This makes specifying a legacy type for new node types optional (e.g.
`GEO_NODE_MESH_TO_CURVE`). Instead, only the `idname` is used as a stable
identifier for node types. So there is less redundancy for now.
This change helps with the decentralized definition of nodes and reduces the
number minimum number of files that need to be changed for a new node from 5 to
4. It especially helps when multiple nodes are worked on at the same time,
because the legacy type definition was very prone to have merge conflicts.
For compatibility reasons and because it's still used by existing code, the
`legacy_type` is not removed. All existing nodes keep their current
`legacy_type`. New nodes will receive an auto-incremented legacy type. It's
still necessary to give nodes unique legacy types, because some code checks if
two nodes have the same type by comparing their `legacy_type`. These types only
have to be unique at run-time though. Some randomness is used to avoid depending
on stable generated legacy types accidentally.
Pull Request: https://projects.blender.org/blender/blender/pulls/133044
This removes the second to last usage of `NOD_static_types.hh` which we intend
to remove. A nice benefit is that the idname is now finally more explicit when a
node is registered. Previously it was difficult to search for the definition of
a node in the code when one had only the idname, which is the main identifier
for nodes.
The main change is in `node_type_base`.
Pull Request: https://projects.blender.org/blender/blender/pulls/132815
As part of an effort to remove this header, reducing the need for macro/
include magic and making node definitions more independent, move
the node UI name and description definitions to each node's file.
The UI name, description, and idname are also moved to std::string
instead of char arrays.
Similar to b43e2168e3.
Pull Request: https://projects.blender.org/blender/blender/pulls/132708
Move all header file into namespace.
Unnecessary namespaces was removed from implementations file.
Part of forward declarations in header was moved in the top part
of file just to do not have a lot of separate namespaces.
Pull Request: https://projects.blender.org/blender/blender/pulls/121637
Listing the "Blender Foundation" as copyright holder implied the Blender
Foundation holds copyright to files which may include work from many
developers.
While keeping copyright on headers makes sense for isolated libraries,
Blender's own code may be refactored or moved between files in a way
that makes the per file copyright holders less meaningful.
Copyright references to the "Blender Foundation" have been replaced with
"Blender Authors", with the exception of `./extern/` since these this
contains libraries which are more isolated, any changed to license
headers there can be handled on a case-by-case basis.
Some directories in `./intern/` have also been excluded:
- `./intern/cycles/` it's own `AUTHORS` file is planned.
- `./intern/opensubdiv/`.
An "AUTHORS" file has been added, using the chromium projects authors
file as a template.
Design task: #110784
Ref !110783.
The goal here is to reduce the number of files that need to be edited when
adding a new node. To register a node, one currently has to add a line to
`node_geometry_register.cc` and `node_geometry_register.hh` (for geometry
nodes). Those files can be generated automatically.
There is a new `NOD_REGISTER_NODE` macro that nodes can use to register
themselves. The macro is then discovered by `discover_nodes.py` that generates
code that calls all the registration functions. The script also works when the
register functions are in arbitrary namespaces. This allows simplifying the node
code as well.
In the past I tried a few times to get auto-registration working without resorting to
code generation, but that never ended up working. The general idea for that would
be to use non-trivial initialization for static variables. The issue always ends up
being that the linker just discards those variables, because they are unused and it
doesn't care if there are side effects in the initialization.
Related discussion regarding using Python for code generation:
https://devtalk.blender.org/t/code-generation-with-python/30558
Pull Request: https://projects.blender.org/blender/blender/pulls/110686
A lot of files were missing copyright field in the header and
the Blender Foundation contributed to them in a sense of bug
fixing and general maintenance.
This change makes it explicit that those files are at least
partially copyrighted by the Blender Foundation.
Note that this does not make it so the Blender Foundation is
the only holder of the copyright in those files, and developers
who do not have a signed contract with the foundation still
hold the copyright as well.
Another aspect of this change is using SPDX format for the
header. We already used it for the license specification,
and now we state it for the copyright as well, following the
FAQ:
https://reuse.software/faq/
See: https://projects.blender.org/blender/blender/issues/103343
Changes:
1. Added `BKE_node.hh` file. New file includes old one.
2. Functions moved to new file. Redundant `(void)`, `struct` are removed.
3. All cpp includes replaced from `.h` on `.hh`.
4. Everything in `BKE_node.hh` is on `blender::bke` namespace.
5. All implementation functions moved in namespace.
6. Function names (`BKE_node_*`) changed to `blender::bke::node_*`.
7. `eNodeSizePreset` now is a class, with renamed items.
Pull Request: https://projects.blender.org/blender/blender/pulls/107790
The main goal here is to move towards more self contained node
definitions. Previously, one would have to change `blenkernel` to
add a new node which is not necessary anymore. There is no need
for all these register functions to "leak out" of the nodes module.
Differential Revision: https://developer.blender.org/D16612
The purpose of `NodeTreeRef` was to speed up various queries on a read-only
`bNodeTree`. Not that we have runtime data in nodes and sockets, we can also
store the result of some queries there. This has some benefits:
* No need for a read-only separate node tree data structure which increased
complexity.
* Makes it easier to reuse cached queries in more parts of Blender that can
benefit from it.
A downside is that we loose some type safety that we got by having different
types for input and output sockets, as well as internal and non-internal links.
This patch also refactors `DerivedNodeTree` so that it does not use
`NodeTreeRef` anymore, but uses `bNodeTree` directly instead.
To provide a convenient API (that is also close to what `NodeTreeRef` has), a
new approach is implemented: `bNodeTree`, `bNode`, `bNodeSocket` and `bNodeLink`
now have C++ methods declared in `DNA_node_types.h` which are implemented in
`BKE_node_runtime.hh`. To make this work, `makesdna` now skips c++ sections when
parsing dna header files.
No user visible changes are expected.
Differential Revision: https://developer.blender.org/D15491
This patch reverses the dependency between `BLI_math_vec_types.hh` and
`BLI_math_vector.hh`. Now the higher level `blender::math` functions
depend on the header that defines the types they work with, rather than
the other way around.
The initial goal was to allow defining an `enable_if` in the types header
and using it in the math header. But I also think this operations to types
dependency is more natural anyway.
This required changing the includes some files used from the type
header to the math implementation header. I took that change a bit
further removing the C vector math header from the C++ header;
I think that helps to make the transition between the two systems
clearer.
Differential Revision: https://developer.blender.org/D14112
Use a shorter/simpler license convention, stops the header taking so
much space.
Follow the SPDX license specification: https://spdx.org/licenses
- C/C++/objc/objc++
- Python
- Shell Scripts
- CMake, GNUmakefile
While most of the source tree has been included
- `./extern/` was left out.
- `./intern/cycles` & `./intern/atomic` are also excluded because they
use different header conventions.
doc/license/SPDX-license-identifiers.txt has been added to list SPDX all
used identifiers.
See P2788 for the script that automated these edits.
Reviewed By: brecht, mont29, sergey
Ref D14069
This patch implements the vector types (i.e:`float2`) by making heavy
usage of templating. All vector functions are now outside of the vector
classes (inside the `blender::math` namespace) and are not vector size
dependent for the most part.
In the ongoing effort to make shaders less GL centric, we are aiming
to share more code between GLSL and C++ to avoid code duplication.
####Motivations:
- We are aiming to share UBO and SSBO structures between GLSL and C++.
This means we will use many of the existing vector types and others
we currently don't have (uintX, intX). All these variations were
asking for many more code duplication.
- Deduplicate existing code which is duplicated for each vector size.
- We also want to share small functions. Which means that vector
functions should be static and not in the class namespace.
- Reduce friction to use these types in new projects due to their
incompleteness.
- The current state of the `BLI_(float|double|mpq)(2|3|4).hh` is a
bit of a let down. Most clases are incomplete, out of sync with each
others with different codestyles, and some functions that should be
static are not (i.e: `float3::reflect()`).
####Upsides:
- Still support `.x, .y, .z, .w` for readability.
- Compact, readable and easilly extendable.
- All of the vector functions are available for all the vectors types
and can be restricted to certain types. Also template specialization
let us define exception for special class (like mpq).
- With optimization ON, the compiler unroll the loops and performance
is the same.
####Downsides:
- Might impact debugability. Though I would arge that the bugs are
rarelly caused by the vector class itself (since the operations are
quite trivial) but by the type conversions.
- Might impact compile time. I did not saw a significant impact since
the usage is not really widespread.
- Functions needs to be rewritten to support arbitrary vector length.
For instance, one can't call `len_squared_v3v3` in
`math::length_squared()` and call it a day.
- Type cast does not work with the template version of the `math::`
vector functions. Meaning you need to manually cast `float *` and
`(float *)[3]` to `float3` for the function calls.
i.e: `math::distance_squared(float3(nearest.co), positions[i]);`
- Some parts might loose in readability:
`float3::dot(v1.normalized(), v2.normalized())`
becoming
`math::dot(math::normalize(v1), math::normalize(v2))`
But I propose, when appropriate, to use
`using namespace blender::math;` on function local or file scope to
increase readability.
`dot(normalize(v1), normalize(v2))`
####Consideration:
- Include back `.length()` method. It is quite handy and is more C++
oriented.
- I considered the GLM library as a candidate for replacement. It felt
like too much for what we need and would be difficult to extend / modify
to our needs.
- I used Macros to reduce code in operators declaration and potential
copy paste bugs. This could reduce debugability and could be reverted.
- This touches `delaunay_2d.cc` and the intersection code. I would like
to know @howardt opinion on the matter.
- The `noexcept` on the copy constructor of `mpq(2|3)` is being removed.
But according to @JacquesLucke it is not a real problem for now.
I would like to give a huge thanks to @JacquesLucke who helped during this
and pushed me to reduce the duplication further.
Reviewed By: brecht, sergey, JacquesLucke
Differential Revision: https://developer.blender.org/D13791
This patch implements the vector types (i.e:`float2`) by making heavy
usage of templating. All vector functions are now outside of the vector
classes (inside the `blender::math` namespace) and are not vector size
dependent for the most part.
In the ongoing effort to make shaders less GL centric, we are aiming
to share more code between GLSL and C++ to avoid code duplication.
####Motivations:
- We are aiming to share UBO and SSBO structures between GLSL and C++.
This means we will use many of the existing vector types and others
we currently don't have (uintX, intX). All these variations were
asking for many more code duplication.
- Deduplicate existing code which is duplicated for each vector size.
- We also want to share small functions. Which means that vector
functions should be static and not in the class namespace.
- Reduce friction to use these types in new projects due to their
incompleteness.
- The current state of the `BLI_(float|double|mpq)(2|3|4).hh` is a
bit of a let down. Most clases are incomplete, out of sync with each
others with different codestyles, and some functions that should be
static are not (i.e: `float3::reflect()`).
####Upsides:
- Still support `.x, .y, .z, .w` for readability.
- Compact, readable and easilly extendable.
- All of the vector functions are available for all the vectors types
and can be restricted to certain types. Also template specialization
let us define exception for special class (like mpq).
- With optimization ON, the compiler unroll the loops and performance
is the same.
####Downsides:
- Might impact debugability. Though I would arge that the bugs are
rarelly caused by the vector class itself (since the operations are
quite trivial) but by the type conversions.
- Might impact compile time. I did not saw a significant impact since
the usage is not really widespread.
- Functions needs to be rewritten to support arbitrary vector length.
For instance, one can't call `len_squared_v3v3` in
`math::length_squared()` and call it a day.
- Type cast does not work with the template version of the `math::`
vector functions. Meaning you need to manually cast `float *` and
`(float *)[3]` to `float3` for the function calls.
i.e: `math::distance_squared(float3(nearest.co), positions[i]);`
- Some parts might loose in readability:
`float3::dot(v1.normalized(), v2.normalized())`
becoming
`math::dot(math::normalize(v1), math::normalize(v2))`
But I propose, when appropriate, to use
`using namespace blender::math;` on function local or file scope to
increase readability.
`dot(normalize(v1), normalize(v2))`
####Consideration:
- Include back `.length()` method. It is quite handy and is more C++
oriented.
- I considered the GLM library as a candidate for replacement. It felt
like too much for what we need and would be difficult to extend / modify
to our needs.
- I used Macros to reduce code in operators declaration and potential
copy paste bugs. This could reduce debugability and could be reverted.
- This touches `delaunay_2d.cc` and the intersection code. I would like
to know @howardt opinion on the matter.
- The `noexcept` on the copy constructor of `mpq(2|3)` is being removed.
But according to @JacquesLucke it is not a real problem for now.
I would like to give a huge thanks to @JacquesLucke who helped during this
and pushed me to reduce the duplication further.
Reviewed By: brecht, sergey, JacquesLucke
Differential Revision: https://developer.blender.org/D13791
This patch implements the vector types (i.e:float2) by making heavy
usage of templating. All vector functions are now outside of the vector
classes (inside the blender::math namespace) and are not vector size
dependent for the most part.
In the ongoing effort to make shaders less GL centric, we are aiming
to share more code between GLSL and C++ to avoid code duplication.
Motivations:
- We are aiming to share UBO and SSBO structures between GLSL and C++.
This means we will use many of the existing vector types and others we
currently don't have (uintX, intX). All these variations were asking
for many more code duplication.
- Deduplicate existing code which is duplicated for each vector size.
- We also want to share small functions. Which means that vector functions
should be static and not in the class namespace.
- Reduce friction to use these types in new projects due to their
incompleteness.
- The current state of the BLI_(float|double|mpq)(2|3|4).hh is a bit of a
let down. Most clases are incomplete, out of sync with each others with
different codestyles, and some functions that should be static are not
(i.e: float3::reflect()).
Upsides:
- Still support .x, .y, .z, .w for readability.
- Compact, readable and easilly extendable.
- All of the vector functions are available for all the vectors types and
can be restricted to certain types. Also template specialization let us
define exception for special class (like mpq).
- With optimization ON, the compiler unroll the loops and performance is
the same.
Downsides:
- Might impact debugability. Though I would arge that the bugs are rarelly
caused by the vector class itself (since the operations are quite trivial)
but by the type conversions.
- Might impact compile time. I did not saw a significant impact since the
usage is not really widespread.
- Functions needs to be rewritten to support arbitrary vector length. For
instance, one can't call len_squared_v3v3 in math::length_squared() and
call it a day.
- Type cast does not work with the template version of the math:: vector
functions. Meaning you need to manually cast float * and (float *)[3] to
float3 for the function calls.
i.e: math::distance_squared(float3(nearest.co), positions[i]);
- Some parts might loose in readability:
float3::dot(v1.normalized(), v2.normalized())
becoming
math::dot(math::normalize(v1), math::normalize(v2))
But I propose, when appropriate, to use
using namespace blender::math; on function local or file scope to
increase readability. dot(normalize(v1), normalize(v2))
Consideration:
- Include back .length() method. It is quite handy and is more C++
oriented.
- I considered the GLM library as a candidate for replacement.
It felt like too much for what we need and would be difficult to
extend / modify to our needs.
- I used Macros to reduce code in operators declaration and potential
copy paste bugs. This could reduce debugability and could be reverted.
- This touches delaunay_2d.cc and the intersection code. I would like to
know @Howard Trickey (howardt) opinion on the matter.
- The noexcept on the copy constructor of mpq(2|3) is being removed.
But according to @Jacques Lucke (JacquesLucke) it is not a real problem
for now.
I would like to give a huge thanks to @Jacques Lucke (JacquesLucke) who
helped during this and pushed me to reduce the duplication further.
Reviewed By: brecht, sergey, JacquesLucke
Differential Revision: http://developer.blender.org/D13791
This flag is only used a few small cases, so instead
of setting the flag for every node only set the
required flag for the nodes that require it.
Mostly the flag is used to set `ntype.flag = NODE_PREVIEW`
For nodes that should have previews by default which
is only some compositor nodes and some texture nodes.
The frame node also sets the `NODE_BACKGROUND` flag.
All other nodes were setting a flag of 0 which has no purpose.
Reviewed By: JacquesLucke
Differential Revision: https://developer.blender.org/D13699
The multi-function network system was able to compose multiple
multi-functions into a new one and to evaluate that efficiently.
This functionality was heavily used by the particle nodes prototype
a year ago. However, since then we only used multi-functions
without the need to compose them in geometry nodes.
The upcoming "fields" in geometry nodes will need a way to
compose multi-functions again. Unfortunately, the code removed
in this commit was not ideal for this different kind of function
composition. I've been working on an alternative that will be added
separately when it becomes needed.
I've had to update all the function nodes, because their interface
depended on the multi-function network data structure a bit.
The actual multi-function implementations are still the same though.
This is especially useful when trying to add a node group instance, e.g. via
drag & drop from the Outliner or Asset Browser.
Previously this would just silently fail, with no information why. This is a
source of confusion, e.g. earlier, it took me a moment to realize I was
dragging a node group into itself, which failed of course.
Blender should always try to help the user with useful error messages.
Adds error messages like: "Nesting a node group inside of itself is not
allowed", "Not a compositor node tree", etc.
Adds a disabled hint return argument to node and node tree polling functions.
On error the hint is reported, or could even be shown in advance (e.g. if
checked via an operator poll option).
Differential Revision: https://developer.blender.org/D10422
Reviewed by: Jacques Lucke
This replaces header include guards with `#pragma once`.
A couple of include guards are not removed yet (e.g. `__RNA_TYPES_H__`),
because they are used in other places.
This patch has been generated by P1561 followed by `make format`.
Differential Revision: https://developer.blender.org/D8466
This also introduces the `blender::nodes` namespace. Eventually,
we want to move most/all of the node implementation files into
this namespace.
The reason for this file-move is that the code fits much better
into the `nodes` directory than in the `blenkernel` directory.
This adds new callbacks to `bNodeSocketType` and `bNodeType`.
Those are used to generate a multi-function network from a node
tree. Later, this network is evaluated on e.g. particle data.
Reviewers: brecht
Differential Revision: https://developer.blender.org/D8169