RGB color components gave non-grey results when you might no expect it.
What happens is that some of the color channels are zero in the direct light
pass because their channel is zero in the color pass. The direct light pass is
defined as lighting divided by the color pass, and we can't divide by zero. We
do a division after all samples are added together to ensure that multiplication
in the compositor gives the exact combined pass even with antialiasing, DoF, ..
Found a simple tweak here, instead of setting such channels to zero it will set
it to the average of other non-zero color channels, which makes the results look
like the expected grey.
texture coordinate that should automatically use the default normal or texture
coordinate appropriate for that node, rather than some fixed value specified by
the user.
Apparently, it's bad idea to rely on compiler to cast NULL
which is (void*)0 to int -- and in fact if i was a compiler
would also generate an error.
Further, couldn't see why we need to pass NULL or 0 th add_node,
argument value is defautl to 0 already.
* Added a node to convert wavelength (in nanometers, from 380nm to 780nm) to RGB values. This can be useful to match real world colors easier.
* Code cleanup:
** Moved color functions (xyz and hsv) into dedicated utility files.
** Remove svm_lerp(), use interp() instead.
Documentation:
http://wiki.blender.org/index.php/Doc:2.6/Manual/Render/Cycles/Nodes/More#Wavelength
Example render:
http://www.pasteall.org/pic/show.php?id=53202
This is part of my GSoC 2013. (revisions 57322, 57326, 57335 and 57367 from soc-2013-dingto).
* Added a node to convert wavelength (in nanometer, from 380nm to 780nm) to RGB values. This can be useful to match real world colors easier.
Example render:
http://www.pasteall.org/pic/show.php?id=53202
ToDo:
* Move some functions into an util file, maybe a common util_color.h or so.
* Test GPU, unfortunately sm_21 doesn't work for me yet.
multiple importance sampling, so you can disable them for diffuse/glossy/transmission.
The Light Path node here is still weak and does not give this info. To make that
work we'd need to evaluate the shader multiple times which is slow and we can't
detect well enough when it is actually needed.
instead of sobol. So far one doesn't seem to be consistently better or worse than
the other for the same number of samples but more testing is needed.
The random number generator itself is slower than sobol for most number of samples,
except 16, 64, 256, .. because they can be computed faster. This can probably be
optimized, but we can do that when/if this actually turns out to be useful.
Paper this implementation is based on:
http://graphics.pixar.com/library/MultiJitteredSampling/
Also includes some refactoring of RNG code, fixing a Sobol correlation issue with
the first BSDF and < 16 samples, skipping some unneeded RNG calls and using a
simpler unit square to unit disk function.
* Revert r57203 (len() renaming)
There seems to be a problem with nVidia OpenCL after this and I haven't figured out the real cause yet.
Better to selectively enable native length() later, after figuring out what's wrong.
This fixes [#35612].
* Rename some math functions:
len -> length
len_squared -> length_squared
normalize_len -> normalize_length
* This way OpenCL uses its inbuilt length() function, rather than our own. The other two functions have been renamed for consistency.
* Tested CPU, CUDA and OpenCL compile, should be no functional changes.
Problem was that due to group proxy node the anisotropic node did not detect
early enough that it needs generated texture coordinate data to generate the
tangent. Now the proxy nodes are removed earlier.
* Code refactor of tile ordering to simplify the code and avoid some branching.
* Changed the Center method, so it really follows center -> corners, instead of the BI method, which was confusing sometimes.
the Bump node has a Normal input, so you can chain it after a Normal Map node.
Note that normal mapping always has to be done first because it is tied to the
particular mesh surface and tangents.
and preview running at the same time.
It seems there's something in OSL/LLVM that's not thread safe, but I couldn't
figure out what exactly. Now all renders share the same OSL ShadingSystem which
should avoid the problem.
Now there is a single BVH traversal code with #ifdefs for various features.
At runtime it will then select the appropriate variation to use depending if
instancing, hair or motion blur is in use.
This makes scenes without hair render a bit faster, especially after the
minimum width feature was added. It's not the most beautiful code, but we can't
use c++ templates and there were already 4 copies, adding 4 more to handle the
hair case separately would be too much.
Code is added to restrict the pixel size of strands in cycles. It works best with ribbon primitives and a preset for these is included. It uses distance dependent expansion of the strands and then stochastic strand removal to give a fading. To prevent a slowdown for triangle mesh objects in the BVH an extra visibility flag has been added. It is also only applied for camera rays.
The strand width settings are also changed, so that the particle size is not included in the width calculation. Instead there is a separate particle system parameter for width scaling.
per render layer samples in addition to the progress bar.
Also fixed job progress bar not working at all on high DPI / retina, was so small
the actual progress was not visible.