TaskScheduler: Minor Preparations for TBB
Tasks: move priority from task to task pool {rBf7c18df4f599fe39ffc914e645e504fcdbee8636}
Tasks: split task.c into task_pool.cc and task_iterator.c {rB4ada1d267749931ca934a74b14a82479bcaa92e0}
Differential Revision: https://developer.blender.org/D7385
This commit is contained in:
committed by
Jeroen Bakker
parent
862ec82942
commit
78f56d5582
@@ -364,7 +364,7 @@ void BKE_editmesh_loop_tangent_calc(BMEditMesh *em,
|
||||
if (em->tottri != 0) {
|
||||
TaskScheduler *scheduler = BLI_task_scheduler_get();
|
||||
TaskPool *task_pool;
|
||||
task_pool = BLI_task_pool_create(scheduler, NULL);
|
||||
task_pool = BLI_task_pool_create(scheduler, NULL, TASK_PRIORITY_LOW);
|
||||
|
||||
tangent_mask_curr = 0;
|
||||
/* Calculate tangent layers */
|
||||
@@ -417,8 +417,7 @@ void BKE_editmesh_loop_tangent_calc(BMEditMesh *em,
|
||||
mesh2tangent->looptris = (const BMLoop *(*)[3])em->looptris;
|
||||
mesh2tangent->tangent = loopdata_out->layers[index].data;
|
||||
|
||||
BLI_task_pool_push(
|
||||
task_pool, emDM_calc_loop_tangents_thread, mesh2tangent, false, TASK_PRIORITY_LOW);
|
||||
BLI_task_pool_push(task_pool, emDM_calc_loop_tangents_thread, mesh2tangent, false, NULL);
|
||||
}
|
||||
|
||||
BLI_assert(tangent_mask_curr == tangent_mask);
|
||||
|
||||
@@ -1555,7 +1555,7 @@ static void loop_split_generator(TaskPool *pool, LoopSplitTaskDataCommon *common
|
||||
if (pool) {
|
||||
data_idx++;
|
||||
if (data_idx == LOOP_SPLIT_TASK_BLOCK_SIZE) {
|
||||
BLI_task_pool_push(pool, loop_split_worker, data_buff, true, TASK_PRIORITY_LOW);
|
||||
BLI_task_pool_push(pool, loop_split_worker, data_buff, true, NULL);
|
||||
data_idx = 0;
|
||||
}
|
||||
}
|
||||
@@ -1572,7 +1572,7 @@ static void loop_split_generator(TaskPool *pool, LoopSplitTaskDataCommon *common
|
||||
/* Last block of data... Since it is calloc'ed and we use first NULL item as stopper,
|
||||
* everything is fine. */
|
||||
if (pool && data_idx) {
|
||||
BLI_task_pool_push(pool, loop_split_worker, data_buff, true, TASK_PRIORITY_LOW);
|
||||
BLI_task_pool_push(pool, loop_split_worker, data_buff, true, NULL);
|
||||
}
|
||||
|
||||
if (edge_vectors) {
|
||||
@@ -1708,7 +1708,7 @@ void BKE_mesh_normals_loop_split(const MVert *mverts,
|
||||
TaskPool *task_pool;
|
||||
|
||||
task_scheduler = BLI_task_scheduler_get();
|
||||
task_pool = BLI_task_pool_create(task_scheduler, &common_data);
|
||||
task_pool = BLI_task_pool_create(task_scheduler, &common_data, TASK_PRIORITY_HIGH);
|
||||
|
||||
loop_split_generator(task_pool, &common_data);
|
||||
|
||||
|
||||
@@ -660,7 +660,7 @@ void BKE_mesh_calc_loop_tangent_ex(const MVert *mvert,
|
||||
if (looptri_len != 0) {
|
||||
TaskScheduler *scheduler = BLI_task_scheduler_get();
|
||||
TaskPool *task_pool;
|
||||
task_pool = BLI_task_pool_create(scheduler, NULL);
|
||||
task_pool = BLI_task_pool_create(scheduler, NULL, TASK_PRIORITY_LOW);
|
||||
|
||||
tangent_mask_curr = 0;
|
||||
/* Calculate tangent layers */
|
||||
@@ -707,8 +707,7 @@ void BKE_mesh_calc_loop_tangent_ex(const MVert *mvert,
|
||||
}
|
||||
|
||||
mesh2tangent->tangent = loopdata_out->layers[index].data;
|
||||
BLI_task_pool_push(
|
||||
task_pool, DM_calc_loop_tangents_thread, mesh2tangent, false, TASK_PRIORITY_LOW);
|
||||
BLI_task_pool_push(task_pool, DM_calc_loop_tangents_thread, mesh2tangent, false, NULL);
|
||||
}
|
||||
|
||||
BLI_assert(tangent_mask_curr == tangent_mask);
|
||||
|
||||
@@ -680,7 +680,7 @@ void BKE_ocean_simulate(struct Ocean *o, float t, float scale, float chop_amount
|
||||
osd.scale = scale;
|
||||
osd.chop_amount = chop_amount;
|
||||
|
||||
pool = BLI_task_pool_create(scheduler, &osd);
|
||||
pool = BLI_task_pool_create(scheduler, &osd, TASK_PRIORITY_HIGH);
|
||||
|
||||
BLI_rw_mutex_lock(&o->oceanmutex, THREAD_LOCK_WRITE);
|
||||
|
||||
@@ -698,23 +698,23 @@ void BKE_ocean_simulate(struct Ocean *o, float t, float scale, float chop_amount
|
||||
BLI_task_parallel_range(0, o->_M, &osd, ocean_compute_htilda, &settings);
|
||||
|
||||
if (o->_do_disp_y) {
|
||||
BLI_task_pool_push(pool, ocean_compute_displacement_y, NULL, false, TASK_PRIORITY_HIGH);
|
||||
BLI_task_pool_push(pool, ocean_compute_displacement_y, NULL, false, NULL);
|
||||
}
|
||||
|
||||
if (o->_do_chop) {
|
||||
BLI_task_pool_push(pool, ocean_compute_displacement_x, NULL, false, TASK_PRIORITY_HIGH);
|
||||
BLI_task_pool_push(pool, ocean_compute_displacement_z, NULL, false, TASK_PRIORITY_HIGH);
|
||||
BLI_task_pool_push(pool, ocean_compute_displacement_x, NULL, false, NULL);
|
||||
BLI_task_pool_push(pool, ocean_compute_displacement_z, NULL, false, NULL);
|
||||
}
|
||||
|
||||
if (o->_do_jacobian) {
|
||||
BLI_task_pool_push(pool, ocean_compute_jacobian_jxx, NULL, false, TASK_PRIORITY_HIGH);
|
||||
BLI_task_pool_push(pool, ocean_compute_jacobian_jzz, NULL, false, TASK_PRIORITY_HIGH);
|
||||
BLI_task_pool_push(pool, ocean_compute_jacobian_jxz, NULL, false, TASK_PRIORITY_HIGH);
|
||||
BLI_task_pool_push(pool, ocean_compute_jacobian_jxx, NULL, false, NULL);
|
||||
BLI_task_pool_push(pool, ocean_compute_jacobian_jzz, NULL, false, NULL);
|
||||
BLI_task_pool_push(pool, ocean_compute_jacobian_jxz, NULL, false, NULL);
|
||||
}
|
||||
|
||||
if (o->_do_normals) {
|
||||
BLI_task_pool_push(pool, ocean_compute_normal_x, NULL, false, TASK_PRIORITY_HIGH);
|
||||
BLI_task_pool_push(pool, ocean_compute_normal_z, NULL, false, TASK_PRIORITY_HIGH);
|
||||
BLI_task_pool_push(pool, ocean_compute_normal_x, NULL, false, NULL);
|
||||
BLI_task_pool_push(pool, ocean_compute_normal_z, NULL, false, NULL);
|
||||
o->_N_y = 1.0f / scale;
|
||||
}
|
||||
|
||||
|
||||
@@ -2827,7 +2827,7 @@ void psys_cache_child_paths(ParticleSimulationData *sim,
|
||||
}
|
||||
|
||||
task_scheduler = BLI_task_scheduler_get();
|
||||
task_pool = BLI_task_pool_create(task_scheduler, &ctx);
|
||||
task_pool = BLI_task_pool_create(task_scheduler, &ctx, TASK_PRIORITY_LOW);
|
||||
totchild = ctx.totchild;
|
||||
totparent = ctx.totparent;
|
||||
|
||||
@@ -2850,7 +2850,7 @@ void psys_cache_child_paths(ParticleSimulationData *sim,
|
||||
ParticleTask *task = &tasks_parent[i];
|
||||
|
||||
psys_task_init_path(task, sim);
|
||||
BLI_task_pool_push(task_pool, exec_child_path_cache, task, false, TASK_PRIORITY_LOW);
|
||||
BLI_task_pool_push(task_pool, exec_child_path_cache, task, false, NULL);
|
||||
}
|
||||
BLI_task_pool_work_and_wait(task_pool);
|
||||
|
||||
@@ -2861,7 +2861,7 @@ void psys_cache_child_paths(ParticleSimulationData *sim,
|
||||
ParticleTask *task = &tasks_child[i];
|
||||
|
||||
psys_task_init_path(task, sim);
|
||||
BLI_task_pool_push(task_pool, exec_child_path_cache, task, false, TASK_PRIORITY_LOW);
|
||||
BLI_task_pool_push(task_pool, exec_child_path_cache, task, false, NULL);
|
||||
}
|
||||
BLI_task_pool_work_and_wait(task_pool);
|
||||
|
||||
|
||||
@@ -1337,7 +1337,7 @@ static void distribute_particles_on_dm(ParticleSimulationData *sim, int from)
|
||||
}
|
||||
|
||||
task_scheduler = BLI_task_scheduler_get();
|
||||
task_pool = BLI_task_pool_create(task_scheduler, &ctx);
|
||||
task_pool = BLI_task_pool_create(task_scheduler, &ctx, TASK_PRIORITY_LOW);
|
||||
|
||||
totpart = (from == PART_FROM_CHILD ? sim->psys->totchild : sim->psys->totpart);
|
||||
psys_tasks_create(&ctx, 0, totpart, &tasks, &numtasks);
|
||||
@@ -1346,10 +1346,10 @@ static void distribute_particles_on_dm(ParticleSimulationData *sim, int from)
|
||||
|
||||
psys_task_init_distribute(task, sim);
|
||||
if (from == PART_FROM_CHILD) {
|
||||
BLI_task_pool_push(task_pool, exec_distribute_child, task, false, TASK_PRIORITY_LOW);
|
||||
BLI_task_pool_push(task_pool, exec_distribute_child, task, false, NULL);
|
||||
}
|
||||
else {
|
||||
BLI_task_pool_push(task_pool, exec_distribute_parent, task, false, TASK_PRIORITY_LOW);
|
||||
BLI_task_pool_push(task_pool, exec_distribute_parent, task, false, NULL);
|
||||
}
|
||||
}
|
||||
BLI_task_pool_work_and_wait(task_pool);
|
||||
|
||||
@@ -73,27 +73,25 @@ typedef struct TaskPool TaskPool;
|
||||
typedef void (*TaskRunFunction)(TaskPool *__restrict pool, void *taskdata, int threadid);
|
||||
typedef void (*TaskFreeFunction)(TaskPool *__restrict pool, void *taskdata, int threadid);
|
||||
|
||||
TaskPool *BLI_task_pool_create(TaskScheduler *scheduler, void *userdata);
|
||||
TaskPool *BLI_task_pool_create_background(TaskScheduler *scheduler, void *userdata);
|
||||
TaskPool *BLI_task_pool_create_suspended(TaskScheduler *scheduler, void *userdata);
|
||||
TaskPool *BLI_task_pool_create(TaskScheduler *scheduler, void *userdata, TaskPriority priority);
|
||||
TaskPool *BLI_task_pool_create_background(TaskScheduler *scheduler,
|
||||
void *userdata,
|
||||
TaskPriority priority);
|
||||
TaskPool *BLI_task_pool_create_suspended(TaskScheduler *scheduler,
|
||||
void *userdata,
|
||||
TaskPriority priority);
|
||||
void BLI_task_pool_free(TaskPool *pool);
|
||||
|
||||
void BLI_task_pool_push_ex(TaskPool *pool,
|
||||
TaskRunFunction run,
|
||||
void *taskdata,
|
||||
bool free_taskdata,
|
||||
TaskFreeFunction freedata,
|
||||
TaskPriority priority);
|
||||
void BLI_task_pool_push(TaskPool *pool,
|
||||
TaskRunFunction run,
|
||||
void *taskdata,
|
||||
bool free_taskdata,
|
||||
TaskPriority priority);
|
||||
TaskFreeFunction freedata);
|
||||
void BLI_task_pool_push_from_thread(TaskPool *pool,
|
||||
TaskRunFunction run,
|
||||
void *taskdata,
|
||||
bool free_taskdata,
|
||||
TaskPriority priority,
|
||||
TaskFreeFunction freedata,
|
||||
int thread_id);
|
||||
|
||||
/* work and wait until all tasks are done */
|
||||
@@ -112,6 +110,9 @@ void *BLI_task_pool_userdata(TaskPool *pool);
|
||||
/* optional mutex to use from run function */
|
||||
ThreadMutex *BLI_task_pool_user_mutex(TaskPool *pool);
|
||||
|
||||
/* Thread ID of thread that created the task pool. */
|
||||
int BLI_task_pool_creator_thread_id(TaskPool *pool);
|
||||
|
||||
/* Delayed push, use that to reduce thread overhead by accumulating
|
||||
* all new tasks into local queue first and pushing it to scheduler
|
||||
* from within a single mutex lock.
|
||||
|
||||
@@ -118,7 +118,8 @@ set(SRC
|
||||
intern/string_utf8.c
|
||||
intern/string_utils.c
|
||||
intern/system.c
|
||||
intern/task.c
|
||||
intern/task_pool.cc
|
||||
intern/task_iterator.c
|
||||
intern/threads.c
|
||||
intern/time.c
|
||||
intern/timecode.c
|
||||
|
||||
@@ -34,994 +34,6 @@
|
||||
|
||||
#include "atomic_ops.h"
|
||||
|
||||
/* Define this to enable some detailed statistic print. */
|
||||
#undef DEBUG_STATS
|
||||
|
||||
/* Types */
|
||||
|
||||
/* Number of per-thread pre-allocated tasks.
|
||||
*
|
||||
* For more details see description of TaskMemPool.
|
||||
*/
|
||||
#define MEMPOOL_SIZE 256
|
||||
|
||||
/* Number of tasks which are pushed directly to local thread queue.
|
||||
*
|
||||
* This allows thread to fetch next task without locking the whole queue.
|
||||
*/
|
||||
#define LOCAL_QUEUE_SIZE 1
|
||||
|
||||
/* Number of tasks which are allowed to be scheduled in a delayed manner.
|
||||
*
|
||||
* This allows to use less locks per graph node children schedule. More details
|
||||
* could be found at TaskThreadLocalStorage::do_delayed_push.
|
||||
*/
|
||||
#define DELAYED_QUEUE_SIZE 4096
|
||||
|
||||
#ifndef NDEBUG
|
||||
# define ASSERT_THREAD_ID(scheduler, thread_id) \
|
||||
do { \
|
||||
if (!BLI_thread_is_main()) { \
|
||||
TaskThread *thread = pthread_getspecific(scheduler->tls_id_key); \
|
||||
if (thread == NULL) { \
|
||||
BLI_assert(thread_id == 0); \
|
||||
} \
|
||||
else { \
|
||||
BLI_assert(thread_id == thread->id); \
|
||||
} \
|
||||
} \
|
||||
else { \
|
||||
BLI_assert(thread_id == 0); \
|
||||
} \
|
||||
} while (false)
|
||||
#else
|
||||
# define ASSERT_THREAD_ID(scheduler, thread_id)
|
||||
#endif
|
||||
|
||||
typedef struct Task {
|
||||
struct Task *next, *prev;
|
||||
|
||||
TaskRunFunction run;
|
||||
void *taskdata;
|
||||
bool free_taskdata;
|
||||
TaskFreeFunction freedata;
|
||||
TaskPool *pool;
|
||||
} Task;
|
||||
|
||||
/* This is a per-thread storage of pre-allocated tasks.
|
||||
*
|
||||
* The idea behind this is simple: reduce amount of malloc() calls when pushing
|
||||
* new task to the pool. This is done by keeping memory from the tasks which
|
||||
* were finished already, so instead of freeing that memory we put it to the
|
||||
* pool for the later re-use.
|
||||
*
|
||||
* The tricky part here is to avoid any inter-thread synchronization, hence no
|
||||
* lock must exist around this pool. The pool will become an owner of the pointer
|
||||
* from freed task, and only corresponding thread will be able to use this pool
|
||||
* (no memory stealing and such).
|
||||
*
|
||||
* This leads to the following use of the pool:
|
||||
*
|
||||
* - task_push() should provide proper thread ID from which the task is being
|
||||
* pushed from.
|
||||
*
|
||||
* - Task allocation function which check corresponding memory pool and if there
|
||||
* is any memory in there it'll mark memory as re-used, remove it from the pool
|
||||
* and use that memory for the new task.
|
||||
*
|
||||
* At this moment task queue owns the memory.
|
||||
*
|
||||
* - When task is done and task_free() is called the memory will be put to the
|
||||
* pool which corresponds to a thread which handled the task.
|
||||
*/
|
||||
typedef struct TaskMemPool {
|
||||
/* Number of pre-allocated tasks in the pool. */
|
||||
int num_tasks;
|
||||
/* Pre-allocated task memory pointers. */
|
||||
Task *tasks[MEMPOOL_SIZE];
|
||||
} TaskMemPool;
|
||||
|
||||
#ifdef DEBUG_STATS
|
||||
typedef struct TaskMemPoolStats {
|
||||
/* Number of allocations. */
|
||||
int num_alloc;
|
||||
/* Number of avoided allocations (pointer was re-used from the pool). */
|
||||
int num_reuse;
|
||||
/* Number of discarded memory due to pool saturation, */
|
||||
int num_discard;
|
||||
} TaskMemPoolStats;
|
||||
#endif
|
||||
|
||||
typedef struct TaskThreadLocalStorage {
|
||||
/* Memory pool for faster task allocation.
|
||||
* The idea is to re-use memory of finished/discarded tasks by this thread.
|
||||
*/
|
||||
TaskMemPool task_mempool;
|
||||
|
||||
/* Local queue keeps thread alive by keeping small amount of tasks ready
|
||||
* to be picked up without causing global thread locks for synchronization.
|
||||
*/
|
||||
int num_local_queue;
|
||||
Task *local_queue[LOCAL_QUEUE_SIZE];
|
||||
|
||||
/* Thread can be marked for delayed tasks push. This is helpful when it's
|
||||
* know that lots of subsequent task pushed will happen from the same thread
|
||||
* without "interrupting" for task execution.
|
||||
*
|
||||
* We try to accumulate as much tasks as possible in a local queue without
|
||||
* any locks first, and then we push all of them into a scheduler's queue
|
||||
* from within a single mutex lock.
|
||||
*/
|
||||
bool do_delayed_push;
|
||||
int num_delayed_queue;
|
||||
Task *delayed_queue[DELAYED_QUEUE_SIZE];
|
||||
} TaskThreadLocalStorage;
|
||||
|
||||
struct TaskPool {
|
||||
TaskScheduler *scheduler;
|
||||
|
||||
volatile size_t num;
|
||||
ThreadMutex num_mutex;
|
||||
ThreadCondition num_cond;
|
||||
|
||||
void *userdata;
|
||||
ThreadMutex user_mutex;
|
||||
|
||||
volatile bool do_cancel;
|
||||
volatile bool do_work;
|
||||
|
||||
volatile bool is_suspended;
|
||||
bool start_suspended;
|
||||
ListBase suspended_queue;
|
||||
size_t num_suspended;
|
||||
|
||||
/* If set, this pool may never be work_and_wait'ed, which means TaskScheduler
|
||||
* has to use its special background fallback thread in case we are in
|
||||
* single-threaded situation.
|
||||
*/
|
||||
bool run_in_background;
|
||||
|
||||
/* This is a task scheduler's ID of a thread at which pool was constructed.
|
||||
* It will be used to access task TLS.
|
||||
*/
|
||||
int thread_id;
|
||||
|
||||
/* For the pools which are created from non-main thread which is not a
|
||||
* scheduler worker thread we can't re-use any of scheduler's threads TLS
|
||||
* and have to use our own one.
|
||||
*/
|
||||
bool use_local_tls;
|
||||
TaskThreadLocalStorage local_tls;
|
||||
#ifndef NDEBUG
|
||||
pthread_t creator_thread_id;
|
||||
#endif
|
||||
|
||||
#ifdef DEBUG_STATS
|
||||
TaskMemPoolStats *mempool_stats;
|
||||
#endif
|
||||
};
|
||||
|
||||
struct TaskScheduler {
|
||||
pthread_t *threads;
|
||||
struct TaskThread *task_threads;
|
||||
int num_threads;
|
||||
bool background_thread_only;
|
||||
|
||||
ListBase queue;
|
||||
ThreadMutex queue_mutex;
|
||||
ThreadCondition queue_cond;
|
||||
|
||||
ThreadMutex startup_mutex;
|
||||
ThreadCondition startup_cond;
|
||||
volatile int num_thread_started;
|
||||
|
||||
volatile bool do_exit;
|
||||
|
||||
/* NOTE: In pthread's TLS we store the whole TaskThread structure. */
|
||||
pthread_key_t tls_id_key;
|
||||
};
|
||||
|
||||
typedef struct TaskThread {
|
||||
TaskScheduler *scheduler;
|
||||
int id;
|
||||
TaskThreadLocalStorage tls;
|
||||
} TaskThread;
|
||||
|
||||
/* Helper */
|
||||
BLI_INLINE void task_data_free(Task *task, const int thread_id)
|
||||
{
|
||||
if (task->free_taskdata) {
|
||||
if (task->freedata) {
|
||||
task->freedata(task->pool, task->taskdata, thread_id);
|
||||
}
|
||||
else {
|
||||
MEM_freeN(task->taskdata);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
BLI_INLINE void initialize_task_tls(TaskThreadLocalStorage *tls)
|
||||
{
|
||||
memset(tls, 0, sizeof(TaskThreadLocalStorage));
|
||||
}
|
||||
|
||||
BLI_INLINE TaskThreadLocalStorage *get_task_tls(TaskPool *pool, const int thread_id)
|
||||
{
|
||||
TaskScheduler *scheduler = pool->scheduler;
|
||||
BLI_assert(thread_id >= 0);
|
||||
BLI_assert(thread_id <= scheduler->num_threads);
|
||||
if (pool->use_local_tls && thread_id == 0) {
|
||||
BLI_assert(pool->thread_id == 0);
|
||||
BLI_assert(!BLI_thread_is_main());
|
||||
BLI_assert(pthread_equal(pthread_self(), pool->creator_thread_id));
|
||||
return &pool->local_tls;
|
||||
}
|
||||
if (thread_id == 0) {
|
||||
BLI_assert(BLI_thread_is_main());
|
||||
return &scheduler->task_threads[pool->thread_id].tls;
|
||||
}
|
||||
return &scheduler->task_threads[thread_id].tls;
|
||||
}
|
||||
|
||||
BLI_INLINE void free_task_tls(TaskThreadLocalStorage *tls)
|
||||
{
|
||||
TaskMemPool *task_mempool = &tls->task_mempool;
|
||||
for (int i = 0; i < task_mempool->num_tasks; i++) {
|
||||
MEM_freeN(task_mempool->tasks[i]);
|
||||
}
|
||||
}
|
||||
|
||||
static Task *task_alloc(TaskPool *pool, const int thread_id)
|
||||
{
|
||||
BLI_assert(thread_id <= pool->scheduler->num_threads);
|
||||
if (thread_id != -1) {
|
||||
BLI_assert(thread_id >= 0);
|
||||
BLI_assert(thread_id <= pool->scheduler->num_threads);
|
||||
TaskThreadLocalStorage *tls = get_task_tls(pool, thread_id);
|
||||
TaskMemPool *task_mempool = &tls->task_mempool;
|
||||
/* Try to re-use task memory from a thread local storage. */
|
||||
if (task_mempool->num_tasks > 0) {
|
||||
--task_mempool->num_tasks;
|
||||
/* Success! We've just avoided task allocation. */
|
||||
#ifdef DEBUG_STATS
|
||||
pool->mempool_stats[thread_id].num_reuse++;
|
||||
#endif
|
||||
return task_mempool->tasks[task_mempool->num_tasks];
|
||||
}
|
||||
/* We are doomed to allocate new task data. */
|
||||
#ifdef DEBUG_STATS
|
||||
pool->mempool_stats[thread_id].num_alloc++;
|
||||
#endif
|
||||
}
|
||||
return MEM_mallocN(sizeof(Task), "New task");
|
||||
}
|
||||
|
||||
static void task_free(TaskPool *pool, Task *task, const int thread_id)
|
||||
{
|
||||
task_data_free(task, thread_id);
|
||||
BLI_assert(thread_id >= 0);
|
||||
BLI_assert(thread_id <= pool->scheduler->num_threads);
|
||||
if (thread_id == 0) {
|
||||
BLI_assert(pool->use_local_tls || BLI_thread_is_main());
|
||||
}
|
||||
TaskThreadLocalStorage *tls = get_task_tls(pool, thread_id);
|
||||
TaskMemPool *task_mempool = &tls->task_mempool;
|
||||
if (task_mempool->num_tasks < MEMPOOL_SIZE - 1) {
|
||||
/* Successfully allowed the task to be re-used later. */
|
||||
task_mempool->tasks[task_mempool->num_tasks] = task;
|
||||
++task_mempool->num_tasks;
|
||||
}
|
||||
else {
|
||||
/* Local storage saturated, no other way than just discard
|
||||
* the memory.
|
||||
*
|
||||
* TODO(sergey): We can perhaps store such pointer in a global
|
||||
* scheduler pool, maybe it'll be faster than discarding and
|
||||
* allocating again.
|
||||
*/
|
||||
MEM_freeN(task);
|
||||
#ifdef DEBUG_STATS
|
||||
pool->mempool_stats[thread_id].num_discard++;
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
/* Task Scheduler */
|
||||
|
||||
static void task_pool_num_decrease(TaskPool *pool, size_t done)
|
||||
{
|
||||
BLI_mutex_lock(&pool->num_mutex);
|
||||
|
||||
BLI_assert(pool->num >= done);
|
||||
|
||||
pool->num -= done;
|
||||
|
||||
if (pool->num == 0) {
|
||||
BLI_condition_notify_all(&pool->num_cond);
|
||||
}
|
||||
|
||||
BLI_mutex_unlock(&pool->num_mutex);
|
||||
}
|
||||
|
||||
static void task_pool_num_increase(TaskPool *pool, size_t new)
|
||||
{
|
||||
BLI_mutex_lock(&pool->num_mutex);
|
||||
|
||||
pool->num += new;
|
||||
BLI_condition_notify_all(&pool->num_cond);
|
||||
|
||||
BLI_mutex_unlock(&pool->num_mutex);
|
||||
}
|
||||
|
||||
static bool task_scheduler_thread_wait_pop(TaskScheduler *scheduler, Task **task)
|
||||
{
|
||||
bool found_task = false;
|
||||
BLI_mutex_lock(&scheduler->queue_mutex);
|
||||
|
||||
while (!scheduler->queue.first && !scheduler->do_exit) {
|
||||
BLI_condition_wait(&scheduler->queue_cond, &scheduler->queue_mutex);
|
||||
}
|
||||
|
||||
do {
|
||||
Task *current_task;
|
||||
|
||||
/* Assuming we can only have a void queue in 'exit' case here seems logical
|
||||
* (we should only be here after our worker thread has been woken up from a
|
||||
* condition_wait(), which only happens after a new task was added to the queue),
|
||||
* but it is wrong.
|
||||
* Waiting on condition may wake up the thread even if condition is not signaled
|
||||
* (spurious wake-ups), and some race condition may also empty the queue **after**
|
||||
* condition has been signaled, but **before** awoken thread reaches this point...
|
||||
* See http://stackoverflow.com/questions/8594591
|
||||
*
|
||||
* So we only abort here if do_exit is set.
|
||||
*/
|
||||
if (scheduler->do_exit) {
|
||||
BLI_mutex_unlock(&scheduler->queue_mutex);
|
||||
return false;
|
||||
}
|
||||
|
||||
for (current_task = scheduler->queue.first; current_task != NULL;
|
||||
current_task = current_task->next) {
|
||||
TaskPool *pool = current_task->pool;
|
||||
|
||||
if (scheduler->background_thread_only && !pool->run_in_background) {
|
||||
continue;
|
||||
}
|
||||
|
||||
*task = current_task;
|
||||
found_task = true;
|
||||
BLI_remlink(&scheduler->queue, *task);
|
||||
break;
|
||||
}
|
||||
if (!found_task) {
|
||||
BLI_condition_wait(&scheduler->queue_cond, &scheduler->queue_mutex);
|
||||
}
|
||||
} while (!found_task);
|
||||
|
||||
BLI_mutex_unlock(&scheduler->queue_mutex);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
BLI_INLINE void handle_local_queue(TaskThreadLocalStorage *tls, const int thread_id)
|
||||
{
|
||||
BLI_assert(!tls->do_delayed_push);
|
||||
while (tls->num_local_queue > 0) {
|
||||
/* We pop task from queue before handling it so handler of the task can
|
||||
* push next job to the local queue.
|
||||
*/
|
||||
tls->num_local_queue--;
|
||||
Task *local_task = tls->local_queue[tls->num_local_queue];
|
||||
/* TODO(sergey): Double-check work_and_wait() doesn't handle other's
|
||||
* pool tasks.
|
||||
*/
|
||||
TaskPool *local_pool = local_task->pool;
|
||||
local_task->run(local_pool, local_task->taskdata, thread_id);
|
||||
task_free(local_pool, local_task, thread_id);
|
||||
}
|
||||
BLI_assert(!tls->do_delayed_push);
|
||||
}
|
||||
|
||||
static void *task_scheduler_thread_run(void *thread_p)
|
||||
{
|
||||
TaskThread *thread = (TaskThread *)thread_p;
|
||||
TaskThreadLocalStorage *tls = &thread->tls;
|
||||
TaskScheduler *scheduler = thread->scheduler;
|
||||
int thread_id = thread->id;
|
||||
Task *task;
|
||||
|
||||
pthread_setspecific(scheduler->tls_id_key, thread);
|
||||
|
||||
/* signal the main thread when all threads have started */
|
||||
BLI_mutex_lock(&scheduler->startup_mutex);
|
||||
scheduler->num_thread_started++;
|
||||
if (scheduler->num_thread_started == scheduler->num_threads) {
|
||||
BLI_condition_notify_one(&scheduler->startup_cond);
|
||||
}
|
||||
BLI_mutex_unlock(&scheduler->startup_mutex);
|
||||
|
||||
/* keep popping off tasks */
|
||||
while (task_scheduler_thread_wait_pop(scheduler, &task)) {
|
||||
TaskPool *pool = task->pool;
|
||||
|
||||
/* run task */
|
||||
BLI_assert(!tls->do_delayed_push);
|
||||
task->run(pool, task->taskdata, thread_id);
|
||||
BLI_assert(!tls->do_delayed_push);
|
||||
|
||||
/* delete task */
|
||||
task_free(pool, task, thread_id);
|
||||
|
||||
/* Handle all tasks from local queue. */
|
||||
handle_local_queue(tls, thread_id);
|
||||
|
||||
/* notify pool task was done */
|
||||
task_pool_num_decrease(pool, 1);
|
||||
}
|
||||
|
||||
return NULL;
|
||||
}
|
||||
|
||||
TaskScheduler *BLI_task_scheduler_create(int num_threads)
|
||||
{
|
||||
TaskScheduler *scheduler = MEM_callocN(sizeof(TaskScheduler), "TaskScheduler");
|
||||
|
||||
/* multiple places can use this task scheduler, sharing the same
|
||||
* threads, so we keep track of the number of users. */
|
||||
scheduler->do_exit = false;
|
||||
|
||||
BLI_listbase_clear(&scheduler->queue);
|
||||
BLI_mutex_init(&scheduler->queue_mutex);
|
||||
BLI_condition_init(&scheduler->queue_cond);
|
||||
|
||||
BLI_mutex_init(&scheduler->startup_mutex);
|
||||
BLI_condition_init(&scheduler->startup_cond);
|
||||
scheduler->num_thread_started = 0;
|
||||
|
||||
if (num_threads == 0) {
|
||||
/* automatic number of threads will be main thread + num cores */
|
||||
num_threads = BLI_system_thread_count();
|
||||
}
|
||||
|
||||
/* main thread will also work, so we count it too */
|
||||
num_threads -= 1;
|
||||
|
||||
/* Add background-only thread if needed. */
|
||||
if (num_threads == 0) {
|
||||
scheduler->background_thread_only = true;
|
||||
num_threads = 1;
|
||||
}
|
||||
|
||||
scheduler->task_threads = MEM_mallocN(sizeof(TaskThread) * (num_threads + 1),
|
||||
"TaskScheduler task threads");
|
||||
|
||||
/* Initialize TLS for main thread. */
|
||||
initialize_task_tls(&scheduler->task_threads[0].tls);
|
||||
|
||||
pthread_key_create(&scheduler->tls_id_key, NULL);
|
||||
|
||||
/* launch threads that will be waiting for work */
|
||||
if (num_threads > 0) {
|
||||
int i;
|
||||
|
||||
scheduler->num_threads = num_threads;
|
||||
scheduler->threads = MEM_callocN(sizeof(pthread_t) * num_threads, "TaskScheduler threads");
|
||||
|
||||
for (i = 0; i < num_threads; i++) {
|
||||
TaskThread *thread = &scheduler->task_threads[i + 1];
|
||||
thread->scheduler = scheduler;
|
||||
thread->id = i + 1;
|
||||
initialize_task_tls(&thread->tls);
|
||||
|
||||
if (pthread_create(&scheduler->threads[i], NULL, task_scheduler_thread_run, thread) != 0) {
|
||||
fprintf(stderr, "TaskScheduler failed to launch thread %d/%d\n", i, num_threads);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* Wait for all worker threads to start before returning to caller to prevent the case where
|
||||
* threads are still starting and pthread_join is called, which causes a deadlock on pthreads4w.
|
||||
*/
|
||||
BLI_mutex_lock(&scheduler->startup_mutex);
|
||||
/* NOTE: Use loop here to avoid false-positive everything-is-ready caused by spontaneous thread
|
||||
* wake up. */
|
||||
while (scheduler->num_thread_started != num_threads) {
|
||||
BLI_condition_wait(&scheduler->startup_cond, &scheduler->startup_mutex);
|
||||
}
|
||||
BLI_mutex_unlock(&scheduler->startup_mutex);
|
||||
|
||||
return scheduler;
|
||||
}
|
||||
|
||||
void BLI_task_scheduler_free(TaskScheduler *scheduler)
|
||||
{
|
||||
Task *task;
|
||||
|
||||
/* stop all waiting threads */
|
||||
BLI_mutex_lock(&scheduler->queue_mutex);
|
||||
scheduler->do_exit = true;
|
||||
BLI_condition_notify_all(&scheduler->queue_cond);
|
||||
BLI_mutex_unlock(&scheduler->queue_mutex);
|
||||
|
||||
pthread_key_delete(scheduler->tls_id_key);
|
||||
|
||||
/* delete threads */
|
||||
if (scheduler->threads) {
|
||||
int i;
|
||||
|
||||
for (i = 0; i < scheduler->num_threads; i++) {
|
||||
if (pthread_join(scheduler->threads[i], NULL) != 0) {
|
||||
fprintf(stderr, "TaskScheduler failed to join thread %d/%d\n", i, scheduler->num_threads);
|
||||
}
|
||||
}
|
||||
|
||||
MEM_freeN(scheduler->threads);
|
||||
}
|
||||
|
||||
/* Delete task thread data */
|
||||
if (scheduler->task_threads) {
|
||||
for (int i = 0; i < scheduler->num_threads + 1; i++) {
|
||||
TaskThreadLocalStorage *tls = &scheduler->task_threads[i].tls;
|
||||
free_task_tls(tls);
|
||||
}
|
||||
|
||||
MEM_freeN(scheduler->task_threads);
|
||||
}
|
||||
|
||||
/* delete leftover tasks */
|
||||
for (task = scheduler->queue.first; task; task = task->next) {
|
||||
task_data_free(task, 0);
|
||||
}
|
||||
BLI_freelistN(&scheduler->queue);
|
||||
|
||||
/* delete mutex/condition */
|
||||
BLI_mutex_end(&scheduler->queue_mutex);
|
||||
BLI_condition_end(&scheduler->queue_cond);
|
||||
BLI_mutex_end(&scheduler->startup_mutex);
|
||||
BLI_condition_end(&scheduler->startup_cond);
|
||||
|
||||
MEM_freeN(scheduler);
|
||||
}
|
||||
|
||||
int BLI_task_scheduler_num_threads(TaskScheduler *scheduler)
|
||||
{
|
||||
return scheduler->num_threads + 1;
|
||||
}
|
||||
|
||||
static void task_scheduler_push(TaskScheduler *scheduler, Task *task, TaskPriority priority)
|
||||
{
|
||||
task_pool_num_increase(task->pool, 1);
|
||||
|
||||
/* add task to queue */
|
||||
BLI_mutex_lock(&scheduler->queue_mutex);
|
||||
|
||||
if (priority == TASK_PRIORITY_HIGH) {
|
||||
BLI_addhead(&scheduler->queue, task);
|
||||
}
|
||||
else {
|
||||
BLI_addtail(&scheduler->queue, task);
|
||||
}
|
||||
|
||||
BLI_condition_notify_one(&scheduler->queue_cond);
|
||||
BLI_mutex_unlock(&scheduler->queue_mutex);
|
||||
}
|
||||
|
||||
static void task_scheduler_push_all(TaskScheduler *scheduler,
|
||||
TaskPool *pool,
|
||||
Task **tasks,
|
||||
int num_tasks)
|
||||
{
|
||||
if (num_tasks == 0) {
|
||||
return;
|
||||
}
|
||||
|
||||
task_pool_num_increase(pool, num_tasks);
|
||||
|
||||
BLI_mutex_lock(&scheduler->queue_mutex);
|
||||
|
||||
for (int i = 0; i < num_tasks; i++) {
|
||||
BLI_addhead(&scheduler->queue, tasks[i]);
|
||||
}
|
||||
|
||||
BLI_condition_notify_all(&scheduler->queue_cond);
|
||||
BLI_mutex_unlock(&scheduler->queue_mutex);
|
||||
}
|
||||
|
||||
static void task_scheduler_clear(TaskScheduler *scheduler, TaskPool *pool)
|
||||
{
|
||||
Task *task, *nexttask;
|
||||
size_t done = 0;
|
||||
|
||||
BLI_mutex_lock(&scheduler->queue_mutex);
|
||||
|
||||
/* free all tasks from this pool from the queue */
|
||||
for (task = scheduler->queue.first; task; task = nexttask) {
|
||||
nexttask = task->next;
|
||||
|
||||
if (task->pool == pool) {
|
||||
task_data_free(task, pool->thread_id);
|
||||
BLI_freelinkN(&scheduler->queue, task);
|
||||
|
||||
done++;
|
||||
}
|
||||
}
|
||||
|
||||
BLI_mutex_unlock(&scheduler->queue_mutex);
|
||||
|
||||
/* notify done */
|
||||
task_pool_num_decrease(pool, done);
|
||||
}
|
||||
|
||||
/* Task Pool */
|
||||
|
||||
static TaskPool *task_pool_create_ex(TaskScheduler *scheduler,
|
||||
void *userdata,
|
||||
const bool is_background,
|
||||
const bool is_suspended)
|
||||
{
|
||||
TaskPool *pool = MEM_mallocN(sizeof(TaskPool), "TaskPool");
|
||||
|
||||
#ifndef NDEBUG
|
||||
/* Assert we do not try to create a background pool from some parent task -
|
||||
* those only work OK from main thread. */
|
||||
if (is_background) {
|
||||
const pthread_t thread_id = pthread_self();
|
||||
int i = scheduler->num_threads;
|
||||
|
||||
while (i--) {
|
||||
BLI_assert(!pthread_equal(scheduler->threads[i], thread_id));
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
pool->scheduler = scheduler;
|
||||
pool->num = 0;
|
||||
pool->do_cancel = false;
|
||||
pool->do_work = false;
|
||||
pool->is_suspended = is_suspended;
|
||||
pool->start_suspended = is_suspended;
|
||||
pool->num_suspended = 0;
|
||||
pool->suspended_queue.first = pool->suspended_queue.last = NULL;
|
||||
pool->run_in_background = is_background;
|
||||
pool->use_local_tls = false;
|
||||
|
||||
BLI_mutex_init(&pool->num_mutex);
|
||||
BLI_condition_init(&pool->num_cond);
|
||||
|
||||
pool->userdata = userdata;
|
||||
BLI_mutex_init(&pool->user_mutex);
|
||||
|
||||
if (BLI_thread_is_main()) {
|
||||
pool->thread_id = 0;
|
||||
}
|
||||
else {
|
||||
TaskThread *thread = pthread_getspecific(scheduler->tls_id_key);
|
||||
if (thread == NULL) {
|
||||
/* NOTE: Task pool is created from non-main thread which is not
|
||||
* managed by the task scheduler. We identify ourselves as thread ID
|
||||
* 0 but we do not use scheduler's TLS storage and use our own
|
||||
* instead to avoid any possible threading conflicts.
|
||||
*/
|
||||
pool->thread_id = 0;
|
||||
pool->use_local_tls = true;
|
||||
#ifndef NDEBUG
|
||||
pool->creator_thread_id = pthread_self();
|
||||
#endif
|
||||
initialize_task_tls(&pool->local_tls);
|
||||
}
|
||||
else {
|
||||
pool->thread_id = thread->id;
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef DEBUG_STATS
|
||||
pool->mempool_stats = MEM_callocN(sizeof(*pool->mempool_stats) * (scheduler->num_threads + 1),
|
||||
"per-taskpool mempool stats");
|
||||
#endif
|
||||
|
||||
/* Ensure malloc will go fine from threads,
|
||||
*
|
||||
* This is needed because we could be in main thread here
|
||||
* and malloc could be non-thread safe at this point because
|
||||
* no other jobs are running.
|
||||
*/
|
||||
BLI_threaded_malloc_begin();
|
||||
|
||||
return pool;
|
||||
}
|
||||
|
||||
/**
|
||||
* Create a normal task pool. Tasks will be executed as soon as they are added.
|
||||
*/
|
||||
TaskPool *BLI_task_pool_create(TaskScheduler *scheduler, void *userdata)
|
||||
{
|
||||
return task_pool_create_ex(scheduler, userdata, false, false);
|
||||
}
|
||||
|
||||
/**
|
||||
* Create a background task pool.
|
||||
* In multi-threaded context, there is no differences with #BLI_task_pool_create(),
|
||||
* but in single-threaded case it is ensured to have at least one worker thread to run on
|
||||
* (i.e. you don't have to call #BLI_task_pool_work_and_wait
|
||||
* on it to be sure it will be processed).
|
||||
*
|
||||
* \note Background pools are non-recursive
|
||||
* (that is, you should not create other background pools in tasks assigned to a background pool,
|
||||
* they could end never being executed, since the 'fallback' background thread is already
|
||||
* busy with parent task in single-threaded context).
|
||||
*/
|
||||
TaskPool *BLI_task_pool_create_background(TaskScheduler *scheduler, void *userdata)
|
||||
{
|
||||
return task_pool_create_ex(scheduler, userdata, true, false);
|
||||
}
|
||||
|
||||
/**
|
||||
* Similar to BLI_task_pool_create() but does not schedule any tasks for execution
|
||||
* for until BLI_task_pool_work_and_wait() is called. This helps reducing threading
|
||||
* overhead when pushing huge amount of small initial tasks from the main thread.
|
||||
*/
|
||||
TaskPool *BLI_task_pool_create_suspended(TaskScheduler *scheduler, void *userdata)
|
||||
{
|
||||
return task_pool_create_ex(scheduler, userdata, false, true);
|
||||
}
|
||||
|
||||
void BLI_task_pool_free(TaskPool *pool)
|
||||
{
|
||||
BLI_task_pool_cancel(pool);
|
||||
|
||||
BLI_mutex_end(&pool->num_mutex);
|
||||
BLI_condition_end(&pool->num_cond);
|
||||
|
||||
BLI_mutex_end(&pool->user_mutex);
|
||||
|
||||
#ifdef DEBUG_STATS
|
||||
printf("Thread ID Allocated Reused Discarded\n");
|
||||
for (int i = 0; i < pool->scheduler->num_threads + 1; i++) {
|
||||
printf("%02d %05d %05d %05d\n",
|
||||
i,
|
||||
pool->mempool_stats[i].num_alloc,
|
||||
pool->mempool_stats[i].num_reuse,
|
||||
pool->mempool_stats[i].num_discard);
|
||||
}
|
||||
MEM_freeN(pool->mempool_stats);
|
||||
#endif
|
||||
|
||||
if (pool->use_local_tls) {
|
||||
free_task_tls(&pool->local_tls);
|
||||
}
|
||||
|
||||
MEM_freeN(pool);
|
||||
|
||||
BLI_threaded_malloc_end();
|
||||
}
|
||||
|
||||
BLI_INLINE bool task_can_use_local_queues(TaskPool *pool, int thread_id)
|
||||
{
|
||||
return (thread_id != -1 && (thread_id != pool->thread_id || pool->do_work));
|
||||
}
|
||||
|
||||
static void task_pool_push(TaskPool *pool,
|
||||
TaskRunFunction run,
|
||||
void *taskdata,
|
||||
bool free_taskdata,
|
||||
TaskFreeFunction freedata,
|
||||
TaskPriority priority,
|
||||
int thread_id)
|
||||
{
|
||||
/* Allocate task and fill it's properties. */
|
||||
Task *task = task_alloc(pool, thread_id);
|
||||
task->run = run;
|
||||
task->taskdata = taskdata;
|
||||
task->free_taskdata = free_taskdata;
|
||||
task->freedata = freedata;
|
||||
task->pool = pool;
|
||||
/* For suspended pools we put everything yo a global queue first
|
||||
* and exit as soon as possible.
|
||||
*
|
||||
* This tasks will be moved to actual execution when pool is
|
||||
* activated by work_and_wait().
|
||||
*/
|
||||
if (pool->is_suspended) {
|
||||
BLI_addhead(&pool->suspended_queue, task);
|
||||
atomic_fetch_and_add_z(&pool->num_suspended, 1);
|
||||
return;
|
||||
}
|
||||
/* Populate to any local queue first, this is cheapest push ever. */
|
||||
if (task_can_use_local_queues(pool, thread_id)) {
|
||||
ASSERT_THREAD_ID(pool->scheduler, thread_id);
|
||||
TaskThreadLocalStorage *tls = get_task_tls(pool, thread_id);
|
||||
/* Try to push to a local execution queue.
|
||||
* These tasks will be picked up next.
|
||||
*/
|
||||
if (tls->num_local_queue < LOCAL_QUEUE_SIZE) {
|
||||
tls->local_queue[tls->num_local_queue] = task;
|
||||
tls->num_local_queue++;
|
||||
return;
|
||||
}
|
||||
/* If we are in the delayed tasks push mode, we push tasks to a
|
||||
* temporary local queue first without any locks, and then move them
|
||||
* to global execution queue with a single lock.
|
||||
*/
|
||||
if (tls->do_delayed_push && tls->num_delayed_queue < DELAYED_QUEUE_SIZE) {
|
||||
tls->delayed_queue[tls->num_delayed_queue] = task;
|
||||
tls->num_delayed_queue++;
|
||||
return;
|
||||
}
|
||||
}
|
||||
/* Do push to a global execution pool, slowest possible method,
|
||||
* causes quite reasonable amount of threading overhead.
|
||||
*/
|
||||
task_scheduler_push(pool->scheduler, task, priority);
|
||||
}
|
||||
|
||||
void BLI_task_pool_push_ex(TaskPool *pool,
|
||||
TaskRunFunction run,
|
||||
void *taskdata,
|
||||
bool free_taskdata,
|
||||
TaskFreeFunction freedata,
|
||||
TaskPriority priority)
|
||||
{
|
||||
task_pool_push(pool, run, taskdata, free_taskdata, freedata, priority, -1);
|
||||
}
|
||||
|
||||
void BLI_task_pool_push(
|
||||
TaskPool *pool, TaskRunFunction run, void *taskdata, bool free_taskdata, TaskPriority priority)
|
||||
{
|
||||
BLI_task_pool_push_ex(pool, run, taskdata, free_taskdata, NULL, priority);
|
||||
}
|
||||
|
||||
void BLI_task_pool_push_from_thread(TaskPool *pool,
|
||||
TaskRunFunction run,
|
||||
void *taskdata,
|
||||
bool free_taskdata,
|
||||
TaskPriority priority,
|
||||
int thread_id)
|
||||
{
|
||||
task_pool_push(pool, run, taskdata, free_taskdata, NULL, priority, thread_id);
|
||||
}
|
||||
|
||||
void BLI_task_pool_work_and_wait(TaskPool *pool)
|
||||
{
|
||||
TaskThreadLocalStorage *tls = get_task_tls(pool, pool->thread_id);
|
||||
TaskScheduler *scheduler = pool->scheduler;
|
||||
|
||||
if (atomic_fetch_and_and_uint8((uint8_t *)&pool->is_suspended, 0)) {
|
||||
if (pool->num_suspended) {
|
||||
task_pool_num_increase(pool, pool->num_suspended);
|
||||
BLI_mutex_lock(&scheduler->queue_mutex);
|
||||
|
||||
BLI_movelisttolist(&scheduler->queue, &pool->suspended_queue);
|
||||
|
||||
BLI_condition_notify_all(&scheduler->queue_cond);
|
||||
BLI_mutex_unlock(&scheduler->queue_mutex);
|
||||
|
||||
pool->num_suspended = 0;
|
||||
}
|
||||
}
|
||||
|
||||
pool->do_work = true;
|
||||
|
||||
ASSERT_THREAD_ID(pool->scheduler, pool->thread_id);
|
||||
|
||||
handle_local_queue(tls, pool->thread_id);
|
||||
|
||||
BLI_mutex_lock(&pool->num_mutex);
|
||||
|
||||
while (pool->num != 0) {
|
||||
Task *task, *work_task = NULL;
|
||||
bool found_task = false;
|
||||
|
||||
BLI_mutex_unlock(&pool->num_mutex);
|
||||
|
||||
BLI_mutex_lock(&scheduler->queue_mutex);
|
||||
|
||||
/* find task from this pool. if we get a task from another pool,
|
||||
* we can get into deadlock */
|
||||
|
||||
for (task = scheduler->queue.first; task; task = task->next) {
|
||||
if (task->pool == pool) {
|
||||
work_task = task;
|
||||
found_task = true;
|
||||
BLI_remlink(&scheduler->queue, task);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
BLI_mutex_unlock(&scheduler->queue_mutex);
|
||||
|
||||
/* if found task, do it, otherwise wait until other tasks are done */
|
||||
if (found_task) {
|
||||
/* run task */
|
||||
BLI_assert(!tls->do_delayed_push);
|
||||
work_task->run(pool, work_task->taskdata, pool->thread_id);
|
||||
BLI_assert(!tls->do_delayed_push);
|
||||
|
||||
/* delete task */
|
||||
task_free(pool, task, pool->thread_id);
|
||||
|
||||
/* Handle all tasks from local queue. */
|
||||
handle_local_queue(tls, pool->thread_id);
|
||||
|
||||
/* notify pool task was done */
|
||||
task_pool_num_decrease(pool, 1);
|
||||
}
|
||||
|
||||
BLI_mutex_lock(&pool->num_mutex);
|
||||
if (pool->num == 0) {
|
||||
break;
|
||||
}
|
||||
|
||||
if (!found_task) {
|
||||
BLI_condition_wait(&pool->num_cond, &pool->num_mutex);
|
||||
}
|
||||
}
|
||||
|
||||
BLI_mutex_unlock(&pool->num_mutex);
|
||||
|
||||
BLI_assert(tls->num_local_queue == 0);
|
||||
}
|
||||
|
||||
void BLI_task_pool_work_wait_and_reset(TaskPool *pool)
|
||||
{
|
||||
BLI_task_pool_work_and_wait(pool);
|
||||
|
||||
pool->do_work = false;
|
||||
pool->is_suspended = pool->start_suspended;
|
||||
}
|
||||
|
||||
void BLI_task_pool_cancel(TaskPool *pool)
|
||||
{
|
||||
pool->do_cancel = true;
|
||||
|
||||
task_scheduler_clear(pool->scheduler, pool);
|
||||
|
||||
/* wait until all entries are cleared */
|
||||
BLI_mutex_lock(&pool->num_mutex);
|
||||
while (pool->num) {
|
||||
BLI_condition_wait(&pool->num_cond, &pool->num_mutex);
|
||||
}
|
||||
BLI_mutex_unlock(&pool->num_mutex);
|
||||
|
||||
pool->do_cancel = false;
|
||||
}
|
||||
|
||||
bool BLI_task_pool_canceled(TaskPool *pool)
|
||||
{
|
||||
return pool->do_cancel;
|
||||
}
|
||||
|
||||
void *BLI_task_pool_userdata(TaskPool *pool)
|
||||
{
|
||||
return pool->userdata;
|
||||
}
|
||||
|
||||
ThreadMutex *BLI_task_pool_user_mutex(TaskPool *pool)
|
||||
{
|
||||
return &pool->user_mutex;
|
||||
}
|
||||
|
||||
void BLI_task_pool_delayed_push_begin(TaskPool *pool, int thread_id)
|
||||
{
|
||||
if (task_can_use_local_queues(pool, thread_id)) {
|
||||
ASSERT_THREAD_ID(pool->scheduler, thread_id);
|
||||
TaskThreadLocalStorage *tls = get_task_tls(pool, thread_id);
|
||||
tls->do_delayed_push = true;
|
||||
}
|
||||
}
|
||||
|
||||
void BLI_task_pool_delayed_push_end(TaskPool *pool, int thread_id)
|
||||
{
|
||||
if (task_can_use_local_queues(pool, thread_id)) {
|
||||
ASSERT_THREAD_ID(pool->scheduler, thread_id);
|
||||
TaskThreadLocalStorage *tls = get_task_tls(pool, thread_id);
|
||||
BLI_assert(tls->do_delayed_push);
|
||||
task_scheduler_push_all(pool->scheduler, pool, tls->delayed_queue, tls->num_delayed_queue);
|
||||
tls->do_delayed_push = false;
|
||||
tls->num_delayed_queue = 0;
|
||||
}
|
||||
}
|
||||
|
||||
/* Parallel range routines */
|
||||
|
||||
/**
|
||||
@@ -1331,8 +343,8 @@ void BLI_task_parallel_range(const int start,
|
||||
return;
|
||||
}
|
||||
|
||||
TaskPool *task_pool = range_pool.pool = BLI_task_pool_create_suspended(task_scheduler,
|
||||
&range_pool);
|
||||
TaskPool *task_pool = range_pool.pool = BLI_task_pool_create_suspended(
|
||||
task_scheduler, &range_pool, TASK_PRIORITY_HIGH);
|
||||
|
||||
range_pool.current_state = &state;
|
||||
|
||||
@@ -1341,18 +353,15 @@ void BLI_task_parallel_range(const int start,
|
||||
state.tls_data_size = tls_data_size;
|
||||
}
|
||||
|
||||
const int thread_id = BLI_task_pool_creator_thread_id(task_pool);
|
||||
for (i = 0; i < num_tasks; i++) {
|
||||
if (use_tls_data) {
|
||||
void *userdata_chunk_local = (char *)flatten_tls_storage + (tls_data_size * (size_t)i);
|
||||
memcpy(userdata_chunk_local, tls_data, tls_data_size);
|
||||
}
|
||||
/* Use this pool's pre-allocated tasks. */
|
||||
BLI_task_pool_push_from_thread(task_pool,
|
||||
parallel_range_func,
|
||||
POINTER_FROM_INT(i),
|
||||
false,
|
||||
TASK_PRIORITY_HIGH,
|
||||
task_pool->thread_id);
|
||||
BLI_task_pool_push_from_thread(
|
||||
task_pool, parallel_range_func, POINTER_FROM_INT(i), false, NULL, thread_id);
|
||||
}
|
||||
|
||||
BLI_task_pool_work_and_wait(task_pool);
|
||||
@@ -1497,18 +506,14 @@ void BLI_task_parallel_range_pool_work_and_wait(TaskParallelRangePool *range_poo
|
||||
}
|
||||
}
|
||||
|
||||
TaskPool *task_pool = range_pool->pool = BLI_task_pool_create_suspended(task_scheduler,
|
||||
range_pool);
|
||||
TaskPool *task_pool = range_pool->pool = BLI_task_pool_create_suspended(
|
||||
task_scheduler, range_pool, TASK_PRIORITY_HIGH);
|
||||
|
||||
range_pool->current_state = range_pool->parallel_range_states;
|
||||
|
||||
const int thread_id = BLI_task_pool_creator_thread_id(task_pool);
|
||||
for (int i = 0; i < num_tasks; i++) {
|
||||
BLI_task_pool_push_from_thread(task_pool,
|
||||
parallel_range_func,
|
||||
POINTER_FROM_INT(i),
|
||||
false,
|
||||
TASK_PRIORITY_HIGH,
|
||||
task_pool->thread_id);
|
||||
BLI_task_pool_push_from_thread(
|
||||
task_pool, parallel_range_func, POINTER_FROM_INT(i), false, NULL, thread_id);
|
||||
}
|
||||
|
||||
BLI_task_pool_work_and_wait(task_pool);
|
||||
@@ -1527,12 +532,8 @@ void BLI_task_parallel_range_pool_work_and_wait(TaskParallelRangePool *range_poo
|
||||
}
|
||||
|
||||
if (state->func_finalize != NULL) {
|
||||
BLI_task_pool_push_from_thread(task_pool,
|
||||
parallel_range_func_finalize,
|
||||
state,
|
||||
false,
|
||||
TASK_PRIORITY_HIGH,
|
||||
task_pool->thread_id);
|
||||
BLI_task_pool_push_from_thread(
|
||||
task_pool, parallel_range_func_finalize, state, false, NULL, thread_id);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1719,24 +720,21 @@ static void task_parallel_iterator_do(const TaskParallelSettings *settings,
|
||||
void *userdata_chunk_array = NULL;
|
||||
const bool use_userdata_chunk = (userdata_chunk_size != 0) && (userdata_chunk != NULL);
|
||||
|
||||
TaskPool *task_pool = BLI_task_pool_create_suspended(task_scheduler, state);
|
||||
TaskPool *task_pool = BLI_task_pool_create_suspended(task_scheduler, state, TASK_PRIORITY_HIGH);
|
||||
|
||||
if (use_userdata_chunk) {
|
||||
userdata_chunk_array = MALLOCA(userdata_chunk_size * num_tasks);
|
||||
}
|
||||
|
||||
const int thread_id = BLI_task_pool_creator_thread_id(task_pool);
|
||||
for (size_t i = 0; i < num_tasks; i++) {
|
||||
if (use_userdata_chunk) {
|
||||
userdata_chunk_local = (char *)userdata_chunk_array + (userdata_chunk_size * i);
|
||||
memcpy(userdata_chunk_local, userdata_chunk, userdata_chunk_size);
|
||||
}
|
||||
/* Use this pool's pre-allocated tasks. */
|
||||
BLI_task_pool_push_from_thread(task_pool,
|
||||
parallel_iterator_func,
|
||||
userdata_chunk_local,
|
||||
false,
|
||||
TASK_PRIORITY_HIGH,
|
||||
task_pool->thread_id);
|
||||
BLI_task_pool_push_from_thread(
|
||||
task_pool, parallel_iterator_func, userdata_chunk_local, false, NULL, thread_id);
|
||||
}
|
||||
|
||||
BLI_task_pool_work_and_wait(task_pool);
|
||||
@@ -1898,7 +896,7 @@ void BLI_task_parallel_mempool(BLI_mempool *mempool,
|
||||
}
|
||||
|
||||
task_scheduler = BLI_task_scheduler_get();
|
||||
task_pool = BLI_task_pool_create_suspended(task_scheduler, &state);
|
||||
task_pool = BLI_task_pool_create_suspended(task_scheduler, &state, TASK_PRIORITY_HIGH);
|
||||
num_threads = BLI_task_scheduler_num_threads(task_scheduler);
|
||||
|
||||
/* The idea here is to prevent creating task for each of the loop iterations
|
||||
@@ -1913,14 +911,11 @@ void BLI_task_parallel_mempool(BLI_mempool *mempool,
|
||||
BLI_mempool_iter *mempool_iterators = BLI_mempool_iter_threadsafe_create(mempool,
|
||||
(size_t)num_tasks);
|
||||
|
||||
const int thread_id = BLI_task_pool_creator_thread_id(task_pool);
|
||||
for (i = 0; i < num_tasks; i++) {
|
||||
/* Use this pool's pre-allocated tasks. */
|
||||
BLI_task_pool_push_from_thread(task_pool,
|
||||
parallel_mempool_func,
|
||||
&mempool_iterators[i],
|
||||
false,
|
||||
TASK_PRIORITY_HIGH,
|
||||
task_pool->thread_id);
|
||||
BLI_task_pool_push_from_thread(
|
||||
task_pool, parallel_mempool_func, &mempool_iterators[i], false, NULL, thread_id);
|
||||
}
|
||||
|
||||
BLI_task_pool_work_and_wait(task_pool);
|
||||
1029
source/blender/blenlib/intern/task_pool.cc
Normal file
1029
source/blender/blenlib/intern/task_pool.cc
Normal file
@@ -0,0 +1,1029 @@
|
||||
/*
|
||||
* This program is free software; you can redistribute it and/or
|
||||
* modify it under the terms of the GNU General Public License
|
||||
* as published by the Free Software Foundation; either version 2
|
||||
* of the License, or (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program; if not, write to the Free Software Foundation,
|
||||
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
||||
*/
|
||||
|
||||
/** \file
|
||||
* \ingroup bli
|
||||
*
|
||||
* A generic task system which can be used for any task based subsystem.
|
||||
*/
|
||||
|
||||
#include <stdlib.h>
|
||||
|
||||
#include "MEM_guardedalloc.h"
|
||||
|
||||
#include "DNA_listBase.h"
|
||||
|
||||
#include "BLI_listbase.h"
|
||||
#include "BLI_math.h"
|
||||
#include "BLI_mempool.h"
|
||||
#include "BLI_task.h"
|
||||
#include "BLI_threads.h"
|
||||
|
||||
#include "atomic_ops.h"
|
||||
|
||||
/* Define this to enable some detailed statistic print. */
|
||||
#undef DEBUG_STATS
|
||||
|
||||
/* Types */
|
||||
|
||||
/* Number of per-thread pre-allocated tasks.
|
||||
*
|
||||
* For more details see description of TaskMemPool.
|
||||
*/
|
||||
#define MEMPOOL_SIZE 256
|
||||
|
||||
/* Number of tasks which are pushed directly to local thread queue.
|
||||
*
|
||||
* This allows thread to fetch next task without locking the whole queue.
|
||||
*/
|
||||
#define LOCAL_QUEUE_SIZE 1
|
||||
|
||||
/* Number of tasks which are allowed to be scheduled in a delayed manner.
|
||||
*
|
||||
* This allows to use less locks per graph node children schedule. More details
|
||||
* could be found at TaskThreadLocalStorage::do_delayed_push.
|
||||
*/
|
||||
#define DELAYED_QUEUE_SIZE 4096
|
||||
|
||||
#ifndef NDEBUG
|
||||
# define ASSERT_THREAD_ID(scheduler, thread_id) \
|
||||
do { \
|
||||
if (!BLI_thread_is_main()) { \
|
||||
TaskThread *thread = (TaskThread *)pthread_getspecific(scheduler->tls_id_key); \
|
||||
if (thread == NULL) { \
|
||||
BLI_assert(thread_id == 0); \
|
||||
} \
|
||||
else { \
|
||||
BLI_assert(thread_id == thread->id); \
|
||||
} \
|
||||
} \
|
||||
else { \
|
||||
BLI_assert(thread_id == 0); \
|
||||
} \
|
||||
} while (false)
|
||||
#else
|
||||
# define ASSERT_THREAD_ID(scheduler, thread_id)
|
||||
#endif
|
||||
|
||||
typedef struct Task {
|
||||
struct Task *next, *prev;
|
||||
|
||||
TaskRunFunction run;
|
||||
void *taskdata;
|
||||
bool free_taskdata;
|
||||
TaskFreeFunction freedata;
|
||||
TaskPool *pool;
|
||||
} Task;
|
||||
|
||||
/* This is a per-thread storage of pre-allocated tasks.
|
||||
*
|
||||
* The idea behind this is simple: reduce amount of malloc() calls when pushing
|
||||
* new task to the pool. This is done by keeping memory from the tasks which
|
||||
* were finished already, so instead of freeing that memory we put it to the
|
||||
* pool for the later re-use.
|
||||
*
|
||||
* The tricky part here is to avoid any inter-thread synchronization, hence no
|
||||
* lock must exist around this pool. The pool will become an owner of the pointer
|
||||
* from freed task, and only corresponding thread will be able to use this pool
|
||||
* (no memory stealing and such).
|
||||
*
|
||||
* This leads to the following use of the pool:
|
||||
*
|
||||
* - task_push() should provide proper thread ID from which the task is being
|
||||
* pushed from.
|
||||
*
|
||||
* - Task allocation function which check corresponding memory pool and if there
|
||||
* is any memory in there it'll mark memory as re-used, remove it from the pool
|
||||
* and use that memory for the new task.
|
||||
*
|
||||
* At this moment task queue owns the memory.
|
||||
*
|
||||
* - When task is done and task_free() is called the memory will be put to the
|
||||
* pool which corresponds to a thread which handled the task.
|
||||
*/
|
||||
typedef struct TaskMemPool {
|
||||
/* Number of pre-allocated tasks in the pool. */
|
||||
int num_tasks;
|
||||
/* Pre-allocated task memory pointers. */
|
||||
Task *tasks[MEMPOOL_SIZE];
|
||||
} TaskMemPool;
|
||||
|
||||
#ifdef DEBUG_STATS
|
||||
typedef struct TaskMemPoolStats {
|
||||
/* Number of allocations. */
|
||||
int num_alloc;
|
||||
/* Number of avoided allocations (pointer was re-used from the pool). */
|
||||
int num_reuse;
|
||||
/* Number of discarded memory due to pool saturation, */
|
||||
int num_discard;
|
||||
} TaskMemPoolStats;
|
||||
#endif
|
||||
|
||||
typedef struct TaskThreadLocalStorage {
|
||||
/* Memory pool for faster task allocation.
|
||||
* The idea is to re-use memory of finished/discarded tasks by this thread.
|
||||
*/
|
||||
TaskMemPool task_mempool;
|
||||
|
||||
/* Local queue keeps thread alive by keeping small amount of tasks ready
|
||||
* to be picked up without causing global thread locks for synchronization.
|
||||
*/
|
||||
int num_local_queue;
|
||||
Task *local_queue[LOCAL_QUEUE_SIZE];
|
||||
|
||||
/* Thread can be marked for delayed tasks push. This is helpful when it's
|
||||
* know that lots of subsequent task pushed will happen from the same thread
|
||||
* without "interrupting" for task execution.
|
||||
*
|
||||
* We try to accumulate as much tasks as possible in a local queue without
|
||||
* any locks first, and then we push all of them into a scheduler's queue
|
||||
* from within a single mutex lock.
|
||||
*/
|
||||
bool do_delayed_push;
|
||||
int num_delayed_queue;
|
||||
Task *delayed_queue[DELAYED_QUEUE_SIZE];
|
||||
} TaskThreadLocalStorage;
|
||||
|
||||
struct TaskPool {
|
||||
TaskScheduler *scheduler;
|
||||
|
||||
volatile size_t num;
|
||||
ThreadMutex num_mutex;
|
||||
ThreadCondition num_cond;
|
||||
|
||||
void *userdata;
|
||||
ThreadMutex user_mutex;
|
||||
|
||||
volatile bool do_cancel;
|
||||
volatile bool do_work;
|
||||
|
||||
volatile bool is_suspended;
|
||||
bool start_suspended;
|
||||
ListBase suspended_queue;
|
||||
size_t num_suspended;
|
||||
|
||||
TaskPriority priority;
|
||||
|
||||
/* If set, this pool may never be work_and_wait'ed, which means TaskScheduler
|
||||
* has to use its special background fallback thread in case we are in
|
||||
* single-threaded situation.
|
||||
*/
|
||||
bool run_in_background;
|
||||
|
||||
/* This is a task scheduler's ID of a thread at which pool was constructed.
|
||||
* It will be used to access task TLS.
|
||||
*/
|
||||
int thread_id;
|
||||
|
||||
/* For the pools which are created from non-main thread which is not a
|
||||
* scheduler worker thread we can't re-use any of scheduler's threads TLS
|
||||
* and have to use our own one.
|
||||
*/
|
||||
bool use_local_tls;
|
||||
TaskThreadLocalStorage local_tls;
|
||||
#ifndef NDEBUG
|
||||
pthread_t creator_thread_id;
|
||||
#endif
|
||||
|
||||
#ifdef DEBUG_STATS
|
||||
TaskMemPoolStats *mempool_stats;
|
||||
#endif
|
||||
};
|
||||
|
||||
struct TaskScheduler {
|
||||
pthread_t *threads;
|
||||
struct TaskThread *task_threads;
|
||||
int num_threads;
|
||||
bool background_thread_only;
|
||||
|
||||
ListBase queue;
|
||||
ThreadMutex queue_mutex;
|
||||
ThreadCondition queue_cond;
|
||||
|
||||
ThreadMutex startup_mutex;
|
||||
ThreadCondition startup_cond;
|
||||
volatile int num_thread_started;
|
||||
|
||||
volatile bool do_exit;
|
||||
|
||||
/* NOTE: In pthread's TLS we store the whole TaskThread structure. */
|
||||
pthread_key_t tls_id_key;
|
||||
};
|
||||
|
||||
typedef struct TaskThread {
|
||||
TaskScheduler *scheduler;
|
||||
int id;
|
||||
TaskThreadLocalStorage tls;
|
||||
} TaskThread;
|
||||
|
||||
/* Helper */
|
||||
BLI_INLINE void task_data_free(Task *task, const int thread_id)
|
||||
{
|
||||
if (task->free_taskdata) {
|
||||
if (task->freedata) {
|
||||
task->freedata(task->pool, task->taskdata, thread_id);
|
||||
}
|
||||
else {
|
||||
MEM_freeN(task->taskdata);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
BLI_INLINE void initialize_task_tls(TaskThreadLocalStorage *tls)
|
||||
{
|
||||
memset(tls, 0, sizeof(TaskThreadLocalStorage));
|
||||
}
|
||||
|
||||
BLI_INLINE TaskThreadLocalStorage *get_task_tls(TaskPool *pool, const int thread_id)
|
||||
{
|
||||
TaskScheduler *scheduler = pool->scheduler;
|
||||
BLI_assert(thread_id >= 0);
|
||||
BLI_assert(thread_id <= scheduler->num_threads);
|
||||
if (pool->use_local_tls && thread_id == 0) {
|
||||
BLI_assert(pool->thread_id == 0);
|
||||
BLI_assert(!BLI_thread_is_main());
|
||||
BLI_assert(pthread_equal(pthread_self(), pool->creator_thread_id));
|
||||
return &pool->local_tls;
|
||||
}
|
||||
if (thread_id == 0) {
|
||||
BLI_assert(BLI_thread_is_main());
|
||||
return &scheduler->task_threads[pool->thread_id].tls;
|
||||
}
|
||||
return &scheduler->task_threads[thread_id].tls;
|
||||
}
|
||||
|
||||
BLI_INLINE void free_task_tls(TaskThreadLocalStorage *tls)
|
||||
{
|
||||
TaskMemPool *task_mempool = &tls->task_mempool;
|
||||
for (int i = 0; i < task_mempool->num_tasks; i++) {
|
||||
MEM_freeN(task_mempool->tasks[i]);
|
||||
}
|
||||
}
|
||||
|
||||
static Task *task_alloc(TaskPool *pool, const int thread_id)
|
||||
{
|
||||
BLI_assert(thread_id <= pool->scheduler->num_threads);
|
||||
if (thread_id != -1) {
|
||||
BLI_assert(thread_id >= 0);
|
||||
BLI_assert(thread_id <= pool->scheduler->num_threads);
|
||||
TaskThreadLocalStorage *tls = get_task_tls(pool, thread_id);
|
||||
TaskMemPool *task_mempool = &tls->task_mempool;
|
||||
/* Try to re-use task memory from a thread local storage. */
|
||||
if (task_mempool->num_tasks > 0) {
|
||||
--task_mempool->num_tasks;
|
||||
/* Success! We've just avoided task allocation. */
|
||||
#ifdef DEBUG_STATS
|
||||
pool->mempool_stats[thread_id].num_reuse++;
|
||||
#endif
|
||||
return task_mempool->tasks[task_mempool->num_tasks];
|
||||
}
|
||||
/* We are doomed to allocate new task data. */
|
||||
#ifdef DEBUG_STATS
|
||||
pool->mempool_stats[thread_id].num_alloc++;
|
||||
#endif
|
||||
}
|
||||
return (Task *)MEM_mallocN(sizeof(Task), "New task");
|
||||
}
|
||||
|
||||
static void task_free(TaskPool *pool, Task *task, const int thread_id)
|
||||
{
|
||||
task_data_free(task, thread_id);
|
||||
BLI_assert(thread_id >= 0);
|
||||
BLI_assert(thread_id <= pool->scheduler->num_threads);
|
||||
if (thread_id == 0) {
|
||||
BLI_assert(pool->use_local_tls || BLI_thread_is_main());
|
||||
}
|
||||
TaskThreadLocalStorage *tls = get_task_tls(pool, thread_id);
|
||||
TaskMemPool *task_mempool = &tls->task_mempool;
|
||||
if (task_mempool->num_tasks < MEMPOOL_SIZE - 1) {
|
||||
/* Successfully allowed the task to be re-used later. */
|
||||
task_mempool->tasks[task_mempool->num_tasks] = task;
|
||||
++task_mempool->num_tasks;
|
||||
}
|
||||
else {
|
||||
/* Local storage saturated, no other way than just discard
|
||||
* the memory.
|
||||
*
|
||||
* TODO(sergey): We can perhaps store such pointer in a global
|
||||
* scheduler pool, maybe it'll be faster than discarding and
|
||||
* allocating again.
|
||||
*/
|
||||
MEM_freeN(task);
|
||||
#ifdef DEBUG_STATS
|
||||
pool->mempool_stats[thread_id].num_discard++;
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
/* Task Scheduler */
|
||||
|
||||
static void task_pool_num_decrease(TaskPool *pool, size_t done)
|
||||
{
|
||||
BLI_mutex_lock(&pool->num_mutex);
|
||||
|
||||
BLI_assert(pool->num >= done);
|
||||
|
||||
pool->num -= done;
|
||||
|
||||
if (pool->num == 0) {
|
||||
BLI_condition_notify_all(&pool->num_cond);
|
||||
}
|
||||
|
||||
BLI_mutex_unlock(&pool->num_mutex);
|
||||
}
|
||||
|
||||
static void task_pool_num_increase(TaskPool *pool, size_t new_num)
|
||||
{
|
||||
BLI_mutex_lock(&pool->num_mutex);
|
||||
|
||||
pool->num += new_num;
|
||||
BLI_condition_notify_all(&pool->num_cond);
|
||||
|
||||
BLI_mutex_unlock(&pool->num_mutex);
|
||||
}
|
||||
|
||||
static bool task_scheduler_thread_wait_pop(TaskScheduler *scheduler, Task **task)
|
||||
{
|
||||
bool found_task = false;
|
||||
BLI_mutex_lock(&scheduler->queue_mutex);
|
||||
|
||||
while (!scheduler->queue.first && !scheduler->do_exit) {
|
||||
BLI_condition_wait(&scheduler->queue_cond, &scheduler->queue_mutex);
|
||||
}
|
||||
|
||||
do {
|
||||
Task *current_task;
|
||||
|
||||
/* Assuming we can only have a void queue in 'exit' case here seems logical
|
||||
* (we should only be here after our worker thread has been woken up from a
|
||||
* condition_wait(), which only happens after a new task was added to the queue),
|
||||
* but it is wrong.
|
||||
* Waiting on condition may wake up the thread even if condition is not signaled
|
||||
* (spurious wake-ups), and some race condition may also empty the queue **after**
|
||||
* condition has been signaled, but **before** awoken thread reaches this point...
|
||||
* See http://stackoverflow.com/questions/8594591
|
||||
*
|
||||
* So we only abort here if do_exit is set.
|
||||
*/
|
||||
if (scheduler->do_exit) {
|
||||
BLI_mutex_unlock(&scheduler->queue_mutex);
|
||||
return false;
|
||||
}
|
||||
|
||||
for (current_task = (Task *)scheduler->queue.first; current_task != NULL;
|
||||
current_task = current_task->next) {
|
||||
TaskPool *pool = current_task->pool;
|
||||
|
||||
if (scheduler->background_thread_only && !pool->run_in_background) {
|
||||
continue;
|
||||
}
|
||||
|
||||
*task = current_task;
|
||||
found_task = true;
|
||||
BLI_remlink(&scheduler->queue, *task);
|
||||
break;
|
||||
}
|
||||
if (!found_task) {
|
||||
BLI_condition_wait(&scheduler->queue_cond, &scheduler->queue_mutex);
|
||||
}
|
||||
} while (!found_task);
|
||||
|
||||
BLI_mutex_unlock(&scheduler->queue_mutex);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
BLI_INLINE void handle_local_queue(TaskThreadLocalStorage *tls, const int thread_id)
|
||||
{
|
||||
BLI_assert(!tls->do_delayed_push);
|
||||
while (tls->num_local_queue > 0) {
|
||||
/* We pop task from queue before handling it so handler of the task can
|
||||
* push next job to the local queue.
|
||||
*/
|
||||
tls->num_local_queue--;
|
||||
Task *local_task = tls->local_queue[tls->num_local_queue];
|
||||
/* TODO(sergey): Double-check work_and_wait() doesn't handle other's
|
||||
* pool tasks.
|
||||
*/
|
||||
TaskPool *local_pool = local_task->pool;
|
||||
local_task->run(local_pool, local_task->taskdata, thread_id);
|
||||
task_free(local_pool, local_task, thread_id);
|
||||
}
|
||||
BLI_assert(!tls->do_delayed_push);
|
||||
}
|
||||
|
||||
static void *task_scheduler_thread_run(void *thread_p)
|
||||
{
|
||||
TaskThread *thread = (TaskThread *)thread_p;
|
||||
TaskThreadLocalStorage *tls = &thread->tls;
|
||||
TaskScheduler *scheduler = thread->scheduler;
|
||||
int thread_id = thread->id;
|
||||
Task *task;
|
||||
|
||||
pthread_setspecific(scheduler->tls_id_key, thread);
|
||||
|
||||
/* signal the main thread when all threads have started */
|
||||
BLI_mutex_lock(&scheduler->startup_mutex);
|
||||
scheduler->num_thread_started++;
|
||||
if (scheduler->num_thread_started == scheduler->num_threads) {
|
||||
BLI_condition_notify_one(&scheduler->startup_cond);
|
||||
}
|
||||
BLI_mutex_unlock(&scheduler->startup_mutex);
|
||||
|
||||
/* keep popping off tasks */
|
||||
while (task_scheduler_thread_wait_pop(scheduler, &task)) {
|
||||
TaskPool *pool = task->pool;
|
||||
|
||||
/* run task */
|
||||
BLI_assert(!tls->do_delayed_push);
|
||||
task->run(pool, task->taskdata, thread_id);
|
||||
BLI_assert(!tls->do_delayed_push);
|
||||
|
||||
/* delete task */
|
||||
task_free(pool, task, thread_id);
|
||||
|
||||
/* Handle all tasks from local queue. */
|
||||
handle_local_queue(tls, thread_id);
|
||||
|
||||
/* notify pool task was done */
|
||||
task_pool_num_decrease(pool, 1);
|
||||
}
|
||||
|
||||
return NULL;
|
||||
}
|
||||
|
||||
TaskScheduler *BLI_task_scheduler_create(int num_threads)
|
||||
{
|
||||
TaskScheduler *scheduler = (TaskScheduler *)MEM_callocN(sizeof(TaskScheduler), "TaskScheduler");
|
||||
|
||||
/* multiple places can use this task scheduler, sharing the same
|
||||
* threads, so we keep track of the number of users. */
|
||||
scheduler->do_exit = false;
|
||||
|
||||
BLI_listbase_clear(&scheduler->queue);
|
||||
BLI_mutex_init(&scheduler->queue_mutex);
|
||||
BLI_condition_init(&scheduler->queue_cond);
|
||||
|
||||
BLI_mutex_init(&scheduler->startup_mutex);
|
||||
BLI_condition_init(&scheduler->startup_cond);
|
||||
scheduler->num_thread_started = 0;
|
||||
|
||||
if (num_threads == 0) {
|
||||
/* automatic number of threads will be main thread + num cores */
|
||||
num_threads = BLI_system_thread_count();
|
||||
}
|
||||
|
||||
/* main thread will also work, so we count it too */
|
||||
num_threads -= 1;
|
||||
|
||||
/* Add background-only thread if needed. */
|
||||
if (num_threads == 0) {
|
||||
scheduler->background_thread_only = true;
|
||||
num_threads = 1;
|
||||
}
|
||||
|
||||
scheduler->task_threads = (TaskThread *)MEM_mallocN(sizeof(TaskThread) * (num_threads + 1),
|
||||
"TaskScheduler task threads");
|
||||
|
||||
/* Initialize TLS for main thread. */
|
||||
initialize_task_tls(&scheduler->task_threads[0].tls);
|
||||
|
||||
pthread_key_create(&scheduler->tls_id_key, NULL);
|
||||
|
||||
/* launch threads that will be waiting for work */
|
||||
if (num_threads > 0) {
|
||||
int i;
|
||||
|
||||
scheduler->num_threads = num_threads;
|
||||
scheduler->threads = (pthread_t *)MEM_callocN(sizeof(pthread_t) * num_threads,
|
||||
"TaskScheduler threads");
|
||||
|
||||
for (i = 0; i < num_threads; i++) {
|
||||
TaskThread *thread = &scheduler->task_threads[i + 1];
|
||||
thread->scheduler = scheduler;
|
||||
thread->id = i + 1;
|
||||
initialize_task_tls(&thread->tls);
|
||||
|
||||
if (pthread_create(&scheduler->threads[i], NULL, task_scheduler_thread_run, thread) != 0) {
|
||||
fprintf(stderr, "TaskScheduler failed to launch thread %d/%d\n", i, num_threads);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* Wait for all worker threads to start before returning to caller to prevent the case where
|
||||
* threads are still starting and pthread_join is called, which causes a deadlock on pthreads4w.
|
||||
*/
|
||||
BLI_mutex_lock(&scheduler->startup_mutex);
|
||||
/* NOTE: Use loop here to avoid false-positive everything-is-ready caused by spontaneous thread
|
||||
* wake up. */
|
||||
while (scheduler->num_thread_started != num_threads) {
|
||||
BLI_condition_wait(&scheduler->startup_cond, &scheduler->startup_mutex);
|
||||
}
|
||||
BLI_mutex_unlock(&scheduler->startup_mutex);
|
||||
|
||||
return scheduler;
|
||||
}
|
||||
|
||||
void BLI_task_scheduler_free(TaskScheduler *scheduler)
|
||||
{
|
||||
Task *task;
|
||||
|
||||
/* stop all waiting threads */
|
||||
BLI_mutex_lock(&scheduler->queue_mutex);
|
||||
scheduler->do_exit = true;
|
||||
BLI_condition_notify_all(&scheduler->queue_cond);
|
||||
BLI_mutex_unlock(&scheduler->queue_mutex);
|
||||
|
||||
pthread_key_delete(scheduler->tls_id_key);
|
||||
|
||||
/* delete threads */
|
||||
if (scheduler->threads) {
|
||||
int i;
|
||||
|
||||
for (i = 0; i < scheduler->num_threads; i++) {
|
||||
if (pthread_join(scheduler->threads[i], NULL) != 0) {
|
||||
fprintf(stderr, "TaskScheduler failed to join thread %d/%d\n", i, scheduler->num_threads);
|
||||
}
|
||||
}
|
||||
|
||||
MEM_freeN(scheduler->threads);
|
||||
}
|
||||
|
||||
/* Delete task thread data */
|
||||
if (scheduler->task_threads) {
|
||||
for (int i = 0; i < scheduler->num_threads + 1; i++) {
|
||||
TaskThreadLocalStorage *tls = &scheduler->task_threads[i].tls;
|
||||
free_task_tls(tls);
|
||||
}
|
||||
|
||||
MEM_freeN(scheduler->task_threads);
|
||||
}
|
||||
|
||||
/* delete leftover tasks */
|
||||
for (task = (Task *)scheduler->queue.first; task; task = task->next) {
|
||||
task_data_free(task, 0);
|
||||
}
|
||||
BLI_freelistN(&scheduler->queue);
|
||||
|
||||
/* delete mutex/condition */
|
||||
BLI_mutex_end(&scheduler->queue_mutex);
|
||||
BLI_condition_end(&scheduler->queue_cond);
|
||||
BLI_mutex_end(&scheduler->startup_mutex);
|
||||
BLI_condition_end(&scheduler->startup_cond);
|
||||
|
||||
MEM_freeN(scheduler);
|
||||
}
|
||||
|
||||
int BLI_task_scheduler_num_threads(TaskScheduler *scheduler)
|
||||
{
|
||||
return scheduler->num_threads + 1;
|
||||
}
|
||||
|
||||
static void task_scheduler_push(TaskScheduler *scheduler, Task *task, TaskPriority priority)
|
||||
{
|
||||
task_pool_num_increase(task->pool, 1);
|
||||
|
||||
/* add task to queue */
|
||||
BLI_mutex_lock(&scheduler->queue_mutex);
|
||||
|
||||
if (priority == TASK_PRIORITY_HIGH) {
|
||||
BLI_addhead(&scheduler->queue, task);
|
||||
}
|
||||
else {
|
||||
BLI_addtail(&scheduler->queue, task);
|
||||
}
|
||||
|
||||
BLI_condition_notify_one(&scheduler->queue_cond);
|
||||
BLI_mutex_unlock(&scheduler->queue_mutex);
|
||||
}
|
||||
|
||||
static void task_scheduler_push_all(TaskScheduler *scheduler,
|
||||
TaskPool *pool,
|
||||
Task **tasks,
|
||||
int num_tasks)
|
||||
{
|
||||
if (num_tasks == 0) {
|
||||
return;
|
||||
}
|
||||
|
||||
task_pool_num_increase(pool, num_tasks);
|
||||
|
||||
BLI_mutex_lock(&scheduler->queue_mutex);
|
||||
|
||||
for (int i = 0; i < num_tasks; i++) {
|
||||
BLI_addhead(&scheduler->queue, tasks[i]);
|
||||
}
|
||||
|
||||
BLI_condition_notify_all(&scheduler->queue_cond);
|
||||
BLI_mutex_unlock(&scheduler->queue_mutex);
|
||||
}
|
||||
|
||||
static void task_scheduler_clear(TaskScheduler *scheduler, TaskPool *pool)
|
||||
{
|
||||
Task *task, *nexttask;
|
||||
size_t done = 0;
|
||||
|
||||
BLI_mutex_lock(&scheduler->queue_mutex);
|
||||
|
||||
/* free all tasks from this pool from the queue */
|
||||
for (task = (Task *)scheduler->queue.first; task; task = nexttask) {
|
||||
nexttask = task->next;
|
||||
|
||||
if (task->pool == pool) {
|
||||
task_data_free(task, pool->thread_id);
|
||||
BLI_freelinkN(&scheduler->queue, task);
|
||||
|
||||
done++;
|
||||
}
|
||||
}
|
||||
|
||||
BLI_mutex_unlock(&scheduler->queue_mutex);
|
||||
|
||||
/* notify done */
|
||||
task_pool_num_decrease(pool, done);
|
||||
}
|
||||
|
||||
/* Task Pool */
|
||||
|
||||
static TaskPool *task_pool_create_ex(TaskScheduler *scheduler,
|
||||
void *userdata,
|
||||
const bool is_background,
|
||||
const bool is_suspended,
|
||||
TaskPriority priority)
|
||||
{
|
||||
TaskPool *pool = (TaskPool *)MEM_mallocN(sizeof(TaskPool), "TaskPool");
|
||||
|
||||
#ifndef NDEBUG
|
||||
/* Assert we do not try to create a background pool from some parent task -
|
||||
* those only work OK from main thread. */
|
||||
if (is_background) {
|
||||
const pthread_t thread_id = pthread_self();
|
||||
int i = scheduler->num_threads;
|
||||
|
||||
while (i--) {
|
||||
BLI_assert(!pthread_equal(scheduler->threads[i], thread_id));
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
pool->scheduler = scheduler;
|
||||
pool->num = 0;
|
||||
pool->do_cancel = false;
|
||||
pool->do_work = false;
|
||||
pool->is_suspended = is_suspended;
|
||||
pool->start_suspended = is_suspended;
|
||||
pool->num_suspended = 0;
|
||||
pool->suspended_queue.first = pool->suspended_queue.last = NULL;
|
||||
pool->priority = priority;
|
||||
pool->run_in_background = is_background;
|
||||
pool->use_local_tls = false;
|
||||
|
||||
BLI_mutex_init(&pool->num_mutex);
|
||||
BLI_condition_init(&pool->num_cond);
|
||||
|
||||
pool->userdata = userdata;
|
||||
BLI_mutex_init(&pool->user_mutex);
|
||||
|
||||
if (BLI_thread_is_main()) {
|
||||
pool->thread_id = 0;
|
||||
}
|
||||
else {
|
||||
TaskThread *thread = (TaskThread *)pthread_getspecific(scheduler->tls_id_key);
|
||||
if (thread == NULL) {
|
||||
/* NOTE: Task pool is created from non-main thread which is not
|
||||
* managed by the task scheduler. We identify ourselves as thread ID
|
||||
* 0 but we do not use scheduler's TLS storage and use our own
|
||||
* instead to avoid any possible threading conflicts.
|
||||
*/
|
||||
pool->thread_id = 0;
|
||||
pool->use_local_tls = true;
|
||||
#ifndef NDEBUG
|
||||
pool->creator_thread_id = pthread_self();
|
||||
#endif
|
||||
initialize_task_tls(&pool->local_tls);
|
||||
}
|
||||
else {
|
||||
pool->thread_id = thread->id;
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef DEBUG_STATS
|
||||
pool->mempool_stats = (TaskMemPoolStats *)MEM_callocN(
|
||||
sizeof(*pool->mempool_stats) * (scheduler->num_threads + 1), "per-taskpool mempool stats");
|
||||
#endif
|
||||
|
||||
/* Ensure malloc will go fine from threads,
|
||||
*
|
||||
* This is needed because we could be in main thread here
|
||||
* and malloc could be non-thread safe at this point because
|
||||
* no other jobs are running.
|
||||
*/
|
||||
BLI_threaded_malloc_begin();
|
||||
|
||||
return pool;
|
||||
}
|
||||
|
||||
/**
|
||||
* Create a normal task pool. Tasks will be executed as soon as they are added.
|
||||
*/
|
||||
TaskPool *BLI_task_pool_create(TaskScheduler *scheduler, void *userdata, TaskPriority priority)
|
||||
{
|
||||
return task_pool_create_ex(scheduler, userdata, false, false, priority);
|
||||
}
|
||||
|
||||
/**
|
||||
* Create a background task pool.
|
||||
* In multi-threaded context, there is no differences with #BLI_task_pool_create(),
|
||||
* but in single-threaded case it is ensured to have at least one worker thread to run on
|
||||
* (i.e. you don't have to call #BLI_task_pool_work_and_wait
|
||||
* on it to be sure it will be processed).
|
||||
*
|
||||
* \note Background pools are non-recursive
|
||||
* (that is, you should not create other background pools in tasks assigned to a background pool,
|
||||
* they could end never being executed, since the 'fallback' background thread is already
|
||||
* busy with parent task in single-threaded context).
|
||||
*/
|
||||
TaskPool *BLI_task_pool_create_background(TaskScheduler *scheduler,
|
||||
void *userdata,
|
||||
TaskPriority priority)
|
||||
{
|
||||
return task_pool_create_ex(scheduler, userdata, true, false, priority);
|
||||
}
|
||||
|
||||
/**
|
||||
* Similar to BLI_task_pool_create() but does not schedule any tasks for execution
|
||||
* for until BLI_task_pool_work_and_wait() is called. This helps reducing threading
|
||||
* overhead when pushing huge amount of small initial tasks from the main thread.
|
||||
*/
|
||||
TaskPool *BLI_task_pool_create_suspended(TaskScheduler *scheduler,
|
||||
void *userdata,
|
||||
TaskPriority priority)
|
||||
{
|
||||
return task_pool_create_ex(scheduler, userdata, false, true, priority);
|
||||
}
|
||||
|
||||
void BLI_task_pool_free(TaskPool *pool)
|
||||
{
|
||||
BLI_task_pool_cancel(pool);
|
||||
|
||||
BLI_mutex_end(&pool->num_mutex);
|
||||
BLI_condition_end(&pool->num_cond);
|
||||
|
||||
BLI_mutex_end(&pool->user_mutex);
|
||||
|
||||
#ifdef DEBUG_STATS
|
||||
printf("Thread ID Allocated Reused Discarded\n");
|
||||
for (int i = 0; i < pool->scheduler->num_threads + 1; i++) {
|
||||
printf("%02d %05d %05d %05d\n",
|
||||
i,
|
||||
pool->mempool_stats[i].num_alloc,
|
||||
pool->mempool_stats[i].num_reuse,
|
||||
pool->mempool_stats[i].num_discard);
|
||||
}
|
||||
MEM_freeN(pool->mempool_stats);
|
||||
#endif
|
||||
|
||||
if (pool->use_local_tls) {
|
||||
free_task_tls(&pool->local_tls);
|
||||
}
|
||||
|
||||
MEM_freeN(pool);
|
||||
|
||||
BLI_threaded_malloc_end();
|
||||
}
|
||||
|
||||
BLI_INLINE bool task_can_use_local_queues(TaskPool *pool, int thread_id)
|
||||
{
|
||||
return (thread_id != -1 && (thread_id != pool->thread_id || pool->do_work));
|
||||
}
|
||||
|
||||
static void task_pool_push(TaskPool *pool,
|
||||
TaskRunFunction run,
|
||||
void *taskdata,
|
||||
bool free_taskdata,
|
||||
TaskFreeFunction freedata,
|
||||
int thread_id)
|
||||
{
|
||||
/* Allocate task and fill it's properties. */
|
||||
Task *task = task_alloc(pool, thread_id);
|
||||
task->run = run;
|
||||
task->taskdata = taskdata;
|
||||
task->free_taskdata = free_taskdata;
|
||||
task->freedata = freedata;
|
||||
task->pool = pool;
|
||||
/* For suspended pools we put everything yo a global queue first
|
||||
* and exit as soon as possible.
|
||||
*
|
||||
* This tasks will be moved to actual execution when pool is
|
||||
* activated by work_and_wait().
|
||||
*/
|
||||
if (pool->is_suspended) {
|
||||
BLI_addhead(&pool->suspended_queue, task);
|
||||
atomic_fetch_and_add_z(&pool->num_suspended, 1);
|
||||
return;
|
||||
}
|
||||
/* Populate to any local queue first, this is cheapest push ever. */
|
||||
if (task_can_use_local_queues(pool, thread_id)) {
|
||||
ASSERT_THREAD_ID(pool->scheduler, thread_id);
|
||||
TaskThreadLocalStorage *tls = get_task_tls(pool, thread_id);
|
||||
/* Try to push to a local execution queue.
|
||||
* These tasks will be picked up next.
|
||||
*/
|
||||
if (tls->num_local_queue < LOCAL_QUEUE_SIZE) {
|
||||
tls->local_queue[tls->num_local_queue] = task;
|
||||
tls->num_local_queue++;
|
||||
return;
|
||||
}
|
||||
/* If we are in the delayed tasks push mode, we push tasks to a
|
||||
* temporary local queue first without any locks, and then move them
|
||||
* to global execution queue with a single lock.
|
||||
*/
|
||||
if (tls->do_delayed_push && tls->num_delayed_queue < DELAYED_QUEUE_SIZE) {
|
||||
tls->delayed_queue[tls->num_delayed_queue] = task;
|
||||
tls->num_delayed_queue++;
|
||||
return;
|
||||
}
|
||||
}
|
||||
/* Do push to a global execution pool, slowest possible method,
|
||||
* causes quite reasonable amount of threading overhead.
|
||||
*/
|
||||
task_scheduler_push(pool->scheduler, task, pool->priority);
|
||||
}
|
||||
|
||||
void BLI_task_pool_push(TaskPool *pool,
|
||||
TaskRunFunction run,
|
||||
void *taskdata,
|
||||
bool free_taskdata,
|
||||
TaskFreeFunction freedata)
|
||||
{
|
||||
task_pool_push(pool, run, taskdata, free_taskdata, freedata, -1);
|
||||
}
|
||||
|
||||
void BLI_task_pool_push_from_thread(TaskPool *pool,
|
||||
TaskRunFunction run,
|
||||
void *taskdata,
|
||||
bool free_taskdata,
|
||||
TaskFreeFunction freedata,
|
||||
int thread_id)
|
||||
{
|
||||
task_pool_push(pool, run, taskdata, free_taskdata, freedata, thread_id);
|
||||
}
|
||||
|
||||
void BLI_task_pool_work_and_wait(TaskPool *pool)
|
||||
{
|
||||
TaskThreadLocalStorage *tls = get_task_tls(pool, pool->thread_id);
|
||||
TaskScheduler *scheduler = pool->scheduler;
|
||||
|
||||
if (atomic_fetch_and_and_uint8((uint8_t *)&pool->is_suspended, 0)) {
|
||||
if (pool->num_suspended) {
|
||||
task_pool_num_increase(pool, pool->num_suspended);
|
||||
BLI_mutex_lock(&scheduler->queue_mutex);
|
||||
|
||||
BLI_movelisttolist(&scheduler->queue, &pool->suspended_queue);
|
||||
|
||||
BLI_condition_notify_all(&scheduler->queue_cond);
|
||||
BLI_mutex_unlock(&scheduler->queue_mutex);
|
||||
|
||||
pool->num_suspended = 0;
|
||||
}
|
||||
}
|
||||
|
||||
pool->do_work = true;
|
||||
|
||||
ASSERT_THREAD_ID(pool->scheduler, pool->thread_id);
|
||||
|
||||
handle_local_queue(tls, pool->thread_id);
|
||||
|
||||
BLI_mutex_lock(&pool->num_mutex);
|
||||
|
||||
while (pool->num != 0) {
|
||||
Task *task, *work_task = NULL;
|
||||
bool found_task = false;
|
||||
|
||||
BLI_mutex_unlock(&pool->num_mutex);
|
||||
|
||||
BLI_mutex_lock(&scheduler->queue_mutex);
|
||||
|
||||
/* find task from this pool. if we get a task from another pool,
|
||||
* we can get into deadlock */
|
||||
|
||||
for (task = (Task *)scheduler->queue.first; task; task = task->next) {
|
||||
if (task->pool == pool) {
|
||||
work_task = task;
|
||||
found_task = true;
|
||||
BLI_remlink(&scheduler->queue, task);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
BLI_mutex_unlock(&scheduler->queue_mutex);
|
||||
|
||||
/* if found task, do it, otherwise wait until other tasks are done */
|
||||
if (found_task) {
|
||||
/* run task */
|
||||
BLI_assert(!tls->do_delayed_push);
|
||||
work_task->run(pool, work_task->taskdata, pool->thread_id);
|
||||
BLI_assert(!tls->do_delayed_push);
|
||||
|
||||
/* delete task */
|
||||
task_free(pool, task, pool->thread_id);
|
||||
|
||||
/* Handle all tasks from local queue. */
|
||||
handle_local_queue(tls, pool->thread_id);
|
||||
|
||||
/* notify pool task was done */
|
||||
task_pool_num_decrease(pool, 1);
|
||||
}
|
||||
|
||||
BLI_mutex_lock(&pool->num_mutex);
|
||||
if (pool->num == 0) {
|
||||
break;
|
||||
}
|
||||
|
||||
if (!found_task) {
|
||||
BLI_condition_wait(&pool->num_cond, &pool->num_mutex);
|
||||
}
|
||||
}
|
||||
|
||||
BLI_mutex_unlock(&pool->num_mutex);
|
||||
|
||||
BLI_assert(tls->num_local_queue == 0);
|
||||
}
|
||||
|
||||
void BLI_task_pool_work_wait_and_reset(TaskPool *pool)
|
||||
{
|
||||
BLI_task_pool_work_and_wait(pool);
|
||||
|
||||
pool->do_work = false;
|
||||
pool->is_suspended = pool->start_suspended;
|
||||
}
|
||||
|
||||
void BLI_task_pool_cancel(TaskPool *pool)
|
||||
{
|
||||
pool->do_cancel = true;
|
||||
|
||||
task_scheduler_clear(pool->scheduler, pool);
|
||||
|
||||
/* wait until all entries are cleared */
|
||||
BLI_mutex_lock(&pool->num_mutex);
|
||||
while (pool->num) {
|
||||
BLI_condition_wait(&pool->num_cond, &pool->num_mutex);
|
||||
}
|
||||
BLI_mutex_unlock(&pool->num_mutex);
|
||||
|
||||
pool->do_cancel = false;
|
||||
}
|
||||
|
||||
bool BLI_task_pool_canceled(TaskPool *pool)
|
||||
{
|
||||
return pool->do_cancel;
|
||||
}
|
||||
|
||||
void *BLI_task_pool_userdata(TaskPool *pool)
|
||||
{
|
||||
return pool->userdata;
|
||||
}
|
||||
|
||||
ThreadMutex *BLI_task_pool_user_mutex(TaskPool *pool)
|
||||
{
|
||||
return &pool->user_mutex;
|
||||
}
|
||||
|
||||
int BLI_task_pool_creator_thread_id(TaskPool *pool)
|
||||
{
|
||||
return pool->thread_id;
|
||||
}
|
||||
|
||||
void BLI_task_pool_delayed_push_begin(TaskPool *pool, int thread_id)
|
||||
{
|
||||
if (task_can_use_local_queues(pool, thread_id)) {
|
||||
ASSERT_THREAD_ID(pool->scheduler, thread_id);
|
||||
TaskThreadLocalStorage *tls = get_task_tls(pool, thread_id);
|
||||
tls->do_delayed_push = true;
|
||||
}
|
||||
}
|
||||
|
||||
void BLI_task_pool_delayed_push_end(TaskPool *pool, int thread_id)
|
||||
{
|
||||
if (task_can_use_local_queues(pool, thread_id)) {
|
||||
ASSERT_THREAD_ID(pool->scheduler, thread_id);
|
||||
TaskThreadLocalStorage *tls = get_task_tls(pool, thread_id);
|
||||
BLI_assert(tls->do_delayed_push);
|
||||
task_scheduler_push_all(pool->scheduler, pool, tls->delayed_queue, tls->num_delayed_queue);
|
||||
tls->do_delayed_push = false;
|
||||
tls->num_delayed_queue = 0;
|
||||
}
|
||||
}
|
||||
@@ -72,8 +72,7 @@ void schedule_children(DepsgraphEvalState *state,
|
||||
|
||||
void schedule_node_to_pool(OperationNode *node, const int thread_id, TaskPool *pool)
|
||||
{
|
||||
BLI_task_pool_push_from_thread(
|
||||
pool, deg_task_run_func, node, false, TASK_PRIORITY_HIGH, thread_id);
|
||||
BLI_task_pool_push_from_thread(pool, deg_task_run_func, node, false, NULL, thread_id);
|
||||
}
|
||||
|
||||
/* Denotes which part of dependency graph is being evaluated. */
|
||||
@@ -389,7 +388,7 @@ void deg_evaluate_on_refresh(Depsgraph *graph)
|
||||
task_scheduler = BLI_task_scheduler_get();
|
||||
need_free_scheduler = false;
|
||||
}
|
||||
TaskPool *task_pool = BLI_task_pool_create_suspended(task_scheduler, &state);
|
||||
TaskPool *task_pool = BLI_task_pool_create_suspended(task_scheduler, &state, TASK_PRIORITY_HIGH);
|
||||
/* Prepare all nodes for evaluation. */
|
||||
initialize_execution(&state, graph);
|
||||
|
||||
|
||||
@@ -4524,7 +4524,7 @@ static void extract_range_task_create(
|
||||
taskdata->iter_type = type;
|
||||
taskdata->start = start;
|
||||
taskdata->end = start + length;
|
||||
BLI_task_pool_push(task_pool, extract_run, taskdata, true, TASK_PRIORITY_HIGH);
|
||||
BLI_task_pool_push(task_pool, extract_run, taskdata, true, NULL);
|
||||
}
|
||||
|
||||
static void extract_task_create(TaskPool *task_pool,
|
||||
@@ -4583,7 +4583,7 @@ static void extract_task_create(TaskPool *task_pool,
|
||||
else if (use_thread) {
|
||||
/* One task for the whole VBO. */
|
||||
(*task_counter)++;
|
||||
BLI_task_pool_push(task_pool, extract_run, taskdata, true, TASK_PRIORITY_HIGH);
|
||||
BLI_task_pool_push(task_pool, extract_run, taskdata, true, NULL);
|
||||
}
|
||||
else {
|
||||
/* Single threaded extraction. */
|
||||
@@ -4682,7 +4682,7 @@ void mesh_buffer_cache_create_requested(MeshBatchCache *cache,
|
||||
TaskPool *task_pool;
|
||||
|
||||
task_scheduler = BLI_task_scheduler_get();
|
||||
task_pool = BLI_task_pool_create_suspended(task_scheduler, NULL);
|
||||
task_pool = BLI_task_pool_create_suspended(task_scheduler, NULL, TASK_PRIORITY_HIGH);
|
||||
|
||||
size_t counters_size = (sizeof(mbc) / sizeof(void *)) * sizeof(int32_t);
|
||||
int32_t *task_counters = MEM_callocN(counters_size, __func__);
|
||||
|
||||
@@ -542,15 +542,15 @@ static void *undomesh_from_editmesh(UndoMesh *um, BMEditMesh *em, Key *key)
|
||||
# ifdef USE_ARRAY_STORE_THREAD
|
||||
if (um_arraystore.task_pool == NULL) {
|
||||
TaskScheduler *scheduler = BLI_task_scheduler_get();
|
||||
um_arraystore.task_pool = BLI_task_pool_create_background(scheduler, NULL);
|
||||
um_arraystore.task_pool = BLI_task_pool_create_background(
|
||||
scheduler, NULL, TASK_PRIORITY_LOW);
|
||||
}
|
||||
|
||||
struct UMArrayData *um_data = MEM_mallocN(sizeof(*um_data), __func__);
|
||||
um_data->um = um;
|
||||
um_data->um_ref = um_ref;
|
||||
|
||||
BLI_task_pool_push(
|
||||
um_arraystore.task_pool, um_arraystore_compact_cb, um_data, true, TASK_PRIORITY_LOW);
|
||||
BLI_task_pool_push(um_arraystore.task_pool, um_arraystore_compact_cb, um_data, true, NULL);
|
||||
# else
|
||||
um_arraystore_compact_with_info(um, um_ref);
|
||||
# endif
|
||||
|
||||
@@ -859,11 +859,12 @@ static bool screen_opengl_render_init(bContext *C, wmOperator *op)
|
||||
if (BKE_imtype_is_movie(scene->r.im_format.imtype)) {
|
||||
task_scheduler = BLI_task_scheduler_create(1);
|
||||
oglrender->task_scheduler = task_scheduler;
|
||||
oglrender->task_pool = BLI_task_pool_create_background(task_scheduler, oglrender);
|
||||
oglrender->task_pool = BLI_task_pool_create_background(
|
||||
task_scheduler, oglrender, TASK_PRIORITY_LOW);
|
||||
}
|
||||
else {
|
||||
oglrender->task_scheduler = NULL;
|
||||
oglrender->task_pool = BLI_task_pool_create(task_scheduler, oglrender);
|
||||
oglrender->task_pool = BLI_task_pool_create(task_scheduler, oglrender, TASK_PRIORITY_LOW);
|
||||
}
|
||||
oglrender->pool_ok = true;
|
||||
BLI_spin_init(&oglrender->reports_lock);
|
||||
@@ -1123,7 +1124,7 @@ static bool schedule_write_result(OGLRender *oglrender, RenderResult *rr)
|
||||
BLI_condition_wait(&oglrender->task_condition, &oglrender->task_mutex);
|
||||
}
|
||||
BLI_mutex_unlock(&oglrender->task_mutex);
|
||||
BLI_task_pool_push(oglrender->task_pool, write_result_func, task_data, true, TASK_PRIORITY_LOW);
|
||||
BLI_task_pool_push(oglrender->task_pool, write_result_func, task_data, true, NULL);
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
@@ -5617,7 +5617,7 @@ static bool project_paint_op(void *state, const float lastpos[2], const float po
|
||||
|
||||
if (ps->thread_tot > 1) {
|
||||
scheduler = BLI_task_scheduler_get();
|
||||
task_pool = BLI_task_pool_create_suspended(scheduler, NULL);
|
||||
task_pool = BLI_task_pool_create_suspended(scheduler, NULL, TASK_PRIORITY_HIGH);
|
||||
}
|
||||
|
||||
image_pool = BKE_image_pool_new();
|
||||
@@ -5652,8 +5652,7 @@ static bool project_paint_op(void *state, const float lastpos[2], const float po
|
||||
handles[a].pool = image_pool;
|
||||
|
||||
if (task_pool != NULL) {
|
||||
BLI_task_pool_push(
|
||||
task_pool, do_projectpaint_thread, &handles[a], false, TASK_PRIORITY_HIGH);
|
||||
BLI_task_pool_push(task_pool, do_projectpaint_thread, &handles[a], false, NULL);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@@ -961,9 +961,9 @@ static void start_prefetch_threads(MovieClip *clip,
|
||||
queue.do_update = do_update;
|
||||
queue.progress = progress;
|
||||
|
||||
task_pool = BLI_task_pool_create(task_scheduler, &queue);
|
||||
task_pool = BLI_task_pool_create(task_scheduler, &queue, TASK_PRIORITY_LOW);
|
||||
for (i = 0; i < tot_thread; i++) {
|
||||
BLI_task_pool_push(task_pool, prefetch_task_func, clip, false, TASK_PRIORITY_LOW);
|
||||
BLI_task_pool_push(task_pool, prefetch_task_func, clip, false, NULL);
|
||||
}
|
||||
BLI_task_pool_work_and_wait(task_pool);
|
||||
BLI_task_pool_free(task_pool);
|
||||
|
||||
@@ -1434,7 +1434,7 @@ static void do_sequence_proxy(void *pjv,
|
||||
queue.do_update = do_update;
|
||||
queue.progress = progress;
|
||||
|
||||
task_pool = BLI_task_pool_create(task_scheduler, &queue);
|
||||
task_pool = BLI_task_pool_create(task_scheduler, &queue, TASK_PRIORITY_LOW);
|
||||
handles = MEM_callocN(sizeof(ProxyThread) * tot_thread, "proxy threaded handles");
|
||||
for (i = 0; i < tot_thread; i++) {
|
||||
ProxyThread *handle = &handles[i];
|
||||
@@ -1451,7 +1451,7 @@ static void do_sequence_proxy(void *pjv,
|
||||
handle->distortion = BKE_tracking_distortion_new(&clip->tracking, width, height);
|
||||
}
|
||||
|
||||
BLI_task_pool_push(task_pool, proxy_task_func, handle, false, TASK_PRIORITY_LOW);
|
||||
BLI_task_pool_push(task_pool, proxy_task_func, handle, false, NULL);
|
||||
}
|
||||
|
||||
BLI_task_pool_work_and_wait(task_pool);
|
||||
|
||||
@@ -1329,7 +1329,7 @@ static void filelist_cache_preview_ensure_running(FileListEntryCache *cache)
|
||||
if (!cache->previews_pool) {
|
||||
TaskScheduler *scheduler = BLI_task_scheduler_get();
|
||||
|
||||
cache->previews_pool = BLI_task_pool_create_background(scheduler, cache);
|
||||
cache->previews_pool = BLI_task_pool_create_background(scheduler, cache, TASK_PRIORITY_LOW);
|
||||
cache->previews_done = BLI_thread_queue_init();
|
||||
|
||||
IMB_thumb_locks_acquire();
|
||||
@@ -1393,12 +1393,11 @@ static void filelist_cache_previews_push(FileList *filelist, FileDirEntry *entry
|
||||
FileListEntryPreviewTaskData *preview_taskdata = MEM_mallocN(sizeof(*preview_taskdata),
|
||||
__func__);
|
||||
preview_taskdata->preview = preview;
|
||||
BLI_task_pool_push_ex(cache->previews_pool,
|
||||
filelist_cache_preview_runf,
|
||||
preview_taskdata,
|
||||
true,
|
||||
filelist_cache_preview_freef,
|
||||
TASK_PRIORITY_LOW);
|
||||
BLI_task_pool_push(cache->previews_pool,
|
||||
filelist_cache_preview_runf,
|
||||
preview_taskdata,
|
||||
true,
|
||||
filelist_cache_preview_freef);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@@ -360,7 +360,7 @@ void IMB_processor_apply_threaded(
|
||||
int total_tasks = (buffer_lines + lines_per_task - 1) / lines_per_task;
|
||||
int i, start_line;
|
||||
|
||||
task_pool = BLI_task_pool_create(task_scheduler, do_thread);
|
||||
task_pool = BLI_task_pool_create(task_scheduler, do_thread, TASK_PRIORITY_LOW);
|
||||
|
||||
handles = MEM_callocN(handle_size * total_tasks, "processor apply threaded handles");
|
||||
|
||||
@@ -379,7 +379,7 @@ void IMB_processor_apply_threaded(
|
||||
|
||||
init_handle(handle, start_line, lines_per_current_task, init_customdata);
|
||||
|
||||
BLI_task_pool_push(task_pool, processor_apply_func, handle, false, TASK_PRIORITY_LOW);
|
||||
BLI_task_pool_push(task_pool, processor_apply_func, handle, false, NULL);
|
||||
|
||||
start_line += lines_per_task;
|
||||
}
|
||||
@@ -421,13 +421,10 @@ void IMB_processor_apply_threaded_scanlines(int total_scanlines,
|
||||
data.total_scanlines = total_scanlines;
|
||||
const int total_tasks = (total_scanlines + scanlines_per_task - 1) / scanlines_per_task;
|
||||
TaskScheduler *task_scheduler = BLI_task_scheduler_get();
|
||||
TaskPool *task_pool = BLI_task_pool_create(task_scheduler, &data);
|
||||
TaskPool *task_pool = BLI_task_pool_create(task_scheduler, &data, TASK_PRIORITY_LOW);
|
||||
for (int i = 0, start_line = 0; i < total_tasks; i++) {
|
||||
BLI_task_pool_push(task_pool,
|
||||
processor_apply_scanline_func,
|
||||
POINTER_FROM_INT(start_line),
|
||||
false,
|
||||
TASK_PRIORITY_LOW);
|
||||
BLI_task_pool_push(
|
||||
task_pool, processor_apply_scanline_func, POINTER_FROM_INT(start_line), false, NULL);
|
||||
start_line += scanlines_per_task;
|
||||
}
|
||||
|
||||
|
||||
@@ -83,10 +83,10 @@ TEST(LockfreeLinkList, InsertMultipleConcurrent)
|
||||
BLI_linklist_lockfree_init(&list);
|
||||
/* Initialize task scheduler and pool. */
|
||||
TaskScheduler *scheduler = BLI_task_scheduler_create(num_threads);
|
||||
TaskPool *pool = BLI_task_pool_create_suspended(scheduler, &list);
|
||||
TaskPool *pool = BLI_task_pool_create_suspended(scheduler, &list, TASK_PRIORITY_HIGH);
|
||||
/* Push tasks to the pool. */
|
||||
for (int i = 0; i < num_nodes; ++i) {
|
||||
BLI_task_pool_push(pool, concurrent_insert, POINTER_FROM_INT(i), false, TASK_PRIORITY_HIGH);
|
||||
BLI_task_pool_push(pool, concurrent_insert, POINTER_FROM_INT(i), false, NULL);
|
||||
}
|
||||
/* Run all the tasks. */
|
||||
BLI_threaded_malloc_begin();
|
||||
|
||||
Reference in New Issue
Block a user