Files
test/source/blender/sequencer/intern/modifier.cc
Richard Antalik 897664ccc5 Fix #121319: Mask modifier not clamped to mask strip
Skip modifier, when using strip as a mask that ends before specified
timeline frame. To make behavior of missing mask more consistent,
modifier is also skipped, when strip produces blank output due to
missing data.

Skipping modifier due strip boundary only works, when "Mask Time" is set
to Relative mode. This is because absolute mode ignores strip offsets.

Pull Request: https://projects.blender.org/blender/blender/pulls/121498
2024-05-07 19:37:24 +02:00

1666 lines
48 KiB
C++

/* SPDX-FileCopyrightText: 2012 Blender Authors
*
* SPDX-License-Identifier: GPL-2.0-or-later */
/** \file
* \ingroup bke
*/
#include <cstddef>
#include <cstring>
#include "MEM_guardedalloc.h"
#include "BLI_listbase.h"
#include "BLI_string.h"
#include "BLI_string_utils.hh"
#include "BLI_utildefines.h"
#include "BLT_translation.hh"
#include "DNA_mask_types.h"
#include "DNA_scene_types.h"
#include "DNA_sequence_types.h"
#include "BKE_colortools.hh"
#include "IMB_colormanagement.hh"
#include "IMB_imbuf.hh"
#include "IMB_imbuf_types.hh"
#include "SEQ_modifier.hh"
#include "SEQ_render.hh"
#include "SEQ_sound.hh"
#include "SEQ_time.hh"
#include "SEQ_utils.hh"
#include "BLO_read_write.hh"
#include "render.hh"
static SequenceModifierTypeInfo *modifiersTypes[NUM_SEQUENCE_MODIFIER_TYPES];
static bool modifierTypesInit = false;
/* -------------------------------------------------------------------- */
/** \name Modifier Multi-Threading Utilities
* \{ */
using modifier_apply_threaded_cb = void (*)(int width,
int height,
uchar *rect,
float *rect_float,
uchar *mask_rect,
const float *mask_rect_float,
void *data_v);
struct ModifierInitData {
ImBuf *ibuf;
ImBuf *mask;
void *user_data;
modifier_apply_threaded_cb apply_callback;
};
struct ModifierThread {
int width, height;
uchar *rect, *mask_rect;
float *rect_float, *mask_rect_float;
void *user_data;
modifier_apply_threaded_cb apply_callback;
};
/**
* \a timeline_frame is offset by \a fra_offset only in case we are using a real mask.
*/
static ImBuf *modifier_render_mask_input(const SeqRenderData *context,
int mask_input_type,
Sequence *mask_sequence,
Mask *mask_id,
int timeline_frame,
int fra_offset,
bool make_float)
{
ImBuf *mask_input = nullptr;
if (mask_input_type == SEQUENCE_MASK_INPUT_STRIP) {
if (mask_sequence) {
SeqRenderState state;
mask_input = seq_render_strip(context, &state, mask_sequence, timeline_frame);
if (make_float) {
if (!mask_input->float_buffer.data) {
IMB_float_from_rect(mask_input);
}
}
else {
if (!mask_input->byte_buffer.data) {
IMB_rect_from_float(mask_input);
}
}
}
}
else if (mask_input_type == SEQUENCE_MASK_INPUT_ID) {
mask_input = seq_render_mask(context, mask_id, timeline_frame - fra_offset, make_float);
}
return mask_input;
}
static ImBuf *modifier_mask_get(SequenceModifierData *smd,
const SeqRenderData *context,
int timeline_frame,
int fra_offset,
bool make_float)
{
return modifier_render_mask_input(context,
smd->mask_input_type,
smd->mask_sequence,
smd->mask_id,
timeline_frame,
fra_offset,
make_float);
}
static void modifier_init_handle(void *handle_v, int start_line, int tot_line, void *init_data_v)
{
ModifierThread *handle = (ModifierThread *)handle_v;
ModifierInitData *init_data = (ModifierInitData *)init_data_v;
ImBuf *ibuf = init_data->ibuf;
ImBuf *mask = init_data->mask;
int offset = 4 * start_line * ibuf->x;
memset(handle, 0, sizeof(ModifierThread));
handle->width = ibuf->x;
handle->height = tot_line;
handle->apply_callback = init_data->apply_callback;
handle->user_data = init_data->user_data;
if (ibuf->byte_buffer.data) {
handle->rect = ibuf->byte_buffer.data + offset;
}
if (ibuf->float_buffer.data) {
handle->rect_float = ibuf->float_buffer.data + offset;
}
if (mask) {
if (mask->byte_buffer.data) {
handle->mask_rect = mask->byte_buffer.data + offset;
}
if (mask->float_buffer.data) {
handle->mask_rect_float = mask->float_buffer.data + offset;
}
}
else {
handle->mask_rect = nullptr;
handle->mask_rect_float = nullptr;
}
}
static void *modifier_do_thread(void *thread_data_v)
{
ModifierThread *td = (ModifierThread *)thread_data_v;
td->apply_callback(td->width,
td->height,
td->rect,
td->rect_float,
td->mask_rect,
td->mask_rect_float,
td->user_data);
return nullptr;
}
static void modifier_apply_threaded(ImBuf *ibuf,
ImBuf *mask,
modifier_apply_threaded_cb apply_callback,
void *user_data)
{
ModifierInitData init_data;
init_data.ibuf = ibuf;
init_data.mask = mask;
init_data.user_data = user_data;
init_data.apply_callback = apply_callback;
IMB_processor_apply_threaded(
ibuf->y, sizeof(ModifierThread), &init_data, modifier_init_handle, modifier_do_thread);
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Color Balance Modifier
* \{ */
static StripColorBalance calc_cb_lgg(StripColorBalance *cb_)
{
StripColorBalance cb = *cb_;
int c;
for (c = 0; c < 3; c++) {
cb.lift[c] = 2.0f - cb.lift[c];
}
if (cb.flag & SEQ_COLOR_BALANCE_INVERSE_LIFT) {
for (c = 0; c < 3; c++) {
/* tweak to give more subtle results
* values above 1.0 are scaled */
if (cb.lift[c] > 1.0f) {
cb.lift[c] = pow(cb.lift[c] - 1.0f, 2.0) + 1.0;
}
cb.lift[c] = 2.0f - cb.lift[c];
}
}
if (cb.flag & SEQ_COLOR_BALANCE_INVERSE_GAIN) {
for (c = 0; c < 3; c++) {
if (cb.gain[c] != 0.0f) {
cb.gain[c] = 1.0f / cb.gain[c];
}
else {
cb.gain[c] = 1000000; /* should be enough :) */
}
}
}
if (!(cb.flag & SEQ_COLOR_BALANCE_INVERSE_GAMMA)) {
for (c = 0; c < 3; c++) {
if (cb.gamma[c] != 0.0f) {
cb.gamma[c] = 1.0f / cb.gamma[c];
}
else {
cb.gamma[c] = 1000000; /* should be enough :) */
}
}
}
return cb;
}
static StripColorBalance calc_cb_sop(StripColorBalance *cb_)
{
StripColorBalance cb = *cb_;
int c;
for (c = 0; c < 3; c++) {
if (cb.flag & SEQ_COLOR_BALANCE_INVERSE_SLOPE) {
if (cb.slope[c] != 0.0f) {
cb.slope[c] = 1.0f / cb.slope[c];
}
else {
cb.slope[c] = 1000000;
}
}
if (cb.flag & SEQ_COLOR_BALANCE_INVERSE_OFFSET) {
cb.offset[c] = -1.0f * (cb.offset[c] - 1.0f);
}
else {
cb.offset[c] = cb.offset[c] - 1.0f;
}
if (!(cb.flag & SEQ_COLOR_BALANCE_INVERSE_POWER)) {
if (cb.power[c] != 0.0f) {
cb.power[c] = 1.0f / cb.power[c];
}
else {
cb.power[c] = 1000000;
}
}
}
return cb;
}
static StripColorBalance calc_cb(StripColorBalance *cb_)
{
if (cb_->method == SEQ_COLOR_BALANCE_METHOD_LIFTGAMMAGAIN) {
return calc_cb_lgg(cb_);
}
/* `cb_->method == SEQ_COLOR_BALANCE_METHOD_SLOPEOFFSETPOWER`. */
return calc_cb_sop(cb_);
}
/* NOTE: lift is actually 2-lift. */
MINLINE float color_balance_fl_lgg(
float in, const float lift, const float gain, const float gamma, const float mul)
{
float x = (((in - 1.0f) * lift) + 1.0f) * gain;
/* prevent NaN */
if (x < 0.0f) {
x = 0.0f;
}
x = powf(x, gamma) * mul;
CLAMP(x, FLT_MIN, FLT_MAX);
return x;
}
MINLINE float color_balance_fl_sop(float in,
const float slope,
const float offset,
const float power,
const float pivot,
float mul)
{
float x = in * slope + offset;
/* prevent NaN */
if (x < 0.0f) {
x = 0.0f;
}
x = powf(x / pivot, power) * pivot;
x *= mul;
CLAMP(x, FLT_MIN, FLT_MAX);
return x;
}
static void make_cb_table_float_lgg(float lift, float gain, float gamma, float *table, float mul)
{
for (int y = 0; y < 256; y++) {
float v = color_balance_fl_lgg(float(y) * (1.0f / 255.0f), lift, gain, gamma, mul);
table[y] = v;
}
}
static void make_cb_table_float_sop(
float slope, float offset, float power, float pivot, float *table, float mul)
{
for (int y = 0; y < 256; y++) {
float v = color_balance_fl_sop(float(y) * (1.0f / 255.0f), slope, offset, power, pivot, mul);
table[y] = v;
}
}
static void color_balance_byte_byte(
StripColorBalance *cb_, uchar *rect, const uchar *mask_rect, int width, int height, float mul)
{
// uchar cb_tab[3][256];
uchar *cp = rect;
uchar *e = cp + width * 4 * height;
const uchar *m = mask_rect;
StripColorBalance cb = calc_cb(cb_);
while (cp < e) {
float p[4];
int c;
straight_uchar_to_premul_float(p, cp);
for (c = 0; c < 3; c++) {
float t;
if (cb.method == SEQ_COLOR_BALANCE_METHOD_LIFTGAMMAGAIN) {
t = color_balance_fl_lgg(p[c], cb.lift[c], cb.gain[c], cb.gamma[c], mul);
}
else {
t = color_balance_fl_sop(p[c], cb.slope[c], cb.offset[c], cb.power[c], 1.0, mul);
}
if (m) {
float m_normal = float(m[c]) / 255.0f;
p[c] = p[c] * (1.0f - m_normal) + t * m_normal;
}
else {
p[c] = t;
}
}
premul_float_to_straight_uchar(cp, p);
cp += 4;
if (m) {
m += 4;
}
}
}
static void color_balance_byte_float(StripColorBalance *cb_,
uchar *rect,
float *rect_float,
const uchar *mask_rect,
int width,
int height,
float mul)
{
float cb_tab[4][256];
int c, i;
uchar *p = rect;
uchar *e = p + width * 4 * height;
const uchar *m = mask_rect;
float *o;
StripColorBalance cb;
o = rect_float;
cb = calc_cb(cb_);
for (c = 0; c < 3; c++) {
if (cb.method == SEQ_COLOR_BALANCE_METHOD_LIFTGAMMAGAIN) {
make_cb_table_float_lgg(cb.lift[c], cb.gain[c], cb.gamma[c], cb_tab[c], mul);
}
else {
make_cb_table_float_sop(cb.slope[c], cb.offset[c], cb.power[c], 1.0, cb_tab[c], mul);
}
}
for (i = 0; i < 256; i++) {
cb_tab[3][i] = float(i) * (1.0f / 255.0f);
}
while (p < e) {
if (m) {
const float t[3] = {m[0] / 255.0f, m[1] / 255.0f, m[2] / 255.0f};
p[0] = p[0] * (1.0f - t[0]) + t[0] * cb_tab[0][p[0]];
p[1] = p[1] * (1.0f - t[1]) + t[1] * cb_tab[1][p[1]];
p[2] = p[2] * (1.0f - t[2]) + t[2] * cb_tab[2][p[2]];
m += 4;
}
else {
o[0] = cb_tab[0][p[0]];
o[1] = cb_tab[1][p[1]];
o[2] = cb_tab[2][p[2]];
}
o[3] = cb_tab[3][p[3]];
p += 4;
o += 4;
}
}
static void color_balance_float_float(StripColorBalance *cb_,
float *rect_float,
const float *mask_rect_float,
int width,
int height,
float mul)
{
float *p = rect_float;
const float *e = rect_float + width * 4 * height;
const float *m = mask_rect_float;
StripColorBalance cb = calc_cb(cb_);
while (p < e) {
int c;
for (c = 0; c < 3; c++) {
float t;
if (cb_->method == SEQ_COLOR_BALANCE_METHOD_LIFTGAMMAGAIN) {
t = color_balance_fl_lgg(p[c], cb.lift[c], cb.gain[c], cb.gamma[c], mul);
}
else {
t = color_balance_fl_sop(p[c], cb.slope[c], cb.offset[c], cb.power[c], 1.0, mul);
}
if (m) {
p[c] = p[c] * (1.0f - m[c]) + t * m[c];
}
else {
p[c] = t;
}
}
p += 4;
if (m) {
m += 4;
}
}
}
struct ColorBalanceInitData {
StripColorBalance *cb;
ImBuf *ibuf;
float mul;
ImBuf *mask;
bool make_float;
};
struct ColorBalanceThread {
StripColorBalance *cb;
float mul;
int width, height;
uchar *rect, *mask_rect;
float *rect_float, *mask_rect_float;
bool make_float;
};
static void color_balance_init_handle(void *handle_v,
int start_line,
int tot_line,
void *init_data_v)
{
ColorBalanceThread *handle = (ColorBalanceThread *)handle_v;
ColorBalanceInitData *init_data = (ColorBalanceInitData *)init_data_v;
ImBuf *ibuf = init_data->ibuf;
ImBuf *mask = init_data->mask;
int offset = 4 * start_line * ibuf->x;
memset(handle, 0, sizeof(ColorBalanceThread));
handle->cb = init_data->cb;
handle->mul = init_data->mul;
handle->width = ibuf->x;
handle->height = tot_line;
handle->make_float = init_data->make_float;
if (ibuf->byte_buffer.data) {
handle->rect = ibuf->byte_buffer.data + offset;
}
if (ibuf->float_buffer.data) {
handle->rect_float = ibuf->float_buffer.data + offset;
}
if (mask) {
if (mask->byte_buffer.data) {
handle->mask_rect = mask->byte_buffer.data + offset;
}
if (mask->float_buffer.data) {
handle->mask_rect_float = mask->float_buffer.data + offset;
}
}
else {
handle->mask_rect = nullptr;
handle->mask_rect_float = nullptr;
}
}
static void *color_balance_do_thread(void *thread_data_v)
{
ColorBalanceThread *thread_data = (ColorBalanceThread *)thread_data_v;
StripColorBalance *cb = thread_data->cb;
int width = thread_data->width, height = thread_data->height;
uchar *rect = thread_data->rect;
const uchar *mask_rect = thread_data->mask_rect;
float *rect_float = thread_data->rect_float;
const float *mask_rect_float = thread_data->mask_rect_float;
float mul = thread_data->mul;
if (rect_float) {
color_balance_float_float(cb, rect_float, mask_rect_float, width, height, mul);
}
else if (thread_data->make_float) {
color_balance_byte_float(cb, rect, rect_float, mask_rect, width, height, mul);
}
else {
color_balance_byte_byte(cb, rect, mask_rect, width, height, mul);
}
return nullptr;
}
static void colorBalance_init_data(SequenceModifierData *smd)
{
ColorBalanceModifierData *cbmd = (ColorBalanceModifierData *)smd;
int c;
cbmd->color_multiply = 1.0f;
cbmd->color_balance.method = 0;
for (c = 0; c < 3; c++) {
cbmd->color_balance.lift[c] = 1.0f;
cbmd->color_balance.gamma[c] = 1.0f;
cbmd->color_balance.gain[c] = 1.0f;
cbmd->color_balance.slope[c] = 1.0f;
cbmd->color_balance.offset[c] = 1.0f;
cbmd->color_balance.power[c] = 1.0f;
}
}
static void modifier_color_balance_apply(
StripColorBalance *cb, ImBuf *ibuf, float mul, bool make_float, ImBuf *mask_input)
{
ColorBalanceInitData init_data;
if (!ibuf->float_buffer.data && make_float) {
imb_addrectfloatImBuf(ibuf, 4);
}
init_data.cb = cb;
init_data.ibuf = ibuf;
init_data.mul = mul;
init_data.make_float = make_float;
init_data.mask = mask_input;
IMB_processor_apply_threaded(ibuf->y,
sizeof(ColorBalanceThread),
&init_data,
color_balance_init_handle,
color_balance_do_thread);
/* color balance either happens on float buffer or byte buffer, but never on both,
* free byte buffer if there's float buffer since float buffer would be used for
* color balance in favor of byte buffer
*/
if (ibuf->float_buffer.data && ibuf->byte_buffer.data) {
imb_freerectImBuf(ibuf);
}
}
static void colorBalance_apply(SequenceModifierData *smd, ImBuf *ibuf, ImBuf *mask)
{
ColorBalanceModifierData *cbmd = (ColorBalanceModifierData *)smd;
modifier_color_balance_apply(&cbmd->color_balance, ibuf, cbmd->color_multiply, false, mask);
}
static SequenceModifierTypeInfo seqModifier_ColorBalance = {
/*name*/ CTX_N_(BLT_I18NCONTEXT_ID_SEQUENCE, "Color Balance"),
/*struct_name*/ "ColorBalanceModifierData",
/*struct_size*/ sizeof(ColorBalanceModifierData),
/*init_data*/ colorBalance_init_data,
/*free_data*/ nullptr,
/*copy_data*/ nullptr,
/*apply*/ colorBalance_apply,
};
/** \} */
/* -------------------------------------------------------------------- */
/** \name White Balance Modifier
* \{ */
static void whiteBalance_init_data(SequenceModifierData *smd)
{
WhiteBalanceModifierData *cbmd = (WhiteBalanceModifierData *)smd;
copy_v3_fl(cbmd->white_value, 1.0f);
}
struct WhiteBalanceThreadData {
float white[3];
};
static void whiteBalance_apply_threaded(int width,
int height,
uchar *rect,
float *rect_float,
uchar *mask_rect,
const float *mask_rect_float,
void *data_v)
{
int x, y;
float multiplier[3];
WhiteBalanceThreadData *data = (WhiteBalanceThreadData *)data_v;
multiplier[0] = (data->white[0] != 0.0f) ? 1.0f / data->white[0] : FLT_MAX;
multiplier[1] = (data->white[1] != 0.0f) ? 1.0f / data->white[1] : FLT_MAX;
multiplier[2] = (data->white[2] != 0.0f) ? 1.0f / data->white[2] : FLT_MAX;
for (y = 0; y < height; y++) {
for (x = 0; x < width; x++) {
int pixel_index = (y * width + x) * 4;
float rgba[4], result[4], mask[3] = {1.0f, 1.0f, 1.0f};
if (rect_float) {
copy_v3_v3(rgba, rect_float + pixel_index);
}
else {
straight_uchar_to_premul_float(rgba, rect + pixel_index);
}
copy_v4_v4(result, rgba);
#if 0
mul_v3_v3(result, multiplier);
#else
/* similar to division without the clipping */
for (int i = 0; i < 3; i++) {
result[i] = 1.0f - powf(1.0f - rgba[i], multiplier[i]);
}
#endif
if (mask_rect_float) {
copy_v3_v3(mask, mask_rect_float + pixel_index);
}
else if (mask_rect) {
rgb_uchar_to_float(mask, mask_rect + pixel_index);
}
result[0] = rgba[0] * (1.0f - mask[0]) + result[0] * mask[0];
result[1] = rgba[1] * (1.0f - mask[1]) + result[1] * mask[1];
result[2] = rgba[2] * (1.0f - mask[2]) + result[2] * mask[2];
if (rect_float) {
copy_v3_v3(rect_float + pixel_index, result);
}
else {
premul_float_to_straight_uchar(rect + pixel_index, result);
}
}
}
}
static void whiteBalance_apply(SequenceModifierData *smd, ImBuf *ibuf, ImBuf *mask)
{
WhiteBalanceThreadData data;
WhiteBalanceModifierData *wbmd = (WhiteBalanceModifierData *)smd;
copy_v3_v3(data.white, wbmd->white_value);
modifier_apply_threaded(ibuf, mask, whiteBalance_apply_threaded, &data);
}
static SequenceModifierTypeInfo seqModifier_WhiteBalance = {
/*name*/ CTX_N_(BLT_I18NCONTEXT_ID_SEQUENCE, "White Balance"),
/*struct_name*/ "WhiteBalanceModifierData",
/*struct_size*/ sizeof(WhiteBalanceModifierData),
/*init_data*/ whiteBalance_init_data,
/*free_data*/ nullptr,
/*copy_data*/ nullptr,
/*apply*/ whiteBalance_apply,
};
/** \} */
/* -------------------------------------------------------------------- */
/** \name Curves Modifier
* \{ */
static void curves_init_data(SequenceModifierData *smd)
{
CurvesModifierData *cmd = (CurvesModifierData *)smd;
BKE_curvemapping_set_defaults(&cmd->curve_mapping, 4, 0.0f, 0.0f, 1.0f, 1.0f, HD_AUTO);
}
static void curves_free_data(SequenceModifierData *smd)
{
CurvesModifierData *cmd = (CurvesModifierData *)smd;
BKE_curvemapping_free_data(&cmd->curve_mapping);
}
static void curves_copy_data(SequenceModifierData *target, SequenceModifierData *smd)
{
CurvesModifierData *cmd = (CurvesModifierData *)smd;
CurvesModifierData *cmd_target = (CurvesModifierData *)target;
BKE_curvemapping_copy_data(&cmd_target->curve_mapping, &cmd->curve_mapping);
}
static void curves_apply_threaded(int width,
int height,
uchar *rect,
float *rect_float,
uchar *mask_rect,
const float *mask_rect_float,
void *data_v)
{
CurveMapping *curve_mapping = (CurveMapping *)data_v;
int x, y;
for (y = 0; y < height; y++) {
for (x = 0; x < width; x++) {
int pixel_index = (y * width + x) * 4;
if (rect_float) {
float *pixel = rect_float + pixel_index;
float result[3];
BKE_curvemapping_evaluate_premulRGBF(curve_mapping, result, pixel);
if (mask_rect_float) {
const float *m = mask_rect_float + pixel_index;
pixel[0] = pixel[0] * (1.0f - m[0]) + result[0] * m[0];
pixel[1] = pixel[1] * (1.0f - m[1]) + result[1] * m[1];
pixel[2] = pixel[2] * (1.0f - m[2]) + result[2] * m[2];
}
else {
pixel[0] = result[0];
pixel[1] = result[1];
pixel[2] = result[2];
}
}
if (rect) {
uchar *pixel = rect + pixel_index;
float result[3], tempc[4];
straight_uchar_to_premul_float(tempc, pixel);
BKE_curvemapping_evaluate_premulRGBF(curve_mapping, result, tempc);
if (mask_rect) {
float t[3];
rgb_uchar_to_float(t, mask_rect + pixel_index);
tempc[0] = tempc[0] * (1.0f - t[0]) + result[0] * t[0];
tempc[1] = tempc[1] * (1.0f - t[1]) + result[1] * t[1];
tempc[2] = tempc[2] * (1.0f - t[2]) + result[2] * t[2];
}
else {
tempc[0] = result[0];
tempc[1] = result[1];
tempc[2] = result[2];
}
premul_float_to_straight_uchar(pixel, tempc);
}
}
}
}
static void curves_apply(SequenceModifierData *smd, ImBuf *ibuf, ImBuf *mask)
{
CurvesModifierData *cmd = (CurvesModifierData *)smd;
const float black[3] = {0.0f, 0.0f, 0.0f};
const float white[3] = {1.0f, 1.0f, 1.0f};
BKE_curvemapping_init(&cmd->curve_mapping);
BKE_curvemapping_premultiply(&cmd->curve_mapping, false);
BKE_curvemapping_set_black_white(&cmd->curve_mapping, black, white);
modifier_apply_threaded(ibuf, mask, curves_apply_threaded, &cmd->curve_mapping);
BKE_curvemapping_premultiply(&cmd->curve_mapping, true);
}
static SequenceModifierTypeInfo seqModifier_Curves = {
/*name*/ CTX_N_(BLT_I18NCONTEXT_ID_SEQUENCE, "Curves"),
/*struct_name*/ "CurvesModifierData",
/*struct_size*/ sizeof(CurvesModifierData),
/*init_data*/ curves_init_data,
/*free_data*/ curves_free_data,
/*copy_data*/ curves_copy_data,
/*apply*/ curves_apply,
};
/** \} */
/* -------------------------------------------------------------------- */
/** \name Hue Correct Modifier
* \{ */
static void hue_correct_init_data(SequenceModifierData *smd)
{
HueCorrectModifierData *hcmd = (HueCorrectModifierData *)smd;
int c;
BKE_curvemapping_set_defaults(&hcmd->curve_mapping, 1, 0.0f, 0.0f, 1.0f, 1.0f, HD_AUTO);
hcmd->curve_mapping.preset = CURVE_PRESET_MID8;
for (c = 0; c < 3; c++) {
CurveMap *cuma = &hcmd->curve_mapping.cm[c];
BKE_curvemap_reset(
cuma, &hcmd->curve_mapping.clipr, hcmd->curve_mapping.preset, CURVEMAP_SLOPE_POSITIVE);
}
/* use wrapping for all hue correct modifiers */
hcmd->curve_mapping.flag |= CUMA_USE_WRAPPING;
/* default to showing Saturation */
hcmd->curve_mapping.cur = 1;
}
static void hue_correct_free_data(SequenceModifierData *smd)
{
HueCorrectModifierData *hcmd = (HueCorrectModifierData *)smd;
BKE_curvemapping_free_data(&hcmd->curve_mapping);
}
static void hue_correct_copy_data(SequenceModifierData *target, SequenceModifierData *smd)
{
HueCorrectModifierData *hcmd = (HueCorrectModifierData *)smd;
HueCorrectModifierData *hcmd_target = (HueCorrectModifierData *)target;
BKE_curvemapping_copy_data(&hcmd_target->curve_mapping, &hcmd->curve_mapping);
}
static void hue_correct_apply_threaded(int width,
int height,
uchar *rect,
float *rect_float,
uchar *mask_rect,
const float *mask_rect_float,
void *data_v)
{
CurveMapping *curve_mapping = (CurveMapping *)data_v;
int x, y;
for (y = 0; y < height; y++) {
for (x = 0; x < width; x++) {
int pixel_index = (y * width + x) * 4;
float pixel[3], result[3], mask[3] = {1.0f, 1.0f, 1.0f};
float hsv[3], f;
if (rect_float) {
copy_v3_v3(pixel, rect_float + pixel_index);
}
else {
rgb_uchar_to_float(pixel, rect + pixel_index);
}
rgb_to_hsv(pixel[0], pixel[1], pixel[2], hsv, hsv + 1, hsv + 2);
/* adjust hue, scaling returned default 0.5 up to 1 */
f = BKE_curvemapping_evaluateF(curve_mapping, 0, hsv[0]);
hsv[0] += f - 0.5f;
/* adjust saturation, scaling returned default 0.5 up to 1 */
f = BKE_curvemapping_evaluateF(curve_mapping, 1, hsv[0]);
hsv[1] *= (f * 2.0f);
/* adjust value, scaling returned default 0.5 up to 1 */
f = BKE_curvemapping_evaluateF(curve_mapping, 2, hsv[0]);
hsv[2] *= (f * 2.0f);
hsv[0] = hsv[0] - floorf(hsv[0]); /* mod 1.0 */
CLAMP(hsv[1], 0.0f, 1.0f);
/* convert back to rgb */
hsv_to_rgb(hsv[0], hsv[1], hsv[2], result, result + 1, result + 2);
if (mask_rect_float) {
copy_v3_v3(mask, mask_rect_float + pixel_index);
}
else if (mask_rect) {
rgb_uchar_to_float(mask, mask_rect + pixel_index);
}
result[0] = pixel[0] * (1.0f - mask[0]) + result[0] * mask[0];
result[1] = pixel[1] * (1.0f - mask[1]) + result[1] * mask[1];
result[2] = pixel[2] * (1.0f - mask[2]) + result[2] * mask[2];
if (rect_float) {
copy_v3_v3(rect_float + pixel_index, result);
}
else {
rgb_float_to_uchar(rect + pixel_index, result);
}
}
}
}
static void hue_correct_apply(SequenceModifierData *smd, ImBuf *ibuf, ImBuf *mask)
{
HueCorrectModifierData *hcmd = (HueCorrectModifierData *)smd;
BKE_curvemapping_init(&hcmd->curve_mapping);
modifier_apply_threaded(ibuf, mask, hue_correct_apply_threaded, &hcmd->curve_mapping);
}
static SequenceModifierTypeInfo seqModifier_HueCorrect = {
/*name*/ CTX_N_(BLT_I18NCONTEXT_ID_SEQUENCE, "Hue Correct"),
/*struct_name*/ "HueCorrectModifierData",
/*struct_size*/ sizeof(HueCorrectModifierData),
/*init_data*/ hue_correct_init_data,
/*free_data*/ hue_correct_free_data,
/*copy_data*/ hue_correct_copy_data,
/*apply*/ hue_correct_apply,
};
/** \} */
/* -------------------------------------------------------------------- */
/** \name Brightness/Contrast Modifier
* \{ */
struct BrightContrastThreadData {
float bright;
float contrast;
};
static void brightcontrast_apply_threaded(int width,
int height,
uchar *rect,
float *rect_float,
uchar *mask_rect,
const float *mask_rect_float,
void *data_v)
{
BrightContrastThreadData *data = (BrightContrastThreadData *)data_v;
int x, y;
float i;
int c;
float a, b, v;
float brightness = data->bright / 100.0f;
float contrast = data->contrast;
float delta = contrast / 200.0f;
/*
* The algorithm is by Werner D. Streidt
* (http://visca.com/ffactory/archives/5-99/msg00021.html)
* Extracted of OpenCV `demhist.c`.
*/
if (contrast > 0) {
a = 1.0f - delta * 2.0f;
a = 1.0f / max_ff(a, FLT_EPSILON);
b = a * (brightness - delta);
}
else {
delta *= -1;
a = max_ff(1.0f - delta * 2.0f, 0.0f);
b = a * brightness + delta;
}
for (y = 0; y < height; y++) {
for (x = 0; x < width; x++) {
int pixel_index = (y * width + x) * 4;
if (rect) {
uchar *pixel = rect + pixel_index;
for (c = 0; c < 3; c++) {
i = float(pixel[c]) / 255.0f;
v = a * i + b;
if (mask_rect) {
uchar *m = mask_rect + pixel_index;
float t = float(m[c]) / 255.0f;
v = float(pixel[c]) / 255.0f * (1.0f - t) + v * t;
}
pixel[c] = unit_float_to_uchar_clamp(v);
}
}
else if (rect_float) {
float *pixel = rect_float + pixel_index;
for (c = 0; c < 3; c++) {
i = pixel[c];
v = a * i + b;
if (mask_rect_float) {
const float *m = mask_rect_float + pixel_index;
pixel[c] = pixel[c] * (1.0f - m[c]) + v * m[c];
}
else {
pixel[c] = v;
}
}
}
}
}
}
static void brightcontrast_apply(SequenceModifierData *smd, ImBuf *ibuf, ImBuf *mask)
{
BrightContrastModifierData *bcmd = (BrightContrastModifierData *)smd;
BrightContrastThreadData data;
data.bright = bcmd->bright;
data.contrast = bcmd->contrast;
modifier_apply_threaded(ibuf, mask, brightcontrast_apply_threaded, &data);
}
static SequenceModifierTypeInfo seqModifier_BrightContrast = {
/*name*/ CTX_N_(BLT_I18NCONTEXT_ID_SEQUENCE, "Brightness/Contrast"),
/*struct_name*/ "BrightContrastModifierData",
/*struct_size*/ sizeof(BrightContrastModifierData),
/*init_data*/ nullptr,
/*free_data*/ nullptr,
/*copy_data*/ nullptr,
/*apply*/ brightcontrast_apply,
};
/** \} */
/* -------------------------------------------------------------------- */
/** \name Mask Modifier
* \{ */
static void maskmodifier_apply_threaded(int width,
int height,
uchar *rect,
float *rect_float,
uchar *mask_rect,
const float *mask_rect_float,
void * /*data_v*/)
{
int x, y;
if (rect && !mask_rect) {
return;
}
if (rect_float && !mask_rect_float) {
return;
}
for (y = 0; y < height; y++) {
for (x = 0; x < width; x++) {
int pixel_index = (y * width + x) * 4;
if (rect) {
uchar *pixel = rect + pixel_index;
uchar *mask_pixel = mask_rect + pixel_index;
uchar mask = min_iii(mask_pixel[0], mask_pixel[1], mask_pixel[2]);
/* byte buffer is straight, so only affect on alpha itself,
* this is the only way to alpha-over byte strip after
* applying mask modifier.
*/
pixel[3] = float(pixel[3] * mask) / 255.0f;
}
else if (rect_float) {
int c;
float *pixel = rect_float + pixel_index;
const float *mask_pixel = mask_rect_float + pixel_index;
float mask = min_fff(mask_pixel[0], mask_pixel[1], mask_pixel[2]);
/* float buffers are premultiplied, so need to premul color
* as well to make it easy to alpha-over masted strip.
*/
for (c = 0; c < 4; c++) {
pixel[c] = pixel[c] * mask;
}
}
}
}
}
static void maskmodifier_apply(SequenceModifierData * /*smd*/, ImBuf *ibuf, ImBuf *mask)
{
// SequencerMaskModifierData *bcmd = (SequencerMaskModifierData *)smd;
modifier_apply_threaded(ibuf, mask, maskmodifier_apply_threaded, nullptr);
ibuf->planes = R_IMF_PLANES_RGBA;
}
static SequenceModifierTypeInfo seqModifier_Mask = {
/*name*/ CTX_N_(BLT_I18NCONTEXT_ID_SEQUENCE, "Mask"),
/*struct_name*/ "SequencerMaskModifierData",
/*struct_size*/ sizeof(SequencerMaskModifierData),
/*init_data*/ nullptr,
/*free_data*/ nullptr,
/*copy_data*/ nullptr,
/*apply*/ maskmodifier_apply,
};
/** \} */
/* -------------------------------------------------------------------- */
/** \name Tonemap Modifier
* \{ */
struct AvgLogLum {
SequencerTonemapModifierData *tmmd;
ColorSpace *colorspace;
float al;
float auto_key;
float lav;
float cav[4];
float igm;
};
static void tonemapmodifier_init_data(SequenceModifierData *smd)
{
SequencerTonemapModifierData *tmmd = (SequencerTonemapModifierData *)smd;
/* Same as tone-map compositor node. */
tmmd->type = SEQ_TONEMAP_RD_PHOTORECEPTOR;
tmmd->key = 0.18f;
tmmd->offset = 1.0f;
tmmd->gamma = 1.0f;
tmmd->intensity = 0.0f;
tmmd->contrast = 0.0f;
tmmd->adaptation = 1.0f;
tmmd->correction = 0.0f;
}
static void tonemapmodifier_apply_threaded_simple(int width,
int height,
uchar *rect,
float *rect_float,
uchar *mask_rect,
const float *mask_rect_float,
void *data_v)
{
AvgLogLum *avg = (AvgLogLum *)data_v;
for (int y = 0; y < height; y++) {
for (int x = 0; x < width; x++) {
int pixel_index = (y * width + x) * 4;
float input[4], output[4], mask[3] = {1.0f, 1.0f, 1.0f};
/* Get input value. */
if (rect_float) {
copy_v4_v4(input, &rect_float[pixel_index]);
}
else {
straight_uchar_to_premul_float(input, &rect[pixel_index]);
}
IMB_colormanagement_colorspace_to_scene_linear_v3(input, avg->colorspace);
copy_v4_v4(output, input);
/* Get mask value. */
if (mask_rect_float) {
copy_v3_v3(mask, mask_rect_float + pixel_index);
}
else if (mask_rect) {
rgb_uchar_to_float(mask, mask_rect + pixel_index);
}
/* Apply correction. */
mul_v3_fl(output, avg->al);
float dr = output[0] + avg->tmmd->offset;
float dg = output[1] + avg->tmmd->offset;
float db = output[2] + avg->tmmd->offset;
output[0] /= ((dr == 0.0f) ? 1.0f : dr);
output[1] /= ((dg == 0.0f) ? 1.0f : dg);
output[2] /= ((db == 0.0f) ? 1.0f : db);
const float igm = avg->igm;
if (igm != 0.0f) {
output[0] = powf(max_ff(output[0], 0.0f), igm);
output[1] = powf(max_ff(output[1], 0.0f), igm);
output[2] = powf(max_ff(output[2], 0.0f), igm);
}
/* Apply mask. */
output[0] = input[0] * (1.0f - mask[0]) + output[0] * mask[0];
output[1] = input[1] * (1.0f - mask[1]) + output[1] * mask[1];
output[2] = input[2] * (1.0f - mask[2]) + output[2] * mask[2];
/* Copy result back. */
IMB_colormanagement_scene_linear_to_colorspace_v3(output, avg->colorspace);
if (rect_float) {
copy_v4_v4(&rect_float[pixel_index], output);
}
else {
premul_float_to_straight_uchar(&rect[pixel_index], output);
}
}
}
}
static void tonemapmodifier_apply_threaded_photoreceptor(int width,
int height,
uchar *rect,
float *rect_float,
uchar *mask_rect,
const float *mask_rect_float,
void *data_v)
{
AvgLogLum *avg = (AvgLogLum *)data_v;
const float f = expf(-avg->tmmd->intensity);
const float m = (avg->tmmd->contrast > 0.0f) ? avg->tmmd->contrast :
(0.3f + 0.7f * powf(avg->auto_key, 1.4f));
const float ic = 1.0f - avg->tmmd->correction, ia = 1.0f - avg->tmmd->adaptation;
for (int y = 0; y < height; y++) {
for (int x = 0; x < width; x++) {
int pixel_index = (y * width + x) * 4;
float input[4], output[4], mask[3] = {1.0f, 1.0f, 1.0f};
/* Get input value. */
if (rect_float) {
copy_v4_v4(input, &rect_float[pixel_index]);
}
else {
straight_uchar_to_premul_float(input, &rect[pixel_index]);
}
IMB_colormanagement_colorspace_to_scene_linear_v3(input, avg->colorspace);
copy_v4_v4(output, input);
/* Get mask value. */
if (mask_rect_float) {
copy_v3_v3(mask, mask_rect_float + pixel_index);
}
else if (mask_rect) {
rgb_uchar_to_float(mask, mask_rect + pixel_index);
}
/* Apply correction. */
const float L = IMB_colormanagement_get_luminance(output);
float I_l = output[0] + ic * (L - output[0]);
float I_g = avg->cav[0] + ic * (avg->lav - avg->cav[0]);
float I_a = I_l + ia * (I_g - I_l);
output[0] /= (output[0] + powf(f * I_a, m));
I_l = output[1] + ic * (L - output[1]);
I_g = avg->cav[1] + ic * (avg->lav - avg->cav[1]);
I_a = I_l + ia * (I_g - I_l);
output[1] /= (output[1] + powf(f * I_a, m));
I_l = output[2] + ic * (L - output[2]);
I_g = avg->cav[2] + ic * (avg->lav - avg->cav[2]);
I_a = I_l + ia * (I_g - I_l);
output[2] /= (output[2] + powf(f * I_a, m));
/* Apply mask. */
output[0] = input[0] * (1.0f - mask[0]) + output[0] * mask[0];
output[1] = input[1] * (1.0f - mask[1]) + output[1] * mask[1];
output[2] = input[2] * (1.0f - mask[2]) + output[2] * mask[2];
/* Copy result back. */
IMB_colormanagement_scene_linear_to_colorspace_v3(output, avg->colorspace);
if (rect_float) {
copy_v4_v4(&rect_float[pixel_index], output);
}
else {
premul_float_to_straight_uchar(&rect[pixel_index], output);
}
}
}
}
static void tonemapmodifier_apply(SequenceModifierData *smd, ImBuf *ibuf, ImBuf *mask)
{
SequencerTonemapModifierData *tmmd = (SequencerTonemapModifierData *)smd;
AvgLogLum data;
data.tmmd = tmmd;
data.colorspace = (ibuf->float_buffer.data != nullptr) ? ibuf->float_buffer.colorspace :
ibuf->byte_buffer.colorspace;
float lsum = 0.0f;
int p = ibuf->x * ibuf->y;
float *fp = ibuf->float_buffer.data;
uchar *cp = ibuf->byte_buffer.data;
float avl, maxl = -FLT_MAX, minl = FLT_MAX;
const float sc = 1.0f / p;
float Lav = 0.0f;
float cav[4] = {0.0f, 0.0f, 0.0f, 0.0f};
while (p--) {
float pixel[4];
if (fp != nullptr) {
copy_v4_v4(pixel, fp);
}
else {
straight_uchar_to_premul_float(pixel, cp);
}
IMB_colormanagement_colorspace_to_scene_linear_v3(pixel, data.colorspace);
float L = IMB_colormanagement_get_luminance(pixel);
Lav += L;
add_v3_v3(cav, pixel);
lsum += logf(max_ff(L, 0.0f) + 1e-5f);
maxl = (L > maxl) ? L : maxl;
minl = (L < minl) ? L : minl;
if (fp != nullptr) {
fp += 4;
}
else {
cp += 4;
}
}
data.lav = Lav * sc;
mul_v3_v3fl(data.cav, cav, sc);
maxl = logf(maxl + 1e-5f);
minl = logf(minl + 1e-5f);
avl = lsum * sc;
data.auto_key = (maxl > minl) ? ((maxl - avl) / (maxl - minl)) : 1.0f;
float al = expf(avl);
data.al = (al == 0.0f) ? 0.0f : (tmmd->key / al);
data.igm = (tmmd->gamma == 0.0f) ? 1.0f : (1.0f / tmmd->gamma);
if (tmmd->type == SEQ_TONEMAP_RD_PHOTORECEPTOR) {
modifier_apply_threaded(ibuf, mask, tonemapmodifier_apply_threaded_photoreceptor, &data);
}
else /* if (tmmd->type == SEQ_TONEMAP_RD_SIMPLE) */ {
modifier_apply_threaded(ibuf, mask, tonemapmodifier_apply_threaded_simple, &data);
}
}
static SequenceModifierTypeInfo seqModifier_Tonemap = {
/*name*/ CTX_N_(BLT_I18NCONTEXT_ID_SEQUENCE, "Tonemap"),
/*struct_name*/ "SequencerTonemapModifierData",
/*struct_size*/ sizeof(SequencerTonemapModifierData),
/*init_data*/ tonemapmodifier_init_data,
/*free_data*/ nullptr,
/*copy_data*/ nullptr,
/*apply*/ tonemapmodifier_apply,
};
static SequenceModifierTypeInfo seqModifier_SoundEqualizer = {
CTX_N_(BLT_I18NCONTEXT_ID_SEQUENCE, "Equalizer"), /* name */
"SoundEqualizerModifierData", /* struct_name */
sizeof(SoundEqualizerModifierData), /* struct_size */
SEQ_sound_equalizermodifier_init_data, /* init_data */
SEQ_sound_equalizermodifier_free, /* free_data */
SEQ_sound_equalizermodifier_copy_data, /* copy_data */
nullptr, /* apply */
};
/** \} */
/* -------------------------------------------------------------------- */
/** \name Public Modifier Functions
* \{ */
static void sequence_modifier_type_info_init()
{
#define INIT_TYPE(typeName) (modifiersTypes[seqModifierType_##typeName] = &seqModifier_##typeName)
INIT_TYPE(ColorBalance);
INIT_TYPE(Curves);
INIT_TYPE(HueCorrect);
INIT_TYPE(BrightContrast);
INIT_TYPE(Mask);
INIT_TYPE(WhiteBalance);
INIT_TYPE(Tonemap);
INIT_TYPE(SoundEqualizer);
#undef INIT_TYPE
}
const SequenceModifierTypeInfo *SEQ_modifier_type_info_get(int type)
{
if (!modifierTypesInit) {
sequence_modifier_type_info_init();
modifierTypesInit = true;
}
return modifiersTypes[type];
}
SequenceModifierData *SEQ_modifier_new(Sequence *seq, const char *name, int type)
{
SequenceModifierData *smd;
const SequenceModifierTypeInfo *smti = SEQ_modifier_type_info_get(type);
smd = static_cast<SequenceModifierData *>(MEM_callocN(smti->struct_size, "sequence modifier"));
smd->type = type;
smd->flag |= SEQUENCE_MODIFIER_EXPANDED;
if (!name || !name[0]) {
STRNCPY(smd->name, smti->name);
}
else {
STRNCPY(smd->name, name);
}
BLI_addtail(&seq->modifiers, smd);
SEQ_modifier_unique_name(seq, smd);
if (smti->init_data) {
smti->init_data(smd);
}
return smd;
}
bool SEQ_modifier_remove(Sequence *seq, SequenceModifierData *smd)
{
if (BLI_findindex(&seq->modifiers, smd) == -1) {
return false;
}
BLI_remlink(&seq->modifiers, smd);
SEQ_modifier_free(smd);
return true;
}
void SEQ_modifier_clear(Sequence *seq)
{
SequenceModifierData *smd, *smd_next;
for (smd = static_cast<SequenceModifierData *>(seq->modifiers.first); smd; smd = smd_next) {
smd_next = smd->next;
SEQ_modifier_free(smd);
}
BLI_listbase_clear(&seq->modifiers);
}
void SEQ_modifier_free(SequenceModifierData *smd)
{
const SequenceModifierTypeInfo *smti = SEQ_modifier_type_info_get(smd->type);
if (smti && smti->free_data) {
smti->free_data(smd);
}
MEM_freeN(smd);
}
void SEQ_modifier_unique_name(Sequence *seq, SequenceModifierData *smd)
{
const SequenceModifierTypeInfo *smti = SEQ_modifier_type_info_get(smd->type);
BLI_uniquename(&seq->modifiers,
smd,
CTX_DATA_(BLT_I18NCONTEXT_ID_SEQUENCE, smti->name),
'.',
offsetof(SequenceModifierData, name),
sizeof(smd->name));
}
SequenceModifierData *SEQ_modifier_find_by_name(Sequence *seq, const char *name)
{
return static_cast<SequenceModifierData *>(
BLI_findstring(&(seq->modifiers), name, offsetof(SequenceModifierData, name)));
}
static bool skip_modifier(Scene *scene, const SequenceModifierData *smd, int timeline_frame)
{
using namespace blender::seq;
if (smd->mask_sequence == nullptr) {
return false;
}
const bool strip_has_ended_skip = smd->mask_input_type == SEQUENCE_MASK_INPUT_STRIP &&
smd->mask_time == SEQUENCE_MASK_TIME_RELATIVE &&
!SEQ_time_strip_intersects_frame(
scene, smd->mask_sequence, timeline_frame);
const bool missing_data_skip = !SEQ_sequence_has_valid_data(smd->mask_sequence) ||
media_presence_is_missing(scene, smd->mask_sequence);
return strip_has_ended_skip || missing_data_skip;
}
ImBuf *SEQ_modifier_apply_stack(const SeqRenderData *context,
Sequence *seq,
ImBuf *ibuf,
int timeline_frame)
{
ImBuf *processed_ibuf = ibuf;
if (seq->modifiers.first && (seq->flag & SEQ_USE_LINEAR_MODIFIERS)) {
processed_ibuf = IMB_dupImBuf(ibuf);
SEQ_render_imbuf_from_sequencer_space(context->scene, processed_ibuf);
}
LISTBASE_FOREACH (SequenceModifierData *, smd, &seq->modifiers) {
const SequenceModifierTypeInfo *smti = SEQ_modifier_type_info_get(smd->type);
/* could happen if modifier is being removed or not exists in current version of blender */
if (!smti) {
continue;
}
/* modifier is muted, do nothing */
if (smd->flag & SEQUENCE_MODIFIER_MUTE) {
continue;
}
if (smti->apply && !skip_modifier(context->scene, smd, timeline_frame)) {
int frame_offset;
if (smd->mask_time == SEQUENCE_MASK_TIME_RELATIVE) {
frame_offset = seq->start;
}
else /* if (smd->mask_time == SEQUENCE_MASK_TIME_ABSOLUTE) */ {
frame_offset = smd->mask_id ? ((Mask *)smd->mask_id)->sfra : 0;
}
ImBuf *mask = modifier_mask_get(
smd, context, timeline_frame, frame_offset, ibuf->float_buffer.data != nullptr);
if (processed_ibuf == ibuf) {
processed_ibuf = IMB_dupImBuf(ibuf);
}
smti->apply(smd, processed_ibuf, mask);
if (mask) {
IMB_freeImBuf(mask);
}
}
}
if (seq->modifiers.first && (seq->flag & SEQ_USE_LINEAR_MODIFIERS)) {
seq_imbuf_to_sequencer_space(context->scene, processed_ibuf, false);
}
return processed_ibuf;
}
void SEQ_modifier_list_copy(Sequence *seqn, Sequence *seq)
{
LISTBASE_FOREACH (SequenceModifierData *, smd, &seq->modifiers) {
SequenceModifierData *smdn;
const SequenceModifierTypeInfo *smti = SEQ_modifier_type_info_get(smd->type);
smdn = static_cast<SequenceModifierData *>(MEM_dupallocN(smd));
if (smti && smti->copy_data) {
smti->copy_data(smdn, smd);
}
BLI_addtail(&seqn->modifiers, smdn);
BLI_uniquename(&seqn->modifiers,
smdn,
"Strip Modifier",
'.',
offsetof(SequenceModifierData, name),
sizeof(SequenceModifierData::name));
}
}
int SEQ_sequence_supports_modifiers(Sequence *seq)
{
return (seq->type != SEQ_TYPE_SOUND_RAM);
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name .blend File I/O
* \{ */
void SEQ_modifier_blend_write(BlendWriter *writer, ListBase *modbase)
{
LISTBASE_FOREACH (SequenceModifierData *, smd, modbase) {
const SequenceModifierTypeInfo *smti = SEQ_modifier_type_info_get(smd->type);
if (smti) {
BLO_write_struct_by_name(writer, smti->struct_name, smd);
if (smd->type == seqModifierType_Curves) {
CurvesModifierData *cmd = (CurvesModifierData *)smd;
BKE_curvemapping_blend_write(writer, &cmd->curve_mapping);
}
else if (smd->type == seqModifierType_HueCorrect) {
HueCorrectModifierData *hcmd = (HueCorrectModifierData *)smd;
BKE_curvemapping_blend_write(writer, &hcmd->curve_mapping);
}
else if (smd->type == seqModifierType_SoundEqualizer) {
SoundEqualizerModifierData *semd = (SoundEqualizerModifierData *)smd;
LISTBASE_FOREACH (EQCurveMappingData *, eqcmd, &semd->graphics) {
BLO_write_struct_by_name(writer, "EQCurveMappingData", eqcmd);
BKE_curvemapping_blend_write(writer, &eqcmd->curve_mapping);
}
}
}
else {
BLO_write_struct(writer, SequenceModifierData, smd);
}
}
}
void SEQ_modifier_blend_read_data(BlendDataReader *reader, ListBase *lb)
{
BLO_read_struct_list(reader, SequenceModifierData, lb);
LISTBASE_FOREACH (SequenceModifierData *, smd, lb) {
if (smd->mask_sequence) {
BLO_read_struct(reader, Sequence, &smd->mask_sequence);
}
if (smd->type == seqModifierType_Curves) {
CurvesModifierData *cmd = (CurvesModifierData *)smd;
BKE_curvemapping_blend_read(reader, &cmd->curve_mapping);
}
else if (smd->type == seqModifierType_HueCorrect) {
HueCorrectModifierData *hcmd = (HueCorrectModifierData *)smd;
BKE_curvemapping_blend_read(reader, &hcmd->curve_mapping);
}
else if (smd->type == seqModifierType_SoundEqualizer) {
SoundEqualizerModifierData *semd = (SoundEqualizerModifierData *)smd;
BLO_read_struct_list(reader, EQCurveMappingData, &semd->graphics);
LISTBASE_FOREACH (EQCurveMappingData *, eqcmd, &semd->graphics) {
BKE_curvemapping_blend_read(reader, &eqcmd->curve_mapping);
}
}
}
}
/** \} */