added openmp support for bvhtree build (max processes = tree_type)

This commit is contained in:
Andre Susano Pinto
2008-08-03 15:37:24 +00:00
parent ae5217733d
commit c2cd6bebe6
3 changed files with 136 additions and 63 deletions

View File

@@ -1024,7 +1024,7 @@ void shrinkwrapModifier_deform(ShrinkwrapModifierData *smd, Object *ob, DerivedM
break;
case MOD_SHRINKWRAP_NORMAL:
shrinkwrap_calc_normal_projection(&calc);
BENCH(shrinkwrap_calc_normal_projection(&calc));
break;
case MOD_SHRINKWRAP_NEAREST_VERTEX:

View File

@@ -28,8 +28,9 @@
#include "math.h"
#include <stdio.h>
#include <stdlib.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include "MEM_guardedalloc.h"
@@ -294,10 +295,32 @@ void BLI_bvhtree_free(BVHTree *tree)
}
}
// calculate max number of branches
int needed_branches(int tree_type, int leafs)
{
#if 1
//Worst case scenary ( return max(0, leafs-tree_type)+1 )
if(leafs <= tree_type)
return 1;
else
return leafs-tree_type+1;
#else
//If our bvh kdop is "almost perfect"
//TODO i dont trust the float arithmetic in here (and I am not sure this formula is according to our splitting method)
int i, numbranches = 0;
for(i = 1; i <= (int)ceil((float)((float)log(leafs)/(float)log(tree_type))); i++)
numbranches += (pow(tree_type, i) / tree_type);
return numbranches;
#endif
}
BVHTree *BLI_bvhtree_new(int maxsize, float epsilon, char tree_type, char axis)
{
BVHTree *tree;
int numbranches=0, i;
int numnodes, i;
// theres not support for trees below binary-trees :P
if(tree_type < 2)
@@ -343,11 +366,10 @@ BVHTree *BLI_bvhtree_new(int maxsize, float epsilon, char tree_type, char axis)
}
// calculate max number of branches, our bvh kdop is "almost perfect"
for(i = 1; i <= (int)ceil((float)((float)log(maxsize)/(float)log(tree_type))); i++)
numbranches += (pow(tree_type, i) / tree_type);
tree->nodes = (BVHNode **)MEM_callocN(sizeof(BVHNode *)*(numbranches+maxsize + tree_type), "BVHNodes");
//Allocate arrays
numnodes = maxsize + needed_branches(tree_type, maxsize) + tree_type;
tree->nodes = (BVHNode **)MEM_callocN(sizeof(BVHNode *)*numnodes, "BVHNodes");
if(!tree->nodes)
{
@@ -355,14 +377,14 @@ BVHTree *BLI_bvhtree_new(int maxsize, float epsilon, char tree_type, char axis)
return NULL;
}
tree->nodebv = (float*)MEM_callocN(sizeof(float)* axis * (numbranches+maxsize + tree_type), "BVHNodeBV");
tree->nodebv = (float*)MEM_callocN(sizeof(float)* axis * numnodes, "BVHNodeBV");
if(!tree->nodebv)
{
MEM_freeN(tree->nodes);
MEM_freeN(tree);
}
tree->nodechild = (BVHNode**)MEM_callocN(sizeof(BVHNode*) * tree_type * (numbranches+maxsize + tree_type), "BVHNodeBV");
tree->nodechild = (BVHNode**)MEM_callocN(sizeof(BVHNode*) * tree_type * numnodes, "BVHNodeBV");
if(!tree->nodechild)
{
MEM_freeN(tree->nodebv);
@@ -370,7 +392,7 @@ BVHTree *BLI_bvhtree_new(int maxsize, float epsilon, char tree_type, char axis)
MEM_freeN(tree);
}
tree->nodearray = (BVHNode *)MEM_callocN(sizeof(BVHNode)*(numbranches+maxsize + tree_type), "BVHNodeArray");
tree->nodearray = (BVHNode *)MEM_callocN(sizeof(BVHNode)* numnodes, "BVHNodeArray");
if(!tree->nodearray)
{
@@ -382,7 +404,7 @@ BVHTree *BLI_bvhtree_new(int maxsize, float epsilon, char tree_type, char axis)
}
//link the dynamic bv and child links
for(i=0; i< numbranches+maxsize + tree_type; i++)
for(i=0; i< numnodes; i++)
{
tree->nodearray[i].bv = tree->nodebv + i * axis;
tree->nodearray[i].children = tree->nodechild + i * tree_type;
@@ -422,6 +444,13 @@ static void create_kdop_hull(BVHTree *tree, BVHNode *node, float *co, int numpoi
bv[(2 * i) + 1] = newminmax;
}
}
// inflate the bv with some epsilon
for (i = tree->start_axis; i < tree->stop_axis; i++)
{
bv[(2 * i)] -= tree->epsilon; // minimum
bv[(2 * i) + 1] += tree->epsilon; // maximum
}
}
// depends on the fact that the BVH's for each face is already build
@@ -457,14 +486,13 @@ static void refit_kdop_hull(BVHTree *tree, BVHNode *node, int start, int end)
int BLI_bvhtree_insert(BVHTree *tree, int index, float *co, int numpoints)
{
BVHNode *node= NULL;
int i;
BVHNode *node = NULL;
// insert should only possible as long as tree->totbranch is 0
if(tree->totbranch > 0)
return 0;
if(tree->totleaf+1 >= MEM_allocN_len(tree->nodes))
if(tree->totleaf+1 >= MEM_allocN_len(tree->nodes)/sizeof(*(tree->nodes)))
return 0;
// TODO check if have enough nodes in array
@@ -473,14 +501,6 @@ int BLI_bvhtree_insert(BVHTree *tree, int index, float *co, int numpoints)
tree->totleaf++;
create_kdop_hull(tree, node, co, numpoints, 0);
// inflate the bv with some epsilon
for (i = tree->start_axis; i < tree->stop_axis; i++)
{
node->bv[(2 * i)] -= tree->epsilon; // minimum
node->bv[(2 * i) + 1] += tree->epsilon; // maximum
}
node->index= index;
return 1;
@@ -511,25 +531,24 @@ static char get_largest_axis(float *bv)
}
}
static void bvh_div_nodes(BVHTree *tree, BVHNode *node, int start, int end, char lastaxis)
static void bvh_div_nodes(BVHTree *tree, BVHNode *node, int start, int end, int free_node_index)
{
char laxis;
int i, tend;
BVHNode *tnode;
int slice = (end-start+tree->tree_type-1)/tree->tree_type; //division rounded up
int i;
const char laxis = get_largest_axis(node->bv); //determine longest axis to split along
const int slice = (end-start)/tree->tree_type; //division rounded down
const int rest = (end-start)%tree->tree_type; //remainder of division
// Determine which axis to split along
laxis = get_largest_axis(node->bv);
//laxis = (lastaxis + 2) % tree->axis; // XYZ split
assert( node->totnode == 0 );
node->main_axis = laxis/2;
// split nodes along longest axis
for (i=0; start < end; start += slice, i++) //i counts the current child
for (i=0; start < end; node->totnode = ++i) //i counts the current child
{
tend = start + slice;
int tend = start + slice + (i < rest ? 1 : 0);
if(tend > end) tend = end;
assert( tend <= end);
if(tend-start == 1) // ok, we have 1 left for this node
{
@@ -538,21 +557,86 @@ static void bvh_div_nodes(BVHTree *tree, BVHNode *node, int start, int end, char
}
else
{
tnode = node->children[i] = tree->nodes[tree->totleaf + tree->totbranch] = &(tree->nodearray[tree->totbranch + tree->totleaf]);
tree->totbranch++;
BVHNode *tnode = node->children[i] = tree->nodes[free_node_index] = &(tree->nodearray[free_node_index]);
// printf("Used %d (%d)\n", free_node_index, tend-start);
tnode->parent = node;
if(tend != end)
partition_nth_element(tree->nodes, start, end, tend, laxis);
refit_kdop_hull(tree, tnode, start, tend);
bvh_div_nodes(tree, tnode, start, tend, laxis); // not called on XYZ split
bvh_div_nodes(tree, tnode, start, tend, free_node_index+1);
free_node_index += needed_branches(tree->tree_type, tend-start);
}
node->totnode++;
start = tend;
}
return;
}
static void omp_bvh_div_nodes(BVHTree *tree, BVHNode *node, int start, int end, int free_node_index)
{
int i;
const char laxis = get_largest_axis(node->bv); //determine longest axis to split along
const int slice = (end-start)/tree->tree_type; //division rounded down
const int rest = (end-start)%tree->tree_type; //remainder of division
int omp_data_start[tree->tree_type];
int omp_data_end [tree->tree_type];
int omp_data_index[tree->tree_type];
assert( node->totnode == 0 );
node->main_axis = laxis/2;
// split nodes along longest axis
for (i=0; start < end; node->totnode = ++i) //i counts the current child
{
//Split the rest from left to right (TODO: this doenst makes an optimal tree)
int tend = start + slice + (i < rest ? 1 : 0);
assert( tend <= end);
//save data for later OMP
omp_data_start[i] = start;
omp_data_end [i] = tend;
omp_data_index[i] = free_node_index;
if(tend-start == 1)
{
node->children[i] = tree->nodes[start];
node->children[i]->parent = node;
}
else
{
node->children[i] = tree->nodes[free_node_index] = &(tree->nodearray[free_node_index]);
if(tend != end)
partition_nth_element(tree->nodes, start, end, tend, laxis);
free_node_index += needed_branches(tree->tree_type, tend-start);
}
start = tend;
}
#pragma omp parallel for private(i) schedule(static)
for( i = 0; i < node->totnode; i++)
{
if(omp_data_end[i]-omp_data_start[i] > 1)
{
BVHNode *tnode = node->children[i];
refit_kdop_hull(tree, tnode, omp_data_start[i], omp_data_end[i]);
bvh_div_nodes (tree, tnode, omp_data_start[i], omp_data_end[i], omp_data_index[i]+1);
}
}
return;
}
#if 0
static void verify_tree(BVHTree *tree)
{
@@ -604,23 +688,21 @@ static void verify_tree(BVHTree *tree)
void BLI_bvhtree_balance(BVHTree *tree)
{
int i;
BVHNode *node;
assert(tree->totbranch == 0);
if(tree->totleaf != 0)
{
// create root node
BVHNode *node = tree->nodes[tree->totleaf] = &(tree->nodearray[tree->totleaf]);
tree->totbranch++;
if(tree->totleaf == 0)
return;
// create root node
node = tree->nodes[tree->totleaf] = &(tree->nodearray[tree->totleaf]);
tree->totbranch++;
// refit root bvh node
refit_kdop_hull(tree, tree->nodes[tree->totleaf], 0, tree->totleaf); // not called on XYZ split
// create + balance tree
bvh_div_nodes(tree, tree->nodes[tree->totleaf], 0, tree->totleaf, 0);
//BLI_bvhtree_update_tree(tree); // XYZ split
// verify_tree(tree);
// refit root bvh node
refit_kdop_hull(tree, node, 0, tree->totleaf);
// create + balance tree
omp_bvh_div_nodes(tree, node, 0, tree->totleaf, tree->totleaf+1);
tree->totbranch = needed_branches( tree->tree_type, tree->totleaf );
// verify_tree(tree);
}
}
// overlap - is it possbile for 2 bv's to collide ?
@@ -796,7 +878,6 @@ static void node_join(BVHTree *tree, BVHNode *node)
int BLI_bvhtree_update_node(BVHTree *tree, int index, float *co, float *co_moving, int numpoints)
{
BVHNode *node= NULL;
int i = 0;
// check if index exists
if(index > tree->totleaf)
@@ -809,13 +890,6 @@ int BLI_bvhtree_update_node(BVHTree *tree, int index, float *co, float *co_movin
if(co_moving)
create_kdop_hull(tree, node, co_moving, numpoints, 1);
// inflate the bv with some epsilon
for (i = tree->start_axis; i < tree->stop_axis; i++)
{
node->bv[(2 * i)] -= tree->epsilon; // minimum
node->bv[(2 * i) + 1] += tree->epsilon; // maximum
}
return 1;
}

View File

@@ -325,7 +325,6 @@ typedef struct bShrinkwrapConstraint {
char pad[9];
} bShrinkwrapConstraint;
#define SHRINKWRAP
/* ------------------------------------------ */