See: https://projects.blender.org/blender/blender/issues/103343
Changes:
1. Added `BKE_node.hh` file. New file includes old one.
2. Functions moved to new file. Redundant `(void)`, `struct` are removed.
3. All cpp includes replaced from `.h` on `.hh`.
4. Everything in `BKE_node.hh` is on `blender::bke` namespace.
5. All implementation functions moved in namespace.
6. Function names (`BKE_node_*`) changed to `blender::bke::node_*`.
7. `eNodeSizePreset` now is a class, with renamed items.
Pull Request: https://projects.blender.org/blender/blender/pulls/107790
This adds support for building simulations with geometry nodes. A new
`Simulation Input` and `Simulation Output` node allow maintaining a
simulation state across multiple frames. Together these two nodes form
a `simulation zone` which contains all the nodes that update the simulation
state from one frame to the next.
A new simulation zone can be added via the menu
(`Simulation > Simulation Zone`) or with the node add search.
The simulation state contains a geometry by default. However, it is possible
to add multiple geometry sockets as well as other socket types. Currently,
field inputs are evaluated and stored for the preceding geometry socket in
the order that the sockets are shown. Simulation state items can be added
by linking one of the empty sockets to something else. In the sidebar, there
is a new panel that allows adding, removing and reordering these sockets.
The simulation nodes behave as follows:
* On the first frame, the inputs of the `Simulation Input` node are evaluated
to initialize the simulation state. In later frames these sockets are not
evaluated anymore. The `Delta Time` at the first frame is zero, but the
simulation zone is still evaluated.
* On every next frame, the `Simulation Input` node outputs the simulation
state of the previous frame. Nodes in the simulation zone can edit that
data in arbitrary ways, also taking into account the `Delta Time`. The new
simulation state has to be passed to the `Simulation Output` node where it
is cached and forwarded.
* On a frame that is already cached or baked, the nodes in the simulation
zone are not evaluated, because the `Simulation Output` node can return
the previously cached data directly.
It is not allowed to connect sockets from inside the simulation zone to the
outside without going through the `Simulation Output` node. This is a necessary
restriction to make caching and sub-frame interpolation work. Links can go into
the simulation zone without problems though.
Anonymous attributes are not propagated by the simulation nodes unless they
are explicitly stored in the simulation state. This is unfortunate, but
currently there is no practical and reliable alternative. The core problem
is detecting which anonymous attributes will be required for the simulation
and afterwards. While we can detect this for the current evaluation, we can't
look into the future in time to see what data will be necessary. We intend to
make it easier to explicitly pass data through a simulation in the future,
even if the simulation is in a nested node group.
There is a new `Simulation Nodes` panel in the physics tab in the properties
editor. It allows baking all simulation zones on the selected objects. The
baking options are intentially kept at a minimum for this MVP. More features
for simulation baking as well as baking in general can be expected to be added
separately.
All baked data is stored on disk in a folder next to the .blend file. #106937
describes how baking is implemented in more detail. Volumes can not be baked
yet and materials are lost during baking for now. Packing the baked data into
the .blend file is not yet supported.
The timeline indicates which frames are currently cached, baked or cached but
invalidated by user-changes.
Simulation input and output nodes are internally linked together by their
`bNode.identifier` which stays the same even if the node name changes. They
are generally added and removed together. However, there are still cases where
"dangling" simulation nodes can be created currently. Those generally don't
cause harm, but would be nice to avoid this in more cases in the future.
Co-authored-by: Hans Goudey <h.goudey@me.com>
Co-authored-by: Lukas Tönne <lukas@blender.org>
Pull Request: https://projects.blender.org/blender/blender/pulls/104924
Node socket tooltips suffered from several issues.
- Some could not be translated because they were not properly
extracted, so extraction macros were added.
- Some were extracted but included newlines at the end which did not
get translated, such as `ss << TIP_("Geometry:\n")`, changed to
`ss << TIP_("Geometry:") << "\n"`.
- Some translations were not functional, such as:
`TIP_(attributes_num == 1 ? " Named Attribute" : " Named Attributes");`
because `TIP_()` needs to be around a single string.
- Some extraction macros had no effect and were removed, such as:
`.description(N_(leading_out_description));`
This is a no-op macro which can be used only around a string literal.
Pull Request: https://projects.blender.org/blender/blender/pulls/107257
- "Lens" can be a transparent object used in cameras, or specifically
its property of focal length
- "Empty" can be an adjective meaning void, or an object type. The
latter is already disambiguated using `ID_ID`
- "New" and "Old" are adjectives that can have agreements in some
languages
- "Modified" is an adjective that can have agreement in some languages
- "Clipping" can be a property of a camera, or a behavior of the
mirror modifier
- "Value" in HSV nodes, see #105113
- "Area" in the Face Area geometry node, can mean a measurement or a
window type
- "New" is an adjective that can have agreement
- "Tab" can be a UI element or a whitespace character
- "Volume" can mean a measurement or an object type. The latter is
already disambiguated using `ID_ID`
These changes introduce the new `BLT_I18NCONTEXT_TIME` translation
context.
They also remove `BLT_I18NCONTEXT_VIRTUAL_REALITY`, which I added at
one point but then couldn't find which messages I wanted to fix with
it.
Ref #43295
Pull Request: #106718
The goal is to solve confusion of the "All rights reserved" for licensing
code under an open-source license.
The phrase "All rights reserved" comes from a historical convention that
required this phrase for the copyright protection to apply. This convention
is no longer relevant.
However, even though the phrase has no meaning in establishing the copyright
it has not lost meaning in terms of licensing.
This change makes it so code under the Blender Foundation copyright does
not use "all rights reserved". This is also how the GPL license itself
states how to apply it to the source code:
<one line to give the program's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>
This program is free software ...
This change does not change copyright notice in cases when the copyright
is dual (BF and an author), or just an author of the code. It also does
mot change copyright which is inherited from NaN Holding BV as it needs
some further investigation about what is the proper way to handle it.
The crash is fixed by reverting 87fd798ae3 and
some follow up commits. While it would generally be nice to move to a more
SoA format for these things, we are not there yet and this is causing more
trouble than it's worth currently. The main difficulty is that the socket
indices are changed by many different operations which invalidates the array
too often and led to many follow up bugs.
Pull Request: https://projects.blender.org/blender/blender/pulls/105877
Fix issues with the display of frame node labels, that made them
harder to read for people with low vision or on high dpi displays:
* Unclamp the size of text that is drawn in the frame node
so all sizes can be displayed consistently at all zoom levels
and independet of the UI scale.
* Account for the label when calculating the frame node's
bounds, so child nodes don't obscure the label.
Pull Request: https://projects.blender.org/blender/blender/pulls/104555
In order to properly translate UI messages, they sometimes need to be
disambiguated using translation contexts. Until now, node sockets had
no way to specify contexts and collisions occurred.
This commit adds a way to declare contexts for each socket using:
`.translation_context()`
If no context is specified, the default null context is used.
Pull Request #105195
When drawing text with multiple lines inside a frame node, depending
on the zoom level some lines would wrongly get clipped despite being
inside the clipping region.
This was caused by the clipping check in `blf_glyph_draw` not accounting
for the font’s aspect.
Pull Request #105389
Increase the buffer sizes used for `BLI_str_format_uint64_grouped` to
prevent overflow on strings representing numbers within the uint64
range. Also creates and uses defines for all the formatted string
buffer sizes.
Pull Request #105263
Nodes are sorted based on the selection. In some cases (even depending
on processor speed, nodes can be selected and reordered, and another
operation can run before the next redraw). That gives a window where
operators mapped to the same input as selection can run with invalid
socket locations (which aren't updated after the nodes are reordered,
since they are stored in a separate array).
To fix this, move the socket locations from the node editor runtime
data to the node tree, tag them as invalid when the nodes are
reordered, and check for that status in a few more places.
A better longer term solution is not reordering nodes based on
UI status and instead storing the UI drawing order separately.
Pull Request #104420
This was not done originally, because one had to iterate over all curves
to get the number of points which had some overhead. Now the number
of points is stored all the time anyway.
The reverse iteration added in e091291b5b didn't handle
the case where there are no nodes properly. Thanks to Iliya Katueshenock
for investigating this.
Socket declarations exist all the time and it would be useful to use
them for tooltips at all times, not just when there is a computed log.
Differential Revision: https://developer.blender.org/D16846
Since internal links are only runtime data, we have the flexibility to
allocating every link individually. Instead we can store links directly
in the node runtime vector. This allows avoiding many small allocations
when copying and changing node trees.
In the future we could use a smaller type like a pair of sockets
instead of `bNodeLink` to save memory.
Differential Revision: https://developer.blender.org/D16960
Socket locations are set while drawing the node tree in the editor.
They can always be recalculated this way based on the node position and
other factors. Storing them in the socket is misleading. Plus, ideally
sockets would be quite small to store, this helps us move in that
direction.
Now the socket locations are stored as runtime data of the node editor,
making use of the new node topology cache's `index_in_tree` function
to make a SoA layout possible.
Differential Revision: https://developer.blender.org/D15874
This patch moves the realtime compositor out of experimental. See
T99210.
The first milestone is finished with regards to implementing most
essential nodes for single pass compositing. It is also now documented
in the manual and no major issues are known.
Differential Revision: https://developer.blender.org/D16891
Reviewed By: Clement Foucault
Finding the active view item button should only happen when it's actually
necessary, since looping through all buttons and blocks is an expensive
operation. This patch limits the search a bit more, to left clicks (the only
case that is actually handled).
This improves drawing performance in the node editor slightly,
where this was a bottleneck.
Differential Revision: https://developer.blender.org/D16882
The main change is returning a socket pointer instead of using two
return arguments. Also use the topology cache instead of linked lists,
references over pointers, and slightly adjust whitespace.
Partly a cleanup, but also iterating over spans can be faster than
linked lists. Also rewrite the multi-input socket link counting
to avoid the need for a temporary map. Overall, on my setup the changes
save about 5% (3ms) when drawing a large node tree (the mouse house file).
Small memory allocations are a bottleneck when drawing large node trees.
Avoid them by passing the socket index in the whole tree and getting the
tree from the context rather than allocating structs for the tree, node,
and socket. The performance improvement will be a few percent at most.
When these declarations are built without the help of the special
builder class, it's much more convenient to set them directly rather
than with a constructor, etc. In most other situations the declarations
should be const anyway, so theoretically this doesn't affect safety too
much. Most construction of declarations should still use the builder.
Geometry nodes used to log all socket values during evaluation.
This allowed the user to hover over any socket (that was evaluated)
to see its last value. The problem is that in large (nested) node trees,
the number of sockets becomes huge, causing a lot of performance
and memory overhead (in extreme cases, more than 70% of the
total execution time).
This patch changes it so, that only socket values are logged that the
user is likely to investigate. The simple heuristic is that socket values
of the currently visible node tree are logged.
The downside is that when the user changes the visible node tree, it
won't have any logged values until it is reevaluated. I updated the
tooltip message for that case to be a bit more precise.
If user feedback suggests that this new behavior is too annoying, we
can always add a UI option to log all socket values again. That shouldn't
be done without an actual need though because it takes up UI space.
Differential Revision: https://developer.blender.org/D16884
Add `bNode::index()` to allow accessing node indices directly without
manually de-referencing the runtime struct. Also adds some asserts to
make sure the access is valid and to check the nodes runtime vector.
Eagerly maintain the node's index in the tree so it can be accessed
without relying on the topology cache.
Differential Revision: https://developer.blender.org/D16683
90ea1b7643 broke the sorting that happens as nodes are selected.
The compare function for stable sort had different requirements than
the previous implementation.
This patch adds an integer identifier to nodes that doesn't change when
the node name changes. This identifier can be used by different systems
to reference a node. This may be important to store caches and simulation
states per node, because otherwise those would always be invalidated
when a node name changes.
Additionally, this kind of identifier could make some things more efficient,
because with it an integer is enough to identify a node and one does not
have to store the node name.
I observed a 10% improvement in evaluation time in a file with an extreme
number of simple math nodes, due to reduced logging overhead-- from
0.226s to 0.205s.
Differential Revision: https://developer.blender.org/D15775
This patch warns the user that the compositor setup is not fully
supported when an unsupported node is used. The warning is displayed as
an engine warning overlay and in the node header itself.
See T102353.
Differential Revision: https://developer.blender.org/D16508
Reviewed By: Clement Foucault