
}
PyObject *Curve_setWidth( BPy_Curve * self, PyObject * args )
{
return EXPP_setterWrapper( (void *)self, args,
(setter)Curve_newsetWidth );
}
PyObject *Curve_setExt1( BPy_Curve * self, PyObject * args )
{
return EXPP_setterWrapper( (void *)self, args,
(setter)Curve_newsetExt1 );
}
PyObject *Curve_setExt2( BPy_Curve * self, PyObject * args )
{
return EXPP_setterWrapper( (void *)self, args,
(setter)Curve_newsetExt2 );
}
static PyObject *Curve_setLoc( BPy_Curve * self, PyObject * args )
{
return EXPP_setterWrapper( (void *)self, args,
(setter)Curve_newsetLoc );
}
static PyObject *Curve_setRot( BPy_Curve * self, PyObject * args )
{
return EXPP_setterWrapper( (void *)self, args,
(setter)Curve_newsetRot );
}
static PyObject *Curve_setSize( BPy_Curve * self, PyObject * args )
{
return EXPP_setterWrapper( (void *)self, args,
(setter)Curve_newsetSize );
}
PyObject *Curve_setBevOb( BPy_Curve * self, PyObject * args )
{
return EXPP_setterWrapper( (void *)self, args,
(setter)Curve_newsetBevOb );
}
PyObject *Curve_setTaperOb( BPy_Curve * self, PyObject * args )
{
return EXPP_setterWrapper( (void *)self, args,
(setter)Curve_newsetTaperOb );
}