Files
test/source/blender/blenkernel/intern/curve_poly.cc
Campbell Barton e955c94ed3 License Headers: Set copyright to "Blender Authors", add AUTHORS
Listing the "Blender Foundation" as copyright holder implied the Blender
Foundation holds copyright to files which may include work from many
developers.

While keeping copyright on headers makes sense for isolated libraries,
Blender's own code may be refactored or moved between files in a way
that makes the per file copyright holders less meaningful.

Copyright references to the "Blender Foundation" have been replaced with
"Blender Authors", with the exception of `./extern/` since these this
contains libraries which are more isolated, any changed to license
headers there can be handled on a case-by-case basis.

Some directories in `./intern/` have also been excluded:

- `./intern/cycles/` it's own `AUTHORS` file is planned.
- `./intern/opensubdiv/`.

An "AUTHORS" file has been added, using the chromium projects authors
file as a template.

Design task: #110784

Ref !110783.
2023-08-16 00:20:26 +10:00

205 lines
6.4 KiB
C++

/* SPDX-FileCopyrightText: 2023 Blender Authors
*
* SPDX-License-Identifier: GPL-2.0-or-later */
/** \file
* \ingroup bke
*/
#include <algorithm>
#include "BLI_math_rotation_legacy.hh"
#include "BLI_math_vector.hh"
#include "BKE_curves.hh"
namespace blender::bke::curves::poly {
static float3 direction_bisect(const float3 &prev,
const float3 &middle,
const float3 &next,
bool &r_used_fallback)
{
const float epsilon = 1e-6f;
const bool prev_equal = math::almost_equal_relative(prev, middle, epsilon);
const bool next_equal = math::almost_equal_relative(middle, next, epsilon);
if (prev_equal && next_equal) {
r_used_fallback = true;
return {0.0f, 0.0f, 0.0f};
}
if (prev_equal) {
return math::normalize(next - middle);
}
if (next_equal) {
return math::normalize(middle - prev);
}
const float3 dir_prev = math::normalize(middle - prev);
const float3 dir_next = math::normalize(next - middle);
const float3 result = math::normalize(dir_prev + dir_next);
return result;
}
void calculate_tangents(const Span<float3> positions,
const bool is_cyclic,
MutableSpan<float3> tangents)
{
BLI_assert(positions.size() == tangents.size());
if (positions.size() == 1) {
tangents.first() = float3(0.0f, 0.0f, 1.0f);
return;
}
bool used_fallback = false;
for (const int i : IndexRange(1, positions.size() - 2)) {
tangents[i] = direction_bisect(
positions[i - 1], positions[i], positions[i + 1], used_fallback);
}
if (is_cyclic) {
const float3 &second_to_last = positions[positions.size() - 2];
const float3 &last = positions.last();
const float3 &first = positions.first();
const float3 &second = positions[1];
tangents.first() = direction_bisect(last, first, second, used_fallback);
tangents.last() = direction_bisect(second_to_last, last, first, used_fallback);
}
else {
const float epsilon = 1e-6f;
if (math::almost_equal_relative(positions[0], positions[1], epsilon)) {
tangents.first() = {0.0f, 0.0f, 0.0f};
used_fallback = true;
}
else {
tangents.first() = math::normalize(positions[1] - positions[0]);
}
if (math::almost_equal_relative(positions.last(0), positions.last(1), epsilon)) {
tangents.last() = {0.0f, 0.0f, 0.0f};
used_fallback = true;
}
else {
tangents.last() = math::normalize(positions.last(0) - positions.last(1));
}
}
if (!used_fallback) {
return;
}
/* Find the first tangent that does not use the fallback. */
int first_valid_tangent_index = -1;
for (const int i : tangents.index_range()) {
if (!math::is_zero(tangents[i])) {
first_valid_tangent_index = i;
break;
}
}
if (first_valid_tangent_index == -1) {
/* If all tangents used the fallback, it means that all positions are (almost) the same. Just
* use the up-vector as default tangent. */
const float3 up_vector{0.0f, 0.0f, 1.0f};
tangents.fill(up_vector);
}
else {
const float3 &first_valid_tangent = tangents[first_valid_tangent_index];
/* If the first few tangents are invalid, use the tangent from the first point with a valid
* tangent. */
tangents.take_front(first_valid_tangent_index).fill(first_valid_tangent);
/* Use the previous valid tangent for points that had no valid tangent. */
for (const int i : tangents.index_range().drop_front(first_valid_tangent_index + 1)) {
float3 &tangent = tangents[i];
if (math::is_zero(tangent)) {
const float3 &prev_tangent = tangents[i - 1];
tangent = prev_tangent;
}
}
}
}
void calculate_normals_z_up(const Span<float3> tangents, MutableSpan<float3> normals)
{
BLI_assert(normals.size() == tangents.size());
/* Same as in `vec_to_quat`. */
const float epsilon = 1e-4f;
for (const int i : normals.index_range()) {
const float3 &tangent = tangents[i];
if (std::abs(tangent.x) + std::abs(tangent.y) < epsilon) {
normals[i] = {1.0f, 0.0f, 0.0f};
}
else {
normals[i] = math::normalize(float3(tangent.y, -tangent.x, 0.0f));
}
}
}
/**
* Rotate the last normal in the same way the tangent has been rotated.
*/
static float3 calculate_next_normal(const float3 &last_normal,
const float3 &last_tangent,
const float3 &current_tangent)
{
if (math::is_zero(last_tangent) || math::is_zero(current_tangent)) {
return last_normal;
}
const float angle = angle_normalized_v3v3(last_tangent, current_tangent);
if (angle != 0.0) {
const float3 axis = math::normalize(math::cross(last_tangent, current_tangent));
return math::rotate_direction_around_axis(last_normal, axis, angle);
}
return last_normal;
}
void calculate_normals_minimum(const Span<float3> tangents,
const bool cyclic,
MutableSpan<float3> normals)
{
BLI_assert(normals.size() == tangents.size());
if (normals.is_empty()) {
return;
}
const float epsilon = 1e-4f;
/* Set initial normal. */
const float3 &first_tangent = tangents.first();
if (fabs(first_tangent.x) + fabs(first_tangent.y) < epsilon) {
normals.first() = {1.0f, 0.0f, 0.0f};
}
else {
normals.first() = math::normalize(float3(first_tangent.y, -first_tangent.x, 0.0f));
}
/* Forward normal with minimum twist along the entire curve. */
for (const int i : IndexRange(1, normals.size() - 1)) {
normals[i] = calculate_next_normal(normals[i - 1], tangents[i - 1], tangents[i]);
}
if (!cyclic) {
return;
}
/* Compute how much the first normal deviates from the normal that has been forwarded along the
* entire cyclic curve. */
const float3 uncorrected_last_normal = calculate_next_normal(
normals.last(), tangents.last(), tangents.first());
float correction_angle = angle_signed_on_axis_v3v3_v3(
normals.first(), uncorrected_last_normal, tangents.first());
if (correction_angle > M_PI) {
correction_angle = correction_angle - 2 * M_PI;
}
/* Gradually apply correction by rotating all normals slightly. */
const float angle_step = correction_angle / normals.size();
for (const int i : normals.index_range()) {
const float angle = angle_step * i;
normals[i] = math::rotate_direction_around_axis(normals[i], tangents[i], angle);
}
}
} // namespace blender::bke::curves::poly