Files
test/source/blender/nodes/intern/geometry_nodes_lazy_function.cc
Jacques Lucke 176c6ef329 Geometry Nodes: unify menu switch with other nodes with dynamic sockets
This changes the menu switch socket to use the socket-items system
(`NOD_socket_items.hh`) that is already used by the simulation zone, repeat
zone, bake node and index switch node. By using this system, the per-node
boilerplate can be removed significantly. This is especially important as we
plan to have dynamic socket amounts in more nodes in the future.

There are some user visible changes which make the node more consistent with
others:
* Move the menu items list into the properties panel as in 0c585a1b8a.
* Add an extend socket.
* Duplicating a menu item keeps the name of the old one.

There is also a (backward compatible) change in the Python API: It's now
possible to directly access `node.enum_items` and `node.active_index` instead of
having to use `node.enum_definition.enum_items`. This is consistent with the
other nodes. For backward compatibility, `node.enum_definition` still exists,
but simply returns the node itself.

Many API functions from `NodeEnumDefinition` like
`NodeEnumDefinition::remove_item` have been removed. Those are not used anymore
and are unnecessary boilerplate. If ever necessary, they can be implemented back
in terms of the socket-items system.

The socket-items system had to be extended a little bit to support the case for
the menu switch node where each socket item has a name but no type. Previously,
there was the case without name and type in the index switch node, and the case
with both in the bake node and zones. The system was trivial to extend to this
case.

Pull Request: https://projects.blender.org/blender/blender/pulls/121234
2024-04-30 10:19:32 +02:00

4374 lines
173 KiB
C++

/* SPDX-FileCopyrightText: 2023 Blender Authors
*
* SPDX-License-Identifier: GPL-2.0-or-later */
/** \file
* \ingroup nodes
*
* This file mainly converts a #bNodeTree into a lazy-function graph, that can then be evaluated to
* execute geometry nodes. This generally works by creating a lazy-function for every node, which
* is then put into the lazy-function graph. Then the nodes in the new graph are linked based on
* links in the original #bNodeTree. Some additional nodes are inserted for things like type
* conversions and multi-input sockets.
*
* If the #bNodeTree contains zones, those are turned into separate lazy-functions first.
* Essentially, a separate lazy-function graph is created for every zone that is than called by the
* parent zone or by the root graph.
*
* Currently, lazy-functions are even created for nodes that don't strictly require it, like
* reroutes or muted nodes. In the future we could avoid that at the cost of additional code
* complexity. So far, this does not seem to be a performance issue.
*/
#include "NOD_geometry_exec.hh"
#include "NOD_geometry_nodes_lazy_function.hh"
#include "NOD_multi_function.hh"
#include "NOD_node_declaration.hh"
#include "BLI_array_utils.hh"
#include "BLI_bit_group_vector.hh"
#include "BLI_bit_span_ops.hh"
#include "BLI_cpp_types.hh"
#include "BLI_dot_export.hh"
#include "BLI_hash.h"
#include "BLI_hash_md5.hh"
#include "BLI_lazy_threading.hh"
#include "BLI_map.hh"
#include "DNA_ID.h"
#include "BKE_compute_contexts.hh"
#include "BKE_geometry_set.hh"
#include "BKE_node_socket_value.hh"
#include "BKE_node_tree_anonymous_attributes.hh"
#include "BKE_node_tree_zones.hh"
#include "BKE_type_conversions.hh"
#include "FN_lazy_function_execute.hh"
#include "FN_lazy_function_graph_executor.hh"
#include "DEG_depsgraph_query.hh"
#include <fmt/format.h>
#include <sstream>
namespace blender::nodes {
namespace aai = bke::anonymous_attribute_inferencing;
using bke::bNodeTreeZone;
using bke::bNodeTreeZones;
using bke::SocketValueVariant;
static const CPPType *get_socket_cpp_type(const bNodeSocketType &typeinfo)
{
const CPPType *type = typeinfo.geometry_nodes_cpp_type;
if (type == nullptr) {
return nullptr;
}
BLI_assert(type->has_special_member_functions());
return type;
}
static const CPPType *get_socket_cpp_type(const bNodeSocket &socket)
{
return get_socket_cpp_type(*socket.typeinfo);
}
static const CPPType *get_vector_type(const CPPType &type)
{
const VectorCPPType *vector_type = VectorCPPType::get_from_value(type);
if (vector_type == nullptr) {
return nullptr;
}
return &vector_type->self;
}
/**
* Checks which sockets of the node are available and creates corresponding inputs/outputs on the
* lazy-function.
*/
static void lazy_function_interface_from_node(const bNode &node,
Vector<lf::Input> &r_inputs,
Vector<lf::Output> &r_outputs,
MutableSpan<int> r_lf_index_by_bsocket)
{
const bool is_muted = node.is_muted();
const lf::ValueUsage input_usage = lf::ValueUsage::Used;
for (const bNodeSocket *socket : node.input_sockets()) {
if (!socket->is_available()) {
continue;
}
const CPPType *type = get_socket_cpp_type(*socket);
if (type == nullptr) {
continue;
}
if (socket->is_multi_input() && !is_muted) {
type = get_vector_type(*type);
}
r_lf_index_by_bsocket[socket->index_in_tree()] = r_inputs.append_and_get_index_as(
socket->name, *type, input_usage);
}
for (const bNodeSocket *socket : node.output_sockets()) {
if (!socket->is_available()) {
continue;
}
const CPPType *type = get_socket_cpp_type(*socket);
if (type == nullptr) {
continue;
}
r_lf_index_by_bsocket[socket->index_in_tree()] = r_outputs.append_and_get_index_as(
socket->name, *type);
}
}
NodeAnonymousAttributeID::NodeAnonymousAttributeID(const Object &object,
const ComputeContext &compute_context,
const bNode &bnode,
const StringRef identifier,
const StringRef name)
: socket_name_(name)
{
const ComputeContextHash &hash = compute_context.hash();
{
std::stringstream ss;
ss << hash << "_" << object.id.name << "_" << bnode.identifier << "_" << identifier;
long_name_ = ss.str();
}
{
uint64_t hash_result[2];
BLI_hash_md5_buffer(long_name_.data(), long_name_.size(), hash_result);
std::stringstream ss;
ss << ".a_" << std::hex << hash_result[0] << hash_result[1];
name_ = ss.str();
BLI_assert(name_.size() < MAX_CUSTOMDATA_LAYER_NAME);
}
}
std::string NodeAnonymousAttributeID::user_name() const
{
return socket_name_;
}
/**
* Used for most normal geometry nodes like Subdivision Surface and Set Position.
*/
class LazyFunctionForGeometryNode : public LazyFunction {
private:
const bNode &node_;
const GeometryNodesLazyFunctionGraphInfo &own_lf_graph_info_;
/**
* A bool for every output bsocket. If true, the socket just outputs a field containing an
* anonymous attribute id. If only such outputs are requested by other nodes, the node itself
* does not have to execute.
*/
Vector<bool> is_attribute_output_bsocket_;
struct OutputAttributeID {
int bsocket_index;
AnonymousAttributeIDPtr attribute_id;
};
struct Storage {
Vector<OutputAttributeID, 1> attributes;
};
public:
LazyFunctionForGeometryNode(const bNode &node,
GeometryNodesLazyFunctionGraphInfo &own_lf_graph_info)
: node_(node),
own_lf_graph_info_(own_lf_graph_info),
is_attribute_output_bsocket_(node.output_sockets().size(), false)
{
BLI_assert(node.typeinfo->geometry_node_execute != nullptr);
debug_name_ = node.name;
lazy_function_interface_from_node(
node, inputs_, outputs_, own_lf_graph_info.mapping.lf_index_by_bsocket);
const NodeDeclaration &node_decl = *node.declaration();
const aal::RelationsInNode *relations = node_decl.anonymous_attribute_relations();
if (relations == nullptr) {
return;
}
if (!relations->available_relations.is_empty()) {
/* Inputs are only used when an output is used that is not just outputting an anonymous
* attribute field. */
for (lf::Input &input : inputs_) {
input.usage = lf::ValueUsage::Maybe;
}
for (const aal::AvailableRelation &relation : relations->available_relations) {
is_attribute_output_bsocket_[relation.field_output] = true;
}
}
Vector<const bNodeSocket *> handled_field_outputs;
for (const aal::AvailableRelation &relation : relations->available_relations) {
const bNodeSocket &output_bsocket = node.output_socket(relation.field_output);
if (output_bsocket.is_available() && !handled_field_outputs.contains(&output_bsocket)) {
handled_field_outputs.append(&output_bsocket);
const int lf_index = inputs_.append_and_get_index_as("Output Used", CPPType::get<bool>());
own_lf_graph_info.mapping
.lf_input_index_for_output_bsocket_usage[output_bsocket.index_in_all_outputs()] =
lf_index;
}
}
Vector<const bNodeSocket *> handled_geometry_outputs;
for (const aal::PropagateRelation &relation : relations->propagate_relations) {
const bNodeSocket &output_bsocket = node.output_socket(relation.to_geometry_output);
if (output_bsocket.is_available() && !handled_geometry_outputs.contains(&output_bsocket)) {
handled_geometry_outputs.append(&output_bsocket);
const int lf_index = inputs_.append_and_get_index_as(
"Propagate to Output", CPPType::get<bke::AnonymousAttributeSet>());
own_lf_graph_info.mapping.lf_input_index_for_attribute_propagation_to_output
[output_bsocket.index_in_all_outputs()] = lf_index;
}
}
}
void *init_storage(LinearAllocator<> &allocator) const override
{
return allocator.construct<Storage>().release();
}
void destruct_storage(void *storage) const override
{
Storage *s = static_cast<Storage *>(storage);
std::destroy_at(s);
}
static const Object *get_self_object(const GeoNodesLFUserData &user_data)
{
if (user_data.call_data->modifier_data) {
return user_data.call_data->modifier_data->self_object;
}
if (user_data.call_data->operator_data) {
return user_data.call_data->operator_data->self_object_orig;
}
BLI_assert_unreachable();
return nullptr;
}
void execute_impl(lf::Params &params, const lf::Context &context) const override
{
Storage *storage = static_cast<Storage *>(context.storage);
GeoNodesLFUserData *user_data = dynamic_cast<GeoNodesLFUserData *>(context.user_data);
BLI_assert(user_data != nullptr);
const auto &local_user_data = *static_cast<GeoNodesLFLocalUserData *>(context.local_user_data);
/* Lazily create the required anonymous attribute ids. */
auto get_output_attribute_id = [&](const int output_bsocket_index) -> AnonymousAttributeIDPtr {
for (const OutputAttributeID &node_output_attribute : storage->attributes) {
if (node_output_attribute.bsocket_index == output_bsocket_index) {
return node_output_attribute.attribute_id;
}
}
const bNodeSocket &bsocket = node_.output_socket(output_bsocket_index);
AnonymousAttributeIDPtr attribute_id = AnonymousAttributeIDPtr(
MEM_new<NodeAnonymousAttributeID>(__func__,
*this->get_self_object(*user_data),
*user_data->compute_context,
node_,
bsocket.identifier,
bsocket.name));
storage->attributes.append({output_bsocket_index, attribute_id});
return attribute_id;
};
bool used_non_attribute_output_exists = false;
for (const int output_bsocket_index : node_.output_sockets().index_range()) {
const bNodeSocket &output_bsocket = node_.output_socket(output_bsocket_index);
const int lf_index =
own_lf_graph_info_.mapping.lf_index_by_bsocket[output_bsocket.index_in_tree()];
if (lf_index == -1) {
continue;
}
const lf::ValueUsage output_usage = params.get_output_usage(lf_index);
if (output_usage == lf::ValueUsage::Unused) {
continue;
}
if (is_attribute_output_bsocket_[output_bsocket_index]) {
if (params.output_was_set(lf_index)) {
continue;
}
this->output_anonymous_attribute_field(
params, lf_index, output_bsocket, get_output_attribute_id(output_bsocket_index));
}
else {
if (output_usage == lf::ValueUsage::Used) {
used_non_attribute_output_exists = true;
}
}
}
if (!used_non_attribute_output_exists) {
/* Only attribute outputs are used currently, no need to evaluate the full node and its
* inputs. */
return;
}
bool missing_input = false;
for (const int lf_index : inputs_.index_range()) {
if (params.try_get_input_data_ptr_or_request(lf_index) == nullptr) {
missing_input = true;
}
}
if (missing_input) {
/* Wait until all inputs are available. */
return;
}
GeoNodeExecParams geo_params{
node_,
params,
context,
own_lf_graph_info_.mapping.lf_input_index_for_output_bsocket_usage,
own_lf_graph_info_.mapping.lf_input_index_for_attribute_propagation_to_output,
get_output_attribute_id};
geo_eval_log::TimePoint start_time = geo_eval_log::Clock::now();
node_.typeinfo->geometry_node_execute(geo_params);
geo_eval_log::TimePoint end_time = geo_eval_log::Clock::now();
if (geo_eval_log::GeoTreeLogger *tree_logger = local_user_data.try_get_tree_logger(*user_data))
{
tree_logger->node_execution_times.append(*tree_logger->allocator,
{node_.identifier, start_time, end_time});
}
}
/**
* Output the given anonymous attribute id as a field.
*/
void output_anonymous_attribute_field(lf::Params &params,
const int lf_index,
const bNodeSocket &bsocket,
AnonymousAttributeIDPtr attribute_id) const
{
GField output_field{std::make_shared<AnonymousAttributeFieldInput>(
std::move(attribute_id),
*bsocket.typeinfo->base_cpp_type,
fmt::format(TIP_("{} node"), node_.label_or_name()))};
void *r_value = params.get_output_data_ptr(lf_index);
new (r_value) SocketValueVariant(std::move(output_field));
params.output_set(lf_index);
}
std::string input_name(const int index) const override
{
for (const bNodeSocket *bsocket : node_.output_sockets()) {
{
const int lf_index =
own_lf_graph_info_.mapping
.lf_input_index_for_output_bsocket_usage[bsocket->index_in_all_outputs()];
if (index == lf_index) {
return StringRef("Use Output '") + bsocket->name + "'";
}
}
{
const int lf_index =
own_lf_graph_info_.mapping.lf_input_index_for_attribute_propagation_to_output
[bsocket->index_in_all_outputs()];
if (index == lf_index) {
return StringRef("Propagate to '") + bsocket->name + "'";
}
}
}
return inputs_[index].debug_name;
}
std::string output_name(const int index) const override
{
return outputs_[index].debug_name;
}
};
/**
* Used to gather all inputs of a multi-input socket. A separate node is necessary because
* multi-inputs are not supported in lazy-function graphs.
*/
class LazyFunctionForMultiInput : public LazyFunction {
private:
const CPPType *base_type_;
public:
LazyFunctionForMultiInput(const bNodeSocket &socket)
{
debug_name_ = "Multi Input";
base_type_ = get_socket_cpp_type(socket);
BLI_assert(base_type_ != nullptr);
BLI_assert(socket.is_multi_input());
for (const bNodeLink *link : socket.directly_linked_links()) {
if (link->is_muted() || !link->fromsock->is_available() ||
link->fromnode->is_dangling_reroute())
{
continue;
}
inputs_.append({"Input", *base_type_});
}
const CPPType *vector_type = get_vector_type(*base_type_);
BLI_assert(vector_type != nullptr);
outputs_.append({"Output", *vector_type});
}
void execute_impl(lf::Params &params, const lf::Context & /*context*/) const override
{
/* Currently we only have multi-inputs for geometry and value sockets. This could be
* generalized in the future. */
base_type_->to_static_type_tag<GeometrySet, SocketValueVariant>([&](auto type_tag) {
using T = typename decltype(type_tag)::type;
if constexpr (std::is_void_v<T>) {
/* This type is not supported in this node for now. */
BLI_assert_unreachable();
}
else {
void *output_ptr = params.get_output_data_ptr(0);
Vector<T> &values = *new (output_ptr) Vector<T>();
for (const int i : inputs_.index_range()) {
values.append(params.extract_input<T>(i));
}
params.output_set(0);
}
});
}
};
/**
* Simple lazy-function that just forwards the input.
*/
class LazyFunctionForRerouteNode : public LazyFunction {
public:
LazyFunctionForRerouteNode(const CPPType &type)
{
debug_name_ = "Reroute";
inputs_.append({"Input", type});
outputs_.append({"Output", type});
}
void execute_impl(lf::Params &params, const lf::Context & /*context*/) const override
{
void *input_value = params.try_get_input_data_ptr(0);
void *output_value = params.get_output_data_ptr(0);
BLI_assert(input_value != nullptr);
BLI_assert(output_value != nullptr);
const CPPType &type = *inputs_[0].type;
type.move_construct(input_value, output_value);
params.output_set(0);
}
};
/**
* Lazy functions for nodes whose type cannot be found. An undefined function just outputs default
* values. It's useful to have so other parts of the conversion don't have to care about undefined
* nodes.
*/
class LazyFunctionForUndefinedNode : public LazyFunction {
const bNode &node_;
public:
LazyFunctionForUndefinedNode(const bNode &node, MutableSpan<int> r_lf_index_by_bsocket)
: node_(node)
{
debug_name_ = "Undefined";
Vector<lf::Input> dummy_inputs;
lazy_function_interface_from_node(node, dummy_inputs, outputs_, r_lf_index_by_bsocket);
}
void execute_impl(lf::Params &params, const lf::Context & /*context*/) const override
{
set_default_remaining_node_outputs(params, node_);
}
};
static void set_default_value_for_output_socket(lf::Params &params,
const int lf_index,
const bNodeSocket &bsocket)
{
const CPPType &cpp_type = *bsocket.typeinfo->geometry_nodes_cpp_type;
void *output_value = params.get_output_data_ptr(lf_index);
if (bsocket.typeinfo->geometry_nodes_default_cpp_value) {
cpp_type.copy_construct(bsocket.typeinfo->geometry_nodes_default_cpp_value, output_value);
}
else {
cpp_type.value_initialize(output_value);
}
params.output_set(lf_index);
}
void set_default_remaining_node_outputs(lf::Params &params, const bNode &node)
{
const bNodeTree &ntree = node.owner_tree();
const Span<int> lf_index_by_bsocket =
ntree.runtime->geometry_nodes_lazy_function_graph_info->mapping.lf_index_by_bsocket;
for (const bNodeSocket *bsocket : node.output_sockets()) {
const int lf_index = lf_index_by_bsocket[bsocket->index_in_tree()];
if (lf_index == -1) {
continue;
}
if (params.output_was_set(lf_index)) {
continue;
}
set_default_value_for_output_socket(params, lf_index, *bsocket);
}
}
/**
* Executes a multi-function. If all inputs are single values, the results will also be single
* values. If any input is a field, the outputs will also be fields.
*/
static void execute_multi_function_on_value_variant(const MultiFunction &fn,
const std::shared_ptr<MultiFunction> &owned_fn,
const Span<SocketValueVariant *> input_values,
const Span<SocketValueVariant *> output_values)
{
/* Check if any input is a field. */
bool any_input_is_field = false;
for (const int i : input_values.index_range()) {
if (input_values[i]->is_context_dependent_field()) {
any_input_is_field = true;
break;
}
}
if (any_input_is_field) {
/* Convert all inputs into fields, so that they can be used as input in the new field. */
Vector<GField> input_fields;
for (const int i : input_values.index_range()) {
input_fields.append(input_values[i]->extract<GField>());
}
/* Construct the new field node. */
std::shared_ptr<fn::FieldOperation> operation;
if (owned_fn) {
operation = fn::FieldOperation::Create(owned_fn, std::move(input_fields));
}
else {
operation = fn::FieldOperation::Create(fn, std::move(input_fields));
}
/* Store the new fields in the output. */
for (const int i : output_values.index_range()) {
output_values[i]->set(GField{operation, i});
}
}
else {
/* In this case, the multi-function is evaluated directly. */
const IndexMask mask(1);
mf::ParamsBuilder params{fn, &mask};
mf::ContextBuilder context;
for (const int i : input_values.index_range()) {
SocketValueVariant &input_variant = *input_values[i];
input_variant.convert_to_single();
const void *value = input_variant.get_single_ptr_raw();
const CPPType &cpp_type = fn.param_type(params.next_param_index()).data_type().single_type();
params.add_readonly_single_input(GPointer{cpp_type, value});
}
for (const int i : output_values.index_range()) {
SocketValueVariant &output_variant = *output_values[i];
const CPPType &cpp_type = fn.param_type(params.next_param_index()).data_type().single_type();
const eNodeSocketDatatype socket_type =
bke::geo_nodes_base_cpp_type_to_socket_type(cpp_type).value();
void *value = output_variant.allocate_single(socket_type);
params.add_uninitialized_single_output(GMutableSpan{cpp_type, value, 1});
}
fn.call(mask, params, context);
}
}
/**
* Behavior of muted nodes:
* - Some inputs are forwarded to outputs without changes.
* - Some inputs are converted to a different type which becomes the output.
* - Some outputs are value initialized because they don't have a corresponding input.
*/
class LazyFunctionForMutedNode : public LazyFunction {
private:
const bNode &node_;
Span<int> lf_index_by_bsocket_;
Array<const bNodeSocket *> input_by_output_index_;
public:
LazyFunctionForMutedNode(const bNode &node, MutableSpan<int> r_lf_index_by_bsocket)
: node_(node), lf_index_by_bsocket_(r_lf_index_by_bsocket)
{
debug_name_ = "Muted";
lazy_function_interface_from_node(node, inputs_, outputs_, r_lf_index_by_bsocket);
for (lf::Input &fn_input : inputs_) {
fn_input.usage = lf::ValueUsage::Maybe;
}
for (lf::Input &fn_input : inputs_) {
fn_input.usage = lf::ValueUsage::Unused;
}
input_by_output_index_.reinitialize(node.output_sockets().size());
input_by_output_index_.fill(nullptr);
for (const bNodeLink &internal_link : node.internal_links()) {
const int input_i = r_lf_index_by_bsocket[internal_link.fromsock->index_in_tree()];
const int output_i = r_lf_index_by_bsocket[internal_link.tosock->index_in_tree()];
if (ELEM(-1, input_i, output_i)) {
continue;
}
input_by_output_index_[internal_link.tosock->index()] = internal_link.fromsock;
inputs_[input_i].usage = lf::ValueUsage::Maybe;
}
}
void execute_impl(lf::Params &params, const lf::Context & /*context*/) const override
{
for (const bNodeSocket *output_bsocket : node_.output_sockets()) {
const int lf_output_index = lf_index_by_bsocket_[output_bsocket->index_in_tree()];
if (lf_output_index == -1) {
continue;
}
if (params.output_was_set(lf_output_index)) {
continue;
}
if (params.get_output_usage(lf_output_index) != lf::ValueUsage::Used) {
continue;
}
const bNodeSocket *input_bsocket = input_by_output_index_[output_bsocket->index()];
if (input_bsocket == nullptr) {
set_default_value_for_output_socket(params, lf_output_index, *output_bsocket);
continue;
}
const int lf_input_index = lf_index_by_bsocket_[input_bsocket->index_in_tree()];
const void *input_value = params.try_get_input_data_ptr_or_request(lf_input_index);
if (input_value == nullptr) {
/* Wait for value to be available. */
continue;
}
void *output_value = params.get_output_data_ptr(lf_output_index);
if (input_bsocket->type == output_bsocket->type) {
inputs_[lf_input_index].type->copy_construct(input_value, output_value);
params.output_set(lf_output_index);
continue;
}
const bke::DataTypeConversions &conversions = bke::get_implicit_type_conversions();
if (conversions.is_convertible(*input_bsocket->typeinfo->base_cpp_type,
*output_bsocket->typeinfo->base_cpp_type))
{
const MultiFunction &multi_fn = *conversions.get_conversion_multi_function(
mf::DataType::ForSingle(*input_bsocket->typeinfo->base_cpp_type),
mf::DataType::ForSingle(*output_bsocket->typeinfo->base_cpp_type));
SocketValueVariant input_variant = *static_cast<const SocketValueVariant *>(input_value);
SocketValueVariant *output_variant = new (output_value) SocketValueVariant();
execute_multi_function_on_value_variant(multi_fn, {}, {&input_variant}, {output_variant});
params.output_set(lf_output_index);
continue;
}
set_default_value_for_output_socket(params, lf_output_index, *output_bsocket);
}
}
};
/**
* Type conversions are generally implemented as multi-functions. This node checks if the input is
* a field or single value and outputs a field or single value respectively.
*/
class LazyFunctionForMultiFunctionConversion : public LazyFunction {
private:
const MultiFunction &fn_;
public:
LazyFunctionForMultiFunctionConversion(const MultiFunction &fn) : fn_(fn)
{
debug_name_ = "Convert";
inputs_.append_as("From", CPPType::get<SocketValueVariant>());
outputs_.append_as("To", CPPType::get<SocketValueVariant>());
}
void execute_impl(lf::Params &params, const lf::Context & /*context*/) const override
{
SocketValueVariant *from_value = params.try_get_input_data_ptr<SocketValueVariant>(0);
SocketValueVariant *to_value = new (params.get_output_data_ptr(0)) SocketValueVariant();
BLI_assert(from_value != nullptr);
BLI_assert(to_value != nullptr);
execute_multi_function_on_value_variant(fn_, {}, {from_value}, {to_value});
params.output_set(0);
}
};
/**
* This lazy-function wraps nodes that are implemented as multi-function (mostly math nodes).
*/
class LazyFunctionForMultiFunctionNode : public LazyFunction {
private:
const NodeMultiFunctions::Item fn_item_;
public:
LazyFunctionForMultiFunctionNode(const bNode &node,
NodeMultiFunctions::Item fn_item,
MutableSpan<int> r_lf_index_by_bsocket)
: fn_item_(std::move(fn_item))
{
BLI_assert(fn_item_.fn != nullptr);
debug_name_ = node.name;
lazy_function_interface_from_node(node, inputs_, outputs_, r_lf_index_by_bsocket);
}
void execute_impl(lf::Params &params, const lf::Context & /*context*/) const override
{
Vector<SocketValueVariant *> input_values(inputs_.size());
Vector<SocketValueVariant *> output_values(outputs_.size());
for (const int i : inputs_.index_range()) {
input_values[i] = params.try_get_input_data_ptr<SocketValueVariant>(i);
}
for (const int i : outputs_.index_range()) {
output_values[i] = new (params.get_output_data_ptr(i)) SocketValueVariant();
}
execute_multi_function_on_value_variant(
*fn_item_.fn, fn_item_.owned_fn, input_values, output_values);
for (const int i : outputs_.index_range()) {
params.output_set(i);
}
}
};
/**
* Some sockets have non-trivial implicit inputs (e.g. the Position input of the Set Position
* node). Those are implemented as a separate node that outputs the value.
*/
class LazyFunctionForImplicitInput : public LazyFunction {
private:
/**
* The function that generates the implicit input. The passed in memory is uninitialized.
*/
std::function<void(void *)> init_fn_;
public:
LazyFunctionForImplicitInput(const CPPType &type, std::function<void(void *)> init_fn)
: init_fn_(std::move(init_fn))
{
debug_name_ = "Input";
outputs_.append({"Output", type});
}
void execute_impl(lf::Params &params, const lf::Context & /*context*/) const override
{
void *value = params.get_output_data_ptr(0);
init_fn_(value);
params.output_set(0);
}
};
/**
* The viewer node does not have outputs. Instead it is executed because the executor knows that it
* has side effects. The side effect is that the inputs to the viewer are logged.
*/
class LazyFunctionForViewerNode : public LazyFunction {
private:
const bNode &bnode_;
/** The field is only logged when it is linked. */
bool use_field_input_ = true;
public:
LazyFunctionForViewerNode(const bNode &bnode, MutableSpan<int> r_lf_index_by_bsocket)
: bnode_(bnode)
{
debug_name_ = "Viewer";
lazy_function_interface_from_node(bnode, inputs_, outputs_, r_lf_index_by_bsocket);
/* Remove field input if it is not used. */
for (const bNodeSocket *bsocket : bnode.input_sockets().drop_front(1)) {
if (!bsocket->is_available()) {
continue;
}
const Span<const bNodeLink *> links = bsocket->directly_linked_links();
if (links.is_empty() || links.first()->fromnode->is_dangling_reroute()) {
use_field_input_ = false;
inputs_.pop_last();
r_lf_index_by_bsocket[bsocket->index_in_tree()] = -1;
}
}
}
void execute_impl(lf::Params &params, const lf::Context &context) const override
{
const auto &user_data = *static_cast<GeoNodesLFUserData *>(context.user_data);
const auto &local_user_data = *static_cast<GeoNodesLFLocalUserData *>(context.local_user_data);
geo_eval_log::GeoTreeLogger *tree_logger = local_user_data.try_get_tree_logger(user_data);
if (tree_logger == nullptr) {
return;
}
GeometrySet geometry = params.extract_input<GeometrySet>(0);
const NodeGeometryViewer *storage = static_cast<NodeGeometryViewer *>(bnode_.storage);
if (use_field_input_) {
SocketValueVariant *value_variant = params.try_get_input_data_ptr<SocketValueVariant>(1);
BLI_assert(value_variant != nullptr);
GField field = value_variant->extract<GField>();
const AttrDomain domain = AttrDomain(storage->domain);
const StringRefNull viewer_attribute_name = ".viewer";
if (domain == AttrDomain::Instance) {
if (geometry.has_instances()) {
GeometryComponent &component = geometry.get_component_for_write(
bke::GeometryComponent::Type::Instance);
bke::try_capture_field_on_geometry(
component, viewer_attribute_name, AttrDomain::Instance, field);
}
}
else {
geometry.modify_geometry_sets([&](GeometrySet &geometry) {
for (const bke::GeometryComponent::Type type : {bke::GeometryComponent::Type::Mesh,
bke::GeometryComponent::Type::PointCloud,
bke::GeometryComponent::Type::Curve})
{
if (geometry.has(type)) {
GeometryComponent &component = geometry.get_component_for_write(type);
AttrDomain used_domain = domain;
if (used_domain == AttrDomain::Auto) {
if (const std::optional<AttrDomain> detected_domain = bke::try_detect_field_domain(
component, field))
{
used_domain = *detected_domain;
}
else {
used_domain = AttrDomain::Point;
}
}
bke::try_capture_field_on_geometry(
component, viewer_attribute_name, used_domain, field);
}
}
});
}
}
tree_logger->log_viewer_node(bnode_, std::move(geometry));
}
};
/**
* Outputs true when a specific viewer node is used in the current context and false otherwise.
*/
class LazyFunctionForViewerInputUsage : public LazyFunction {
private:
const lf::FunctionNode &lf_viewer_node_;
public:
LazyFunctionForViewerInputUsage(const lf::FunctionNode &lf_viewer_node)
: lf_viewer_node_(lf_viewer_node)
{
debug_name_ = "Viewer Input Usage";
outputs_.append_as("Viewer is Used", CPPType::get<bool>());
}
void execute_impl(lf::Params &params, const lf::Context &context) const override
{
GeoNodesLFUserData *user_data = dynamic_cast<GeoNodesLFUserData *>(context.user_data);
BLI_assert(user_data != nullptr);
if (!user_data->call_data->side_effect_nodes) {
params.set_output<bool>(0, false);
return;
}
const ComputeContextHash &context_hash = user_data->compute_context->hash();
const Span<const lf::FunctionNode *> nodes_with_side_effects =
user_data->call_data->side_effect_nodes->nodes_by_context.lookup(context_hash);
const bool viewer_is_used = nodes_with_side_effects.contains(&lf_viewer_node_);
params.set_output(0, viewer_is_used);
}
};
class LazyFunctionForSimulationInputsUsage : public LazyFunction {
private:
const bNode *output_bnode_;
public:
LazyFunctionForSimulationInputsUsage(const bNode &output_bnode) : output_bnode_(&output_bnode)
{
debug_name_ = "Simulation Inputs Usage";
outputs_.append_as("Need Input Inputs", CPPType::get<bool>());
outputs_.append_as("Need Output Inputs", CPPType::get<bool>());
}
void execute_impl(lf::Params &params, const lf::Context &context) const override
{
const GeoNodesLFUserData &user_data = *static_cast<GeoNodesLFUserData *>(context.user_data);
const GeoNodesCallData &call_data = *user_data.call_data;
if (!call_data.simulation_params) {
this->set_default_outputs(params);
return;
}
const std::optional<FoundNestedNodeID> found_id = find_nested_node_id(
user_data, output_bnode_->identifier);
if (!found_id) {
this->set_default_outputs(params);
return;
}
if (found_id->is_in_loop) {
this->set_default_outputs(params);
return;
}
SimulationZoneBehavior *zone_behavior = call_data.simulation_params->get(found_id->id);
if (!zone_behavior) {
this->set_default_outputs(params);
return;
}
bool solve_contains_side_effect = false;
if (call_data.side_effect_nodes) {
const Span<const lf::FunctionNode *> side_effect_nodes =
call_data.side_effect_nodes->nodes_by_context.lookup(user_data.compute_context->hash());
solve_contains_side_effect = !side_effect_nodes.is_empty();
}
params.set_output(0, std::holds_alternative<sim_input::PassThrough>(zone_behavior->input));
params.set_output(
1,
solve_contains_side_effect ||
std::holds_alternative<sim_output::StoreNewState>(zone_behavior->output));
}
void set_default_outputs(lf::Params &params) const
{
params.set_output(0, false);
params.set_output(1, false);
}
};
class LazyFunctionForBakeInputsUsage : public LazyFunction {
private:
const bNode *bnode_;
public:
LazyFunctionForBakeInputsUsage(const bNode &bnode) : bnode_(&bnode)
{
debug_name_ = "Bake Inputs Usage";
outputs_.append_as("Used", CPPType::get<bool>());
}
void execute_impl(lf::Params &params, const lf::Context &context) const override
{
const GeoNodesLFUserData &user_data = *static_cast<GeoNodesLFUserData *>(context.user_data);
if (!user_data.call_data->bake_params) {
this->set_default_outputs(params);
return;
}
const std::optional<FoundNestedNodeID> found_id = find_nested_node_id(user_data,
bnode_->identifier);
if (!found_id) {
this->set_default_outputs(params);
return;
}
if (found_id->is_in_loop || found_id->is_in_simulation) {
this->set_default_outputs(params);
return;
}
BakeNodeBehavior *behavior = user_data.call_data->bake_params->get(found_id->id);
if (!behavior) {
this->set_default_outputs(params);
return;
}
const bool need_inputs = std::holds_alternative<sim_output::PassThrough>(behavior->behavior) ||
std::holds_alternative<sim_output::StoreNewState>(behavior->behavior);
params.set_output(0, need_inputs);
}
void set_default_outputs(lf::Params &params) const
{
params.set_output(0, false);
}
};
static bool should_log_socket_values_for_context(const GeoNodesLFUserData &user_data,
const ComputeContextHash hash)
{
if (const Set<ComputeContextHash> *contexts = user_data.call_data->socket_log_contexts) {
return contexts->contains(hash);
}
else if (user_data.call_data->operator_data) {
return false;
}
return true;
}
/**
* This lazy-function wraps a group node. Internally it just executes the lazy-function graph of
* the referenced group.
*/
class LazyFunctionForGroupNode : public LazyFunction {
private:
const bNode &group_node_;
const LazyFunction &group_lazy_function_;
bool has_many_nodes_ = false;
struct Storage {
void *group_storage = nullptr;
/* To avoid computing the hash more than once. */
std::optional<ComputeContextHash> context_hash_cache;
};
public:
LazyFunctionForGroupNode(const bNode &group_node,
const GeometryNodesLazyFunctionGraphInfo &group_lf_graph_info,
GeometryNodesLazyFunctionGraphInfo &own_lf_graph_info)
: group_node_(group_node), group_lazy_function_(*group_lf_graph_info.function.function)
{
debug_name_ = group_node.name;
allow_missing_requested_inputs_ = true;
/* This wrapper has the same interface as the actual underlying node group. */
inputs_ = group_lf_graph_info.function.function->inputs();
outputs_ = group_lf_graph_info.function.function->outputs();
has_many_nodes_ = group_lf_graph_info.num_inline_nodes_approximate > 1000;
/* Add a boolean input for every output bsocket that indicates whether that socket is used. */
for (const int i : group_node.output_sockets().index_range()) {
own_lf_graph_info.mapping.lf_input_index_for_output_bsocket_usage
[group_node.output_socket(i).index_in_all_outputs()] =
group_lf_graph_info.function.inputs.output_usages[i];
}
/* Add an attribute set input for every output geometry socket that can propagate attributes
* from inputs. */
for (const int i : group_lf_graph_info.function.inputs.attributes_to_propagate.geometry_outputs
.index_range())
{
const int lf_index = group_lf_graph_info.function.inputs.attributes_to_propagate.range[i];
const int output_index =
group_lf_graph_info.function.inputs.attributes_to_propagate.geometry_outputs[i];
const bNodeSocket &output_bsocket = group_node_.output_socket(output_index);
own_lf_graph_info.mapping.lf_input_index_for_attribute_propagation_to_output
[output_bsocket.index_in_all_outputs()] = lf_index;
}
}
void execute_impl(lf::Params &params, const lf::Context &context) const override
{
GeoNodesLFUserData *user_data = dynamic_cast<GeoNodesLFUserData *>(context.user_data);
BLI_assert(user_data != nullptr);
if (has_many_nodes_) {
/* If the called node group has many nodes, it's likely that executing it takes a while even
* if every individual node is very small. */
lazy_threading::send_hint();
}
Storage *storage = static_cast<Storage *>(context.storage);
/* The compute context changes when entering a node group. */
bke::GroupNodeComputeContext compute_context{
user_data->compute_context, group_node_.identifier, storage->context_hash_cache};
storage->context_hash_cache = compute_context.hash();
GeoNodesLFUserData group_user_data = *user_data;
group_user_data.compute_context = &compute_context;
group_user_data.log_socket_values = should_log_socket_values_for_context(
*user_data, compute_context.hash());
GeoNodesLFLocalUserData group_local_user_data{group_user_data};
lf::Context group_context{storage->group_storage, &group_user_data, &group_local_user_data};
group_lazy_function_.execute(params, group_context);
}
void *init_storage(LinearAllocator<> &allocator) const override
{
Storage *s = allocator.construct<Storage>().release();
s->group_storage = group_lazy_function_.init_storage(allocator);
return s;
}
void destruct_storage(void *storage) const override
{
Storage *s = static_cast<Storage *>(storage);
group_lazy_function_.destruct_storage(s->group_storage);
std::destroy_at(s);
}
std::string name() const override
{
return fmt::format(TIP_("Group '{}' ({})"), group_node_.id->name + 2, group_node_.name);
}
std::string input_name(const int i) const override
{
return group_lazy_function_.input_name(i);
}
std::string output_name(const int i) const override
{
return group_lazy_function_.output_name(i);
}
};
static GMutablePointer get_socket_default_value(LinearAllocator<> &allocator,
const bNodeSocket &bsocket)
{
const bNodeSocketType &typeinfo = *bsocket.typeinfo;
const CPPType *type = get_socket_cpp_type(typeinfo);
if (type == nullptr) {
return {};
}
void *buffer = allocator.allocate(type->size(), type->alignment());
typeinfo.get_geometry_nodes_cpp_value(bsocket.default_value, buffer);
return {type, buffer};
}
/**
* Computes the logical or of the inputs and supports short-circuit evaluation (i.e. if the first
* input is true already, the other inputs are not checked).
*/
class LazyFunctionForLogicalOr : public lf::LazyFunction {
public:
LazyFunctionForLogicalOr(const int inputs_num)
{
debug_name_ = "Logical Or";
for ([[maybe_unused]] const int i : IndexRange(inputs_num)) {
inputs_.append_as("Input", CPPType::get<bool>(), lf::ValueUsage::Maybe);
}
outputs_.append_as("Output", CPPType::get<bool>());
}
void execute_impl(lf::Params &params, const lf::Context & /*context*/) const override
{
int first_unavailable_input = -1;
for (const int i : inputs_.index_range()) {
if (const bool *value = params.try_get_input_data_ptr<bool>(i)) {
if (*value) {
params.set_output(0, true);
return;
}
}
else {
first_unavailable_input = i;
}
}
if (first_unavailable_input == -1) {
params.set_output(0, false);
return;
}
params.try_get_input_data_ptr_or_request(first_unavailable_input);
}
};
/**
* Outputs booleans that indicate which inputs of a switch node are used. Note that it's possible
* that both inputs are used when the condition is a field.
*/
class LazyFunctionForSwitchSocketUsage : public lf::LazyFunction {
public:
LazyFunctionForSwitchSocketUsage()
{
debug_name_ = "Switch Socket Usage";
inputs_.append_as("Condition", CPPType::get<SocketValueVariant>());
outputs_.append_as("False", CPPType::get<bool>());
outputs_.append_as("True", CPPType::get<bool>());
}
void execute_impl(lf::Params &params, const lf::Context & /*context*/) const override
{
const SocketValueVariant &condition_variant = params.get_input<SocketValueVariant>(0);
if (condition_variant.is_context_dependent_field()) {
params.set_output(0, true);
params.set_output(1, true);
}
else {
const bool value = condition_variant.get<bool>();
params.set_output(0, !value);
params.set_output(1, value);
}
}
};
/**
* Outputs booleans that indicate which inputs of a switch node are used. Note that it's possible
* that all inputs are used when the index input is a field.
*/
class LazyFunctionForIndexSwitchSocketUsage : public lf::LazyFunction {
public:
LazyFunctionForIndexSwitchSocketUsage(const bNode &bnode)
{
debug_name_ = "Index Switch Socket Usage";
inputs_.append_as("Index", CPPType::get<SocketValueVariant>());
for (const bNodeSocket *socket : bnode.input_sockets().drop_front(1)) {
outputs_.append_as(socket->identifier, CPPType::get<bool>());
}
}
void execute_impl(lf::Params &params, const lf::Context & /*context*/) const override
{
const SocketValueVariant &index_variant = params.get_input<SocketValueVariant>(0);
if (index_variant.is_context_dependent_field()) {
for (const int i : outputs_.index_range()) {
params.set_output(i, true);
}
}
else {
const int value = index_variant.get<bool>();
for (const int i : outputs_.index_range()) {
params.set_output(i, i == value);
}
}
}
};
/**
* Takes a field as input and extracts the set of anonymous attributes that it references.
*/
class LazyFunctionForAnonymousAttributeSetExtract : public lf::LazyFunction {
public:
LazyFunctionForAnonymousAttributeSetExtract()
{
debug_name_ = "Extract Attribute Set";
inputs_.append_as("Use", CPPType::get<bool>());
inputs_.append_as("Field", CPPType::get<SocketValueVariant>(), lf::ValueUsage::Maybe);
outputs_.append_as("Attributes", CPPType::get<bke::AnonymousAttributeSet>());
}
void execute_impl(lf::Params &params, const lf::Context & /*context*/) const override
{
const bool use = params.get_input<bool>(0);
if (!use) {
params.set_output<bke::AnonymousAttributeSet>(0, {});
return;
}
const SocketValueVariant *value_variant =
params.try_get_input_data_ptr_or_request<SocketValueVariant>(1);
if (value_variant == nullptr) {
/* Wait until the field is computed. */
return;
}
bke::AnonymousAttributeSet attributes;
if (value_variant->is_context_dependent_field()) {
const GField &field = value_variant->get<GField>();
field.node().for_each_field_input_recursive([&](const FieldInput &field_input) {
if (const auto *attr_field_input = dynamic_cast<const AnonymousAttributeFieldInput *>(
&field_input))
{
if (!attributes.names) {
attributes.names = std::make_shared<Set<std::string>>();
}
attributes.names->add_as(attr_field_input->anonymous_id()->name());
}
});
}
params.set_output(0, std::move(attributes));
}
};
/**
* Conditionally joins multiple attribute sets. Each input attribute set can be disabled with a
* corresponding boolean input.
*/
class LazyFunctionForAnonymousAttributeSetJoin : public lf::LazyFunction {
const int amount_;
public:
LazyFunctionForAnonymousAttributeSetJoin(const int amount) : amount_(amount)
{
debug_name_ = "Join Attribute Sets";
for ([[maybe_unused]] const int i : IndexRange(amount)) {
inputs_.append_as("Use", CPPType::get<bool>());
inputs_.append_as(
"Attribute Set", CPPType::get<bke::AnonymousAttributeSet>(), lf::ValueUsage::Maybe);
}
outputs_.append_as("Attribute Set", CPPType::get<bke::AnonymousAttributeSet>());
}
void execute_impl(lf::Params &params, const lf::Context & /*context*/) const override
{
Vector<bke::AnonymousAttributeSet *> sets;
bool set_is_missing = false;
for (const int i : IndexRange(amount_)) {
if (params.get_input<bool>(this->get_use_input(i))) {
if (bke::AnonymousAttributeSet *set =
params.try_get_input_data_ptr_or_request<bke::AnonymousAttributeSet>(
this->get_attribute_set_input(i)))
{
sets.append(set);
}
else {
set_is_missing = true;
}
}
}
if (set_is_missing) {
return;
}
bke::AnonymousAttributeSet joined_set;
if (sets.is_empty()) {
/* Nothing to do. */
}
else if (sets.size() == 1) {
joined_set.names = std::move(sets[0]->names);
}
else {
joined_set.names = std::make_shared<Set<std::string>>();
for (const bke::AnonymousAttributeSet *set : sets) {
if (set->names) {
for (const std::string &name : *set->names) {
joined_set.names->add(name);
}
}
}
}
params.set_output(0, std::move(joined_set));
}
int get_use_input(const int i) const
{
return 2 * i;
}
int get_attribute_set_input(const int i) const
{
return 2 * i + 1;
}
/**
* Cache for functions small amounts to avoid to avoid building them many times.
*/
static const LazyFunctionForAnonymousAttributeSetJoin &get_cached(const int amount,
ResourceScope &scope)
{
constexpr int cache_amount = 16;
static std::array<LazyFunctionForAnonymousAttributeSetJoin, cache_amount> cached_functions =
get_cache(std::make_index_sequence<cache_amount>{});
if (amount < cached_functions.size()) {
return cached_functions[amount];
}
return scope.construct<LazyFunctionForAnonymousAttributeSetJoin>(amount);
}
private:
template<size_t... I>
static std::array<LazyFunctionForAnonymousAttributeSetJoin, sizeof...(I)> get_cache(
std::index_sequence<I...> /*indices*/)
{
return {LazyFunctionForAnonymousAttributeSetJoin(I)...};
}
};
class LazyFunctionForSimulationZone : public LazyFunction {
private:
const bNode &sim_output_bnode_;
const LazyFunction &fn_;
public:
LazyFunctionForSimulationZone(const bNode &sim_output_bnode, const LazyFunction &fn)
: sim_output_bnode_(sim_output_bnode), fn_(fn)
{
debug_name_ = "Simulation Zone";
inputs_ = fn.inputs();
outputs_ = fn.outputs();
}
void execute_impl(lf::Params &params, const lf::Context &context) const override
{
GeoNodesLFUserData &user_data = *static_cast<GeoNodesLFUserData *>(context.user_data);
bke::SimulationZoneComputeContext compute_context{user_data.compute_context,
sim_output_bnode_};
GeoNodesLFUserData zone_user_data = user_data;
zone_user_data.compute_context = &compute_context;
zone_user_data.log_socket_values = should_log_socket_values_for_context(
user_data, compute_context.hash());
GeoNodesLFLocalUserData zone_local_user_data{zone_user_data};
lf::Context zone_context{context.storage, &zone_user_data, &zone_local_user_data};
fn_.execute(params, zone_context);
}
void *init_storage(LinearAllocator<> &allocator) const override
{
return fn_.init_storage(allocator);
}
void destruct_storage(void *storage) const override
{
fn_.destruct_storage(storage);
}
std::string input_name(const int i) const override
{
return fn_.input_name(i);
}
std::string output_name(const int i) const override
{
return fn_.output_name(i);
}
};
using JoinAttributeSetsCache = Map<Vector<lf::OutputSocket *>, lf::OutputSocket *>;
struct BuildGraphParams {
/** Lazy-function graph that nodes and links should be inserted into. */
lf::Graph &lf_graph;
/** Map #bNodeSocket to newly generated sockets. Those maps are later used to insert links. */
MultiValueMap<const bNodeSocket *, lf::InputSocket *> lf_inputs_by_bsocket;
Map<const bNodeSocket *, lf::OutputSocket *> lf_output_by_bsocket;
/**
* Maps sockets to corresponding generated boolean sockets that indicate whether the socket is
* used or not.
*/
Map<const bNodeSocket *, lf::OutputSocket *> usage_by_bsocket;
/**
* Nodes that propagate anonymous attributes have to know which of those attributes to propagate.
* For that they have an attribute set input for each geometry output.
*/
Map<const bNodeSocket *, lf::InputSocket *> lf_attribute_set_input_by_output_geometry_bsocket;
/**
* Multi-input sockets are split into a separate node that collects all the individual values and
* then passes them to the main node function as list.
*/
Map<const bNodeSocket *, lf::Node *> multi_input_socket_nodes;
/**
* This is similar to #lf_inputs_by_bsocket but contains more relevant information when border
* links are linked to multi-input sockets.
*/
Map<const bNodeLink *, lf::InputSocket *> lf_input_by_border_link;
/**
* Keeps track of all boolean inputs that indicate whether a socket is used. Links to those
* sockets may be replaced with a constant-true if necessary to break dependency cycles in
* #fix_link_cycles.
*/
Set<lf::InputSocket *> socket_usage_inputs;
/**
* Collect input sockets that anonymous attribute sets based on fields or group inputs have to be
* linked to later.
*/
MultiValueMap<int, lf::InputSocket *> lf_attribute_set_input_by_field_source_index;
MultiValueMap<int, lf::InputSocket *> lf_attribute_set_input_by_caller_propagation_index;
/** */
/** Cache to avoid building the same socket combinations multiple times. */
Map<Vector<lf::OutputSocket *>, lf::OutputSocket *> socket_usages_combination_cache;
};
struct ZoneFunctionIndices {
struct {
Vector<int> main;
Vector<int> border_links;
Vector<int> output_usages;
/**
* Some attribute sets are input into the body of a zone from the outside. These two
* maps indicate which zone function inputs corresponds to attribute set. Attribute sets are
* identified by either a "field source index" or "caller propagation index".
*/
Map<int, int> attributes_by_field_source_index;
Map<int, int> attributes_by_caller_propagation_index;
} inputs;
struct {
Vector<int> main;
Vector<int> border_link_usages;
Vector<int> input_usages;
} outputs;
};
struct ZoneBuildInfo {
/** The lazy function that contains the zone. */
const LazyFunction *lazy_function = nullptr;
/** Information about what the various inputs and outputs of the lazy-function are. */
ZoneFunctionIndices indices;
};
/**
* Contains the lazy-function for the "body" of a zone. It contains all the nodes inside of the
* zone. The "body" function is wrapped by another lazy-function which represents the zone as a
* hole. The wrapper function might invoke the zone body multiple times (like for repeat zones).
*/
struct ZoneBodyFunction {
const LazyFunction *function = nullptr;
ZoneFunctionIndices indices;
};
/**
* Wraps the execution of a repeat loop body. The purpose is to setup the correct #ComputeContext
* inside of the loop body. This is necessary to support correct logging inside of a repeat zone.
* An alternative would be to use a separate `LazyFunction` for every iteration, but that would
* have higher overhead.
*/
class RepeatBodyNodeExecuteWrapper : public lf::GraphExecutorNodeExecuteWrapper {
public:
const bNode *repeat_output_bnode_ = nullptr;
VectorSet<lf::FunctionNode *> *lf_body_nodes_ = nullptr;
void execute_node(const lf::FunctionNode &node,
lf::Params &params,
const lf::Context &context) const
{
GeoNodesLFUserData &user_data = *static_cast<GeoNodesLFUserData *>(context.user_data);
const int iteration = lf_body_nodes_->index_of_try(const_cast<lf::FunctionNode *>(&node));
const LazyFunction &fn = node.function();
if (iteration == -1) {
/* The node is not a loop body node, just execute it normally. */
fn.execute(params, context);
return;
}
/* Setup context for the loop body evaluation. */
bke::RepeatZoneComputeContext body_compute_context{
user_data.compute_context, *repeat_output_bnode_, iteration};
GeoNodesLFUserData body_user_data = user_data;
body_user_data.compute_context = &body_compute_context;
body_user_data.log_socket_values = should_log_socket_values_for_context(
user_data, body_compute_context.hash());
GeoNodesLFLocalUserData body_local_user_data{body_user_data};
lf::Context body_context{context.storage, &body_user_data, &body_local_user_data};
fn.execute(params, body_context);
}
};
/**
* Knows which iterations of the loop evaluation have side effects.
*/
class RepeatZoneSideEffectProvider : public lf::GraphExecutorSideEffectProvider {
public:
const bNode *repeat_output_bnode_ = nullptr;
Span<lf::FunctionNode *> lf_body_nodes_;
Vector<const lf::FunctionNode *> get_nodes_with_side_effects(
const lf::Context &context) const override
{
GeoNodesLFUserData &user_data = *static_cast<GeoNodesLFUserData *>(context.user_data);
const GeoNodesCallData &call_data = *user_data.call_data;
if (!call_data.side_effect_nodes) {
return {};
}
const ComputeContextHash &context_hash = user_data.compute_context->hash();
const Span<int> iterations_with_side_effects =
call_data.side_effect_nodes->iterations_by_repeat_zone.lookup(
{context_hash, repeat_output_bnode_->identifier});
Vector<const lf::FunctionNode *> lf_nodes;
for (const int i : iterations_with_side_effects) {
if (i >= 0 && i < lf_body_nodes_.size()) {
lf_nodes.append(lf_body_nodes_[i]);
}
}
return lf_nodes;
}
};
struct RepeatEvalStorage {
LinearAllocator<> allocator;
VectorSet<lf::FunctionNode *> lf_body_nodes;
lf::Graph graph;
std::optional<LazyFunctionForLogicalOr> or_function;
std::optional<RepeatZoneSideEffectProvider> side_effect_provider;
std::optional<RepeatBodyNodeExecuteWrapper> body_execute_wrapper;
std::optional<lf::GraphExecutor> graph_executor;
void *graph_executor_storage = nullptr;
bool multi_threading_enabled = false;
Vector<int> input_index_map;
Vector<int> output_index_map;
};
class LazyFunctionForRepeatZone : public LazyFunction {
private:
const bNodeTreeZone &zone_;
const bNode &repeat_output_bnode_;
const ZoneBuildInfo &zone_info_;
const ZoneBodyFunction &body_fn_;
public:
LazyFunctionForRepeatZone(const bNodeTreeZone &zone,
ZoneBuildInfo &zone_info,
const ZoneBodyFunction &body_fn)
: zone_(zone),
repeat_output_bnode_(*zone.output_node),
zone_info_(zone_info),
body_fn_(body_fn)
{
debug_name_ = "Repeat Zone";
zone_info.indices.inputs.main.append(inputs_.append_and_get_index_as(
"Iterations", CPPType::get<SocketValueVariant>(), lf::ValueUsage::Used));
for (const bNodeSocket *socket : zone.input_node->input_sockets().drop_front(1).drop_back(1)) {
zone_info.indices.inputs.main.append(inputs_.append_and_get_index_as(
socket->name, *socket->typeinfo->geometry_nodes_cpp_type, lf::ValueUsage::Maybe));
}
for (const bNodeLink *link : zone.border_links) {
zone_info.indices.inputs.border_links.append(
inputs_.append_and_get_index_as(link->fromsock->name,
*link->tosock->typeinfo->geometry_nodes_cpp_type,
lf::ValueUsage::Maybe));
}
for (const bNodeSocket *socket : zone.output_node->output_sockets().drop_back(1)) {
zone_info.indices.inputs.output_usages.append(
inputs_.append_and_get_index_as("Usage", CPPType::get<bool>(), lf::ValueUsage::Maybe));
zone_info.indices.outputs.main.append(outputs_.append_and_get_index_as(
socket->name, *socket->typeinfo->geometry_nodes_cpp_type));
}
for ([[maybe_unused]] const bNodeSocket *socket :
zone.input_node->input_sockets().drop_back(1))
{
zone_info.indices.outputs.input_usages.append(
outputs_.append_and_get_index_as("Usage", CPPType::get<bool>()));
}
for ([[maybe_unused]] const bNodeLink *link : zone.border_links) {
zone_info.indices.outputs.border_link_usages.append(
outputs_.append_and_get_index_as("Border Link Usage", CPPType::get<bool>()));
}
for (const auto item : body_fn_.indices.inputs.attributes_by_field_source_index.items()) {
zone_info.indices.inputs.attributes_by_field_source_index.add_new(
item.key,
inputs_.append_and_get_index_as(
"Attribute Set", CPPType::get<bke::AnonymousAttributeSet>(), lf::ValueUsage::Maybe));
}
for (const auto item : body_fn_.indices.inputs.attributes_by_caller_propagation_index.items())
{
zone_info.indices.inputs.attributes_by_caller_propagation_index.add_new(
item.key,
inputs_.append_and_get_index_as(
"Attribute Set", CPPType::get<bke::AnonymousAttributeSet>(), lf::ValueUsage::Maybe));
}
}
void *init_storage(LinearAllocator<> &allocator) const override
{
return allocator.construct<RepeatEvalStorage>().release();
}
void destruct_storage(void *storage) const override
{
RepeatEvalStorage *s = static_cast<RepeatEvalStorage *>(storage);
if (s->graph_executor_storage) {
s->graph_executor->destruct_storage(s->graph_executor_storage);
}
std::destroy_at(s);
}
void execute_impl(lf::Params &params, const lf::Context &context) const override
{
auto &user_data = *static_cast<GeoNodesLFUserData *>(context.user_data);
auto &local_user_data = *static_cast<GeoNodesLFLocalUserData *>(context.local_user_data);
const NodeGeometryRepeatOutput &node_storage = *static_cast<const NodeGeometryRepeatOutput *>(
repeat_output_bnode_.storage);
RepeatEvalStorage &eval_storage = *static_cast<RepeatEvalStorage *>(context.storage);
const int iterations_usage_index = zone_info_.indices.outputs.input_usages[0];
if (!params.output_was_set(iterations_usage_index)) {
/* The iterations input is always used. */
params.set_output(iterations_usage_index, true);
}
if (!eval_storage.graph_executor) {
/* Create the execution graph in the first evaluation. */
this->initialize_execution_graph(
params, eval_storage, node_storage, user_data, local_user_data);
}
/* Execute the graph for the repeat zone. */
lf::RemappedParams eval_graph_params{*eval_storage.graph_executor,
params,
eval_storage.input_index_map,
eval_storage.output_index_map,
eval_storage.multi_threading_enabled};
lf::Context eval_graph_context{
eval_storage.graph_executor_storage, context.user_data, context.local_user_data};
eval_storage.graph_executor->execute(eval_graph_params, eval_graph_context);
}
/**
* Generate a lazy-function graph that contains the loop body (`body_fn_`) as many times
* as there are iterations. Since this graph depends on the number of iterations, it can't be
* reused in general. We could consider caching a version of this graph per number of iterations,
* but right now that doesn't seem worth it. In practice, it takes much less time to create the
* graph than to execute it (for intended use cases of this generic implementation, more special
* case repeat loop evaluations could be implemented separately).
*/
void initialize_execution_graph(lf::Params &params,
RepeatEvalStorage &eval_storage,
const NodeGeometryRepeatOutput &node_storage,
GeoNodesLFUserData &user_data,
GeoNodesLFLocalUserData &local_user_data) const
{
const int num_repeat_items = node_storage.items_num;
const int num_border_links = body_fn_.indices.inputs.border_links.size();
/* Number of iterations to evaluate. */
const int iterations = std::max<int>(
0, params.get_input<SocketValueVariant>(zone_info_.indices.inputs.main[0]).get<int>());
/* Show a warning when the inspection index is out of range. */
if (node_storage.inspection_index > 0) {
if (node_storage.inspection_index >= iterations) {
if (geo_eval_log::GeoTreeLogger *tree_logger = local_user_data.try_get_tree_logger(
user_data))
{
tree_logger->node_warnings.append(
*tree_logger->allocator,
{repeat_output_bnode_.identifier,
{NodeWarningType::Info, N_("Inspection index is out of range")}});
}
}
}
/* Take iterations input into account. */
const int main_inputs_offset = 1;
lf::Graph &lf_graph = eval_storage.graph;
Vector<lf::GraphInputSocket *> lf_inputs;
Vector<lf::GraphOutputSocket *> lf_outputs;
for (const int i : inputs_.index_range()) {
const lf::Input &input = inputs_[i];
lf_inputs.append(&lf_graph.add_input(*input.type, input.debug_name));
}
for (const int i : outputs_.index_range()) {
const lf::Output &output = outputs_[i];
lf_outputs.append(&lf_graph.add_output(*output.type, output.debug_name));
}
/* Create body nodes. */
VectorSet<lf::FunctionNode *> &lf_body_nodes = eval_storage.lf_body_nodes;
for ([[maybe_unused]] const int i : IndexRange(iterations)) {
lf::FunctionNode &lf_node = lf_graph.add_function(*body_fn_.function);
lf_body_nodes.add_new(&lf_node);
}
/* Create nodes for combining border link usages. A border link is used when any of the loop
* bodies uses the border link, so an "or" node is necessary. */
Array<lf::FunctionNode *> lf_border_link_usage_or_nodes(num_border_links);
eval_storage.or_function.emplace(iterations);
for (const int i : IndexRange(num_border_links)) {
lf::FunctionNode &lf_node = lf_graph.add_function(*eval_storage.or_function);
lf_border_link_usage_or_nodes[i] = &lf_node;
}
/* Handle body nodes one by one. */
for (const int iter_i : lf_body_nodes.index_range()) {
lf::FunctionNode &lf_node = *lf_body_nodes[iter_i];
for (const int i : IndexRange(num_border_links)) {
lf_graph.add_link(*lf_inputs[zone_info_.indices.inputs.border_links[i]],
lf_node.input(body_fn_.indices.inputs.border_links[i]));
lf_graph.add_link(lf_node.output(body_fn_.indices.outputs.border_link_usages[i]),
lf_border_link_usage_or_nodes[i]->input(iter_i));
}
for (const auto item : body_fn_.indices.inputs.attributes_by_field_source_index.items()) {
lf_graph.add_link(
*lf_inputs[zone_info_.indices.inputs.attributes_by_field_source_index.lookup(
item.key)],
lf_node.input(item.value));
}
for (const auto item :
body_fn_.indices.inputs.attributes_by_caller_propagation_index.items())
{
lf_graph.add_link(
*lf_inputs[zone_info_.indices.inputs.attributes_by_caller_propagation_index.lookup(
item.key)],
lf_node.input(item.value));
}
}
/* Handle body nodes pair-wise. */
for (const int iter_i : lf_body_nodes.index_range().drop_back(1)) {
lf::FunctionNode &lf_node = *lf_body_nodes[iter_i];
lf::FunctionNode &lf_next_node = *lf_body_nodes[iter_i + 1];
for (const int i : IndexRange(num_repeat_items)) {
lf_graph.add_link(lf_node.output(body_fn_.indices.outputs.main[i]),
lf_next_node.input(body_fn_.indices.inputs.main[i]));
/* TODO: Add back-link after being able to check for cyclic dependencies. */
// lf_graph.add_link(lf_next_node.output(body_fn_.indices.outputs.input_usages[i]),
// lf_node.input(body_fn_.indices.inputs.output_usages[i]));
static bool static_true = true;
lf_node.input(body_fn_.indices.inputs.output_usages[i]).set_default_value(&static_true);
}
}
/* Handle border link usage outputs. */
for (const int i : IndexRange(num_border_links)) {
lf_graph.add_link(lf_border_link_usage_or_nodes[i]->output(0),
*lf_outputs[zone_info_.indices.outputs.border_link_usages[i]]);
}
if (iterations > 0) {
{
/* Link first body node to input/output nodes. */
lf::FunctionNode &lf_first_body_node = *lf_body_nodes[0];
for (const int i : IndexRange(num_repeat_items)) {
lf_graph.add_link(*lf_inputs[zone_info_.indices.inputs.main[i + main_inputs_offset]],
lf_first_body_node.input(body_fn_.indices.inputs.main[i]));
lf_graph.add_link(
lf_first_body_node.output(body_fn_.indices.outputs.input_usages[i]),
*lf_outputs[zone_info_.indices.outputs.input_usages[i + main_inputs_offset]]);
}
}
{
/* Link last body node to input/output nodes. */
lf::FunctionNode &lf_last_body_node = *lf_body_nodes.as_span().last();
for (const int i : IndexRange(num_repeat_items)) {
lf_graph.add_link(lf_last_body_node.output(body_fn_.indices.outputs.main[i]),
*lf_outputs[zone_info_.indices.outputs.main[i]]);
lf_graph.add_link(*lf_inputs[zone_info_.indices.inputs.output_usages[i]],
lf_last_body_node.input(body_fn_.indices.inputs.output_usages[i]));
}
}
}
else {
/* There are no iterations, just link the input directly to the output. */
for (const int i : IndexRange(num_repeat_items)) {
lf_graph.add_link(*lf_inputs[zone_info_.indices.inputs.main[i + main_inputs_offset]],
*lf_outputs[zone_info_.indices.outputs.main[i]]);
lf_graph.add_link(
*lf_inputs[zone_info_.indices.inputs.output_usages[i]],
*lf_outputs[zone_info_.indices.outputs.input_usages[i + main_inputs_offset]]);
}
for (const int i : IndexRange(num_border_links)) {
static bool static_false = false;
lf_outputs[zone_info_.indices.outputs.border_link_usages[i]]->set_default_value(
&static_false);
}
}
/* The graph is ready, update the node indices which are required by the executor. */
lf_graph.update_node_indices();
// std::cout << "\n\n" << lf_graph.to_dot() << "\n\n";
/* Create a mapping from parameter indices inside of this graph to parameters of the repeat
* zone. The main complexity below stems from the fact that the iterations input is handled
* outside of this graph. */
eval_storage.output_index_map.reinitialize(outputs_.size() - 1);
eval_storage.input_index_map.resize(inputs_.size() - 1);
array_utils::fill_index_range<int>(eval_storage.input_index_map, 1);
Vector<const lf::GraphInputSocket *> lf_graph_inputs = lf_inputs.as_span().drop_front(1);
const int iteration_usage_index = zone_info_.indices.outputs.input_usages[0];
array_utils::fill_index_range<int>(
eval_storage.output_index_map.as_mutable_span().take_front(iteration_usage_index));
array_utils::fill_index_range<int>(
eval_storage.output_index_map.as_mutable_span().drop_front(iteration_usage_index),
iteration_usage_index + 1);
Vector<const lf::GraphOutputSocket *> lf_graph_outputs = lf_outputs.as_span().take_front(
iteration_usage_index);
lf_graph_outputs.extend(lf_outputs.as_span().drop_front(iteration_usage_index + 1));
eval_storage.body_execute_wrapper.emplace();
eval_storage.body_execute_wrapper->repeat_output_bnode_ = &repeat_output_bnode_;
eval_storage.body_execute_wrapper->lf_body_nodes_ = &lf_body_nodes;
eval_storage.side_effect_provider.emplace();
eval_storage.side_effect_provider->repeat_output_bnode_ = &repeat_output_bnode_;
eval_storage.side_effect_provider->lf_body_nodes_ = lf_body_nodes;
eval_storage.graph_executor.emplace(lf_graph,
std::move(lf_graph_inputs),
std::move(lf_graph_outputs),
nullptr,
&*eval_storage.side_effect_provider,
&*eval_storage.body_execute_wrapper);
eval_storage.graph_executor_storage = eval_storage.graph_executor->init_storage(
eval_storage.allocator);
}
std::string input_name(const int i) const override
{
if (zone_info_.indices.inputs.output_usages.contains(i)) {
const bNodeSocket &bsocket = zone_.output_node->output_socket(
i - zone_info_.indices.inputs.output_usages.first());
return "Usage: " + StringRef(bsocket.name);
}
return inputs_[i].debug_name;
}
std::string output_name(const int i) const override
{
if (zone_info_.indices.outputs.input_usages.contains(i)) {
const bNodeSocket &bsocket = zone_.input_node->input_socket(
i - zone_info_.indices.outputs.input_usages.first());
return "Usage: " + StringRef(bsocket.name);
}
return outputs_[i].debug_name;
}
};
/**
* Logs intermediate values from the lazy-function graph evaluation into #GeoModifierLog based on
* the mapping between the lazy-function graph and the corresponding #bNodeTree.
*/
class GeometryNodesLazyFunctionLogger : public lf::GraphExecutor::Logger {
private:
const GeometryNodesLazyFunctionGraphInfo &lf_graph_info_;
public:
GeometryNodesLazyFunctionLogger(const GeometryNodesLazyFunctionGraphInfo &lf_graph_info)
: lf_graph_info_(lf_graph_info)
{
}
void log_socket_value(const lf::Socket &lf_socket,
const GPointer value,
const lf::Context &context) const override
{
auto &user_data = *static_cast<GeoNodesLFUserData *>(context.user_data);
if (!user_data.log_socket_values) {
return;
}
auto &local_user_data = *static_cast<GeoNodesLFLocalUserData *>(context.local_user_data);
geo_eval_log::GeoTreeLogger *tree_logger = local_user_data.try_get_tree_logger(user_data);
if (tree_logger == nullptr) {
return;
}
const Span<const bNodeSocket *> bsockets =
lf_graph_info_.mapping.bsockets_by_lf_socket_map.lookup(&lf_socket);
if (bsockets.is_empty()) {
return;
}
for (const bNodeSocket *bsocket : bsockets) {
/* Avoid logging to some sockets when the same value will also be logged to a linked socket.
* This reduces the number of logged values without losing information. */
if (bsocket->is_input() && bsocket->is_directly_linked()) {
continue;
}
const bNode &bnode = bsocket->owner_node();
if (bnode.is_reroute()) {
continue;
}
tree_logger->log_value(bsocket->owner_node(), *bsocket, value);
}
}
static inline std::mutex dump_error_context_mutex;
void dump_when_outputs_are_missing(const lf::FunctionNode &node,
Span<const lf::OutputSocket *> missing_sockets,
const lf::Context &context) const override
{
std::lock_guard lock{dump_error_context_mutex};
GeoNodesLFUserData *user_data = dynamic_cast<GeoNodesLFUserData *>(context.user_data);
BLI_assert(user_data != nullptr);
user_data->compute_context->print_stack(std::cout, node.name());
std::cout << "Missing outputs:\n";
for (const lf::OutputSocket *socket : missing_sockets) {
std::cout << " " << socket->name() << "\n";
}
}
void dump_when_input_is_set_twice(const lf::InputSocket &target_socket,
const lf::OutputSocket &from_socket,
const lf::Context &context) const override
{
std::lock_guard lock{dump_error_context_mutex};
std::stringstream ss;
ss << from_socket.node().name() << ":" << from_socket.name() << " -> "
<< target_socket.node().name() << ":" << target_socket.name();
GeoNodesLFUserData *user_data = dynamic_cast<GeoNodesLFUserData *>(context.user_data);
BLI_assert(user_data != nullptr);
user_data->compute_context->print_stack(std::cout, ss.str());
}
void log_before_node_execute(const lf::FunctionNode &node,
const lf::Params & /*params*/,
const lf::Context &context) const override
{
/* Enable this to see the threads that invoked a node. */
if constexpr (false) {
this->add_thread_id_debug_message(node, context);
}
}
void add_thread_id_debug_message(const lf::FunctionNode &node, const lf::Context &context) const
{
static std::atomic<int> thread_id_source = 0;
static thread_local const int thread_id = thread_id_source.fetch_add(1);
static thread_local const std::string thread_id_str = "Thread: " + std::to_string(thread_id);
const auto &user_data = *static_cast<GeoNodesLFUserData *>(context.user_data);
const auto &local_user_data = *static_cast<GeoNodesLFLocalUserData *>(context.local_user_data);
geo_eval_log::GeoTreeLogger *tree_logger = local_user_data.try_get_tree_logger(user_data);
if (tree_logger == nullptr) {
return;
}
/* Find corresponding node based on the socket mapping. */
auto check_sockets = [&](const Span<const lf::Socket *> lf_sockets) {
for (const lf::Socket *lf_socket : lf_sockets) {
const Span<const bNodeSocket *> bsockets =
lf_graph_info_.mapping.bsockets_by_lf_socket_map.lookup(lf_socket);
if (!bsockets.is_empty()) {
const bNodeSocket &bsocket = *bsockets[0];
const bNode &bnode = bsocket.owner_node();
tree_logger->debug_messages.append(*tree_logger->allocator,
{bnode.identifier, thread_id_str});
return true;
}
}
return false;
};
if (check_sockets(node.inputs().cast<const lf::Socket *>())) {
return;
}
check_sockets(node.outputs().cast<const lf::Socket *>());
}
};
/**
* Tells the lazy-function graph evaluator which nodes have side effects based on the current
* context. For example, the same viewer node can have side effects in one context, but not in
* another (depending on e.g. which tree path is currently viewed in the node editor).
*/
class GeometryNodesLazyFunctionSideEffectProvider : public lf::GraphExecutor::SideEffectProvider {
public:
Vector<const lf::FunctionNode *> get_nodes_with_side_effects(
const lf::Context &context) const override
{
GeoNodesLFUserData *user_data = dynamic_cast<GeoNodesLFUserData *>(context.user_data);
BLI_assert(user_data != nullptr);
const GeoNodesCallData &call_data = *user_data->call_data;
if (!call_data.side_effect_nodes) {
return {};
}
const ComputeContextHash &context_hash = user_data->compute_context->hash();
return call_data.side_effect_nodes->nodes_by_context.lookup(context_hash);
}
};
/**
* Utility class to build a lazy-function based on a geometry nodes tree.
* This is mainly a separate class because it makes it easier to have variables that can be
* accessed by many functions.
*/
struct GeometryNodesLazyFunctionBuilder {
private:
const bNodeTree &btree_;
const aai::AnonymousAttributeInferencingResult &attribute_inferencing_;
ResourceScope &scope_;
NodeMultiFunctions &node_multi_functions_;
GeometryNodesLazyFunctionGraphInfo *lf_graph_info_;
GeometryNodeLazyFunctionGraphMapping *mapping_;
const bke::DataTypeConversions *conversions_;
/**
* A #LazyFunctionForSimulationInputsUsage for each simulation zone.
*/
Map<const bNode *, lf::Node *> simulation_inputs_usage_nodes_;
const bNodeTreeZones *tree_zones_;
MutableSpan<ZoneBuildInfo> zone_build_infos_;
/**
* The inputs sockets in the graph. Multiple group input nodes are combined into one in the
* lazy-function graph.
*/
Vector<const lf::GraphInputSocket *> group_input_sockets_;
/**
* Interface output sockets that correspond to the active group output node. If there is no such
* node, defaulted fallback outputs are created.
*/
Vector<const lf::GraphOutputSocket *> standard_group_output_sockets_;
/**
* Interface boolean sockets that have to be passed in from the outside and indicate whether a
* specific output will be used.
*/
Vector<const lf::GraphInputSocket *> group_output_used_sockets_;
/**
* Interface boolean sockets that can be used as group output that indicate whether a specific
* input will be used (this may depend on the used outputs as well as other inputs).
*/
Vector<const lf::GraphOutputSocket *> group_input_usage_sockets_;
/**
* If the node group propagates attributes from an input geometry to the output, it has to know
* which attributes should be propagated and which can be removed (for optimization purposes).
*/
Map<int, const lf::GraphInputSocket *> attribute_set_by_geometry_output_;
friend class UsedSocketVisualizeOptions;
public:
GeometryNodesLazyFunctionBuilder(const bNodeTree &btree,
GeometryNodesLazyFunctionGraphInfo &lf_graph_info)
: btree_(btree),
attribute_inferencing_(*btree.runtime->anonymous_attribute_inferencing),
scope_(lf_graph_info.scope),
node_multi_functions_(lf_graph_info.scope.construct<NodeMultiFunctions>(btree)),
lf_graph_info_(&lf_graph_info)
{
}
void build()
{
btree_.ensure_topology_cache();
btree_.ensure_interface_cache();
mapping_ = &lf_graph_info_->mapping;
conversions_ = &bke::get_implicit_type_conversions();
tree_zones_ = btree_.zones();
this->initialize_mapping_arrays();
this->build_zone_functions();
this->build_root_graph();
this->build_geometry_nodes_group_function();
}
private:
void initialize_mapping_arrays()
{
mapping_->lf_input_index_for_output_bsocket_usage.reinitialize(
btree_.all_output_sockets().size());
mapping_->lf_input_index_for_output_bsocket_usage.fill(-1);
mapping_->lf_input_index_for_attribute_propagation_to_output.reinitialize(
btree_.all_output_sockets().size());
mapping_->lf_input_index_for_attribute_propagation_to_output.fill(-1);
mapping_->lf_index_by_bsocket.reinitialize(btree_.all_sockets().size());
mapping_->lf_index_by_bsocket.fill(-1);
}
/**
* Builds lazy-functions for all zones in the node tree.
*/
void build_zone_functions()
{
zone_build_infos_ = scope_.construct<Array<ZoneBuildInfo>>(tree_zones_->zones.size());
const Array<int> zone_build_order = this->compute_zone_build_order();
for (const int zone_i : zone_build_order) {
const bNodeTreeZone &zone = *tree_zones_->zones[zone_i];
switch (zone.output_node->type) {
case GEO_NODE_SIMULATION_OUTPUT: {
this->build_simulation_zone_function(zone);
break;
}
case GEO_NODE_REPEAT_OUTPUT: {
this->build_repeat_zone_function(zone);
break;
}
default: {
BLI_assert_unreachable();
break;
}
}
}
}
Array<int> compute_zone_build_order()
{
/* Build nested zones first. */
Array<int> zone_build_order(tree_zones_->zones.size());
array_utils::fill_index_range<int>(zone_build_order);
std::sort(
zone_build_order.begin(), zone_build_order.end(), [&](const int zone_a, const int zone_b) {
return tree_zones_->zones[zone_a]->depth > tree_zones_->zones[zone_b]->depth;
});
return zone_build_order;
}
/**
* Builds a lazy-function for a simulation zone.
* Internally, the generated lazy-function is just another graph.
*/
void build_simulation_zone_function(const bNodeTreeZone &zone)
{
const int zone_i = zone.index;
ZoneBuildInfo &zone_info = zone_build_infos_[zone_i];
lf::Graph &lf_graph = scope_.construct<lf::Graph>();
const auto &sim_output_storage = *static_cast<const NodeGeometrySimulationOutput *>(
zone.output_node->storage);
Vector<lf::GraphInputSocket *> lf_zone_inputs;
Vector<lf::GraphOutputSocket *> lf_zone_outputs;
if (zone.input_node != nullptr) {
for (const bNodeSocket *bsocket : zone.input_node->input_sockets().drop_back(1)) {
zone_info.indices.inputs.main.append(lf_zone_inputs.append_and_get_index(
&lf_graph.add_input(*bsocket->typeinfo->geometry_nodes_cpp_type, bsocket->name)));
zone_info.indices.outputs.input_usages.append(lf_zone_outputs.append_and_get_index(
&lf_graph.add_output(CPPType::get<bool>(), "Usage: " + StringRef(bsocket->name))));
}
}
this->build_zone_border_links_inputs(
zone, lf_graph, lf_zone_inputs, zone_info.indices.inputs.border_links);
this->build_zone_border_link_input_usages(
zone, lf_graph, lf_zone_outputs, zone_info.indices.outputs.border_link_usages);
for (const bNodeSocket *bsocket : zone.output_node->output_sockets().drop_back(1)) {
zone_info.indices.outputs.main.append(lf_zone_outputs.append_and_get_index(
&lf_graph.add_output(*bsocket->typeinfo->geometry_nodes_cpp_type, bsocket->name)));
zone_info.indices.inputs.output_usages.append(lf_zone_inputs.append_and_get_index(
&lf_graph.add_input(CPPType::get<bool>(), "Usage: " + StringRef(bsocket->name))));
}
lf::Node &lf_simulation_usage_node = [&]() -> lf::Node & {
auto &lazy_function = scope_.construct<LazyFunctionForSimulationInputsUsage>(
*zone.output_node);
lf::Node &lf_node = lf_graph.add_function(lazy_function);
for (const int i : zone_info.indices.outputs.input_usages) {
lf_graph.add_link(lf_node.output(0), *lf_zone_outputs[i]);
}
return lf_node;
}();
BuildGraphParams graph_params{lf_graph};
lf::FunctionNode *lf_simulation_input = nullptr;
if (zone.input_node) {
lf_simulation_input = this->insert_simulation_input_node(
btree_, *zone.input_node, graph_params);
}
lf::FunctionNode &lf_simulation_output = this->insert_simulation_output_node(*zone.output_node,
graph_params);
for (const bNodeSocket *bsocket : zone.output_node->input_sockets().drop_back(1)) {
graph_params.usage_by_bsocket.add(bsocket, &lf_simulation_usage_node.output(1));
}
/* Link simulation input node directly to simulation output node for skip behavior. */
for (const int i : IndexRange(sim_output_storage.items_num)) {
lf::InputSocket &lf_to = lf_simulation_output.input(i + 1);
if (lf_simulation_input) {
lf::OutputSocket &lf_from = lf_simulation_input->output(i + 1);
lf_graph.add_link(lf_from, lf_to);
}
else {
lf_to.set_default_value(lf_to.type().default_value());
}
}
this->insert_nodes_and_zones(zone.child_nodes, zone.child_zones, graph_params);
if (zone.input_node) {
this->build_output_socket_usages(*zone.input_node, graph_params);
}
for (const auto item : graph_params.lf_output_by_bsocket.items()) {
this->insert_links_from_socket(*item.key, *item.value, graph_params);
}
this->link_border_link_inputs_and_usages(zone,
lf_zone_inputs,
zone_info.indices.inputs.border_links,
lf_zone_outputs,
zone_info.indices.outputs.border_link_usages,
graph_params);
for (const int i : zone_info.indices.inputs.main) {
lf_graph.add_link(*lf_zone_inputs[i], lf_simulation_input->input(i));
}
for (const int i : zone_info.indices.outputs.main.index_range()) {
lf_graph.add_link(lf_simulation_output.output(i),
*lf_zone_outputs[zone_info.indices.outputs.main[i]]);
}
this->add_default_inputs(graph_params);
Map<int, lf::OutputSocket *> lf_attribute_set_by_field_source_index;
Map<int, lf::OutputSocket *> lf_attribute_set_by_caller_propagation_index;
this->build_attribute_set_inputs_for_zone(graph_params,
lf_attribute_set_by_field_source_index,
lf_attribute_set_by_caller_propagation_index);
for (const auto item : lf_attribute_set_by_field_source_index.items()) {
lf::OutputSocket &lf_attribute_set_socket = *item.value;
if (lf_attribute_set_socket.node().is_interface()) {
zone_info.indices.inputs.attributes_by_field_source_index.add_new(
item.key, lf_zone_inputs.append_and_get_index(&lf_attribute_set_socket));
}
}
for (const auto item : lf_attribute_set_by_caller_propagation_index.items()) {
lf::OutputSocket &lf_attribute_set_socket = *item.value;
if (lf_attribute_set_socket.node().is_interface()) {
zone_info.indices.inputs.attributes_by_caller_propagation_index.add_new(
item.key, lf_zone_inputs.append_and_get_index(&lf_attribute_set_socket));
}
}
this->link_attribute_set_inputs(lf_graph,
graph_params,
lf_attribute_set_by_field_source_index,
lf_attribute_set_by_caller_propagation_index);
this->fix_link_cycles(lf_graph, graph_params.socket_usage_inputs);
lf_graph.update_node_indices();
auto &logger = scope_.construct<GeometryNodesLazyFunctionLogger>(*lf_graph_info_);
auto &side_effect_provider = scope_.construct<GeometryNodesLazyFunctionSideEffectProvider>();
const auto &lf_graph_fn = scope_.construct<lf::GraphExecutor>(lf_graph,
lf_zone_inputs.as_span(),
lf_zone_outputs.as_span(),
&logger,
&side_effect_provider,
nullptr);
const auto &zone_function = scope_.construct<LazyFunctionForSimulationZone>(*zone.output_node,
lf_graph_fn);
zone_info.lazy_function = &zone_function;
// std::cout << "\n\n" << lf_graph.to_dot() << "\n\n";
}
/**
* Builds a #LazyFunction for a repeat zone.
*/
void build_repeat_zone_function(const bNodeTreeZone &zone)
{
ZoneBuildInfo &zone_info = zone_build_infos_[zone.index];
/* Build a function for the loop body. */
ZoneBodyFunction &body_fn = this->build_zone_body_function(zone);
/* Wrap the loop body by another function that implements the repeat behavior. */
auto &zone_fn = scope_.construct<LazyFunctionForRepeatZone>(zone, zone_info, body_fn);
zone_info.lazy_function = &zone_fn;
}
/**
* Build a lazy-function for the "body" of a zone, i.e. for all the nodes within the zone.
*/
ZoneBodyFunction &build_zone_body_function(const bNodeTreeZone &zone)
{
lf::Graph &lf_body_graph = scope_.construct<lf::Graph>();
BuildGraphParams graph_params{lf_body_graph};
Vector<lf::GraphInputSocket *> lf_body_inputs;
Vector<lf::GraphOutputSocket *> lf_body_outputs;
ZoneBodyFunction &body_fn = scope_.construct<ZoneBodyFunction>();
for (const bNodeSocket *bsocket : zone.input_node->output_sockets().drop_back(1)) {
lf::GraphInputSocket &lf_input = lf_body_graph.add_input(
*bsocket->typeinfo->geometry_nodes_cpp_type, bsocket->name);
lf::GraphOutputSocket &lf_input_usage = lf_body_graph.add_output(
CPPType::get<bool>(), "Usage: " + StringRef(bsocket->name));
body_fn.indices.inputs.main.append(lf_body_inputs.append_and_get_index(&lf_input));
body_fn.indices.outputs.input_usages.append(
lf_body_outputs.append_and_get_index(&lf_input_usage));
graph_params.lf_output_by_bsocket.add_new(bsocket, &lf_input);
}
this->build_zone_border_links_inputs(
zone, lf_body_graph, lf_body_inputs, body_fn.indices.inputs.border_links);
this->build_zone_border_link_input_usages(
zone, lf_body_graph, lf_body_outputs, body_fn.indices.outputs.border_link_usages);
for (const bNodeSocket *bsocket : zone.output_node->input_sockets().drop_back(1)) {
lf::GraphOutputSocket &lf_output = lf_body_graph.add_output(
*bsocket->typeinfo->geometry_nodes_cpp_type, bsocket->name);
lf::GraphInputSocket &lf_output_usage = lf_body_graph.add_input(
CPPType::get<bool>(), "Usage: " + StringRef(bsocket->name));
graph_params.lf_inputs_by_bsocket.add(bsocket, &lf_output);
graph_params.usage_by_bsocket.add(bsocket, &lf_output_usage);
body_fn.indices.outputs.main.append(lf_body_outputs.append_and_get_index(&lf_output));
body_fn.indices.inputs.output_usages.append(
lf_body_inputs.append_and_get_index(&lf_output_usage));
}
this->insert_nodes_and_zones(zone.child_nodes, zone.child_zones, graph_params);
this->build_output_socket_usages(*zone.input_node, graph_params);
for (const int i : zone.input_node->output_sockets().drop_back(1).index_range()) {
const bNodeSocket &bsocket = zone.input_node->output_socket(i);
lf::OutputSocket *lf_usage = graph_params.usage_by_bsocket.lookup_default(&bsocket, nullptr);
lf::GraphOutputSocket &lf_usage_output =
*lf_body_outputs[body_fn.indices.outputs.input_usages[i]];
if (lf_usage) {
lf_body_graph.add_link(*lf_usage, lf_usage_output);
}
else {
static const bool static_false = false;
lf_usage_output.set_default_value(&static_false);
}
}
for (const auto item : graph_params.lf_output_by_bsocket.items()) {
this->insert_links_from_socket(*item.key, *item.value, graph_params);
}
this->link_border_link_inputs_and_usages(zone,
lf_body_inputs,
body_fn.indices.inputs.border_links,
lf_body_outputs,
body_fn.indices.outputs.border_link_usages,
graph_params);
this->add_default_inputs(graph_params);
Map<int, lf::OutputSocket *> lf_attribute_set_by_field_source_index;
Map<int, lf::OutputSocket *> lf_attribute_set_by_caller_propagation_index;
this->build_attribute_set_inputs_for_zone(graph_params,
lf_attribute_set_by_field_source_index,
lf_attribute_set_by_caller_propagation_index);
for (const auto item : lf_attribute_set_by_field_source_index.items()) {
lf::OutputSocket &lf_attribute_set_socket = *item.value;
if (lf_attribute_set_socket.node().is_interface()) {
body_fn.indices.inputs.attributes_by_field_source_index.add_new(
item.key, lf_body_inputs.append_and_get_index(&lf_attribute_set_socket));
}
}
for (const auto item : lf_attribute_set_by_caller_propagation_index.items()) {
lf::OutputSocket &lf_attribute_set_socket = *item.value;
if (lf_attribute_set_socket.node().is_interface()) {
body_fn.indices.inputs.attributes_by_caller_propagation_index.add_new(
item.key, lf_body_inputs.append_and_get_index(&lf_attribute_set_socket));
}
}
this->link_attribute_set_inputs(lf_body_graph,
graph_params,
lf_attribute_set_by_field_source_index,
lf_attribute_set_by_caller_propagation_index);
this->fix_link_cycles(lf_body_graph, graph_params.socket_usage_inputs);
lf_body_graph.update_node_indices();
auto &logger = scope_.construct<GeometryNodesLazyFunctionLogger>(*lf_graph_info_);
auto &side_effect_provider = scope_.construct<GeometryNodesLazyFunctionSideEffectProvider>();
body_fn.function = &scope_.construct<lf::GraphExecutor>(lf_body_graph,
lf_body_inputs.as_span(),
lf_body_outputs.as_span(),
&logger,
&side_effect_provider,
nullptr);
// std::cout << "\n\n" << lf_body_graph.to_dot() << "\n\n";
return body_fn;
}
void build_zone_border_links_inputs(const bNodeTreeZone &zone,
lf::Graph &lf_graph,
Vector<lf::GraphInputSocket *> &r_lf_graph_inputs,
Vector<int> &r_indices)
{
for (const bNodeLink *border_link : zone.border_links) {
r_indices.append(r_lf_graph_inputs.append_and_get_index(
&lf_graph.add_input(*border_link->tosock->typeinfo->geometry_nodes_cpp_type,
StringRef("Link from ") + border_link->fromsock->name)));
}
}
void build_zone_border_link_input_usages(const bNodeTreeZone &zone,
lf::Graph &lf_graph,
Vector<lf::GraphOutputSocket *> &r_lf_graph_outputs,
Vector<int> &r_indices)
{
for (const bNodeLink *border_link : zone.border_links) {
r_indices.append(r_lf_graph_outputs.append_and_get_index(&lf_graph.add_output(
CPPType::get<bool>(), StringRef("Usage: Link from ") + border_link->fromsock->name)));
}
}
void build_attribute_set_inputs_for_zone(
BuildGraphParams &graph_params,
Map<int, lf::OutputSocket *> &lf_attribute_set_by_field_source_index,
Map<int, lf::OutputSocket *> &lf_attribute_set_by_caller_propagation_index)
{
const Vector<int> all_required_field_sources = this->find_all_required_field_source_indices(
graph_params.lf_attribute_set_input_by_output_geometry_bsocket,
graph_params.lf_attribute_set_input_by_field_source_index);
const Vector<int> all_required_caller_propagation_indices =
this->find_all_required_caller_propagation_indices(
graph_params.lf_attribute_set_input_by_output_geometry_bsocket,
graph_params.lf_attribute_set_input_by_caller_propagation_index);
Map<int, int> input_by_field_source_index;
for (const int field_source_index : all_required_field_sources) {
const aai::FieldSource &field_source =
attribute_inferencing_.all_field_sources[field_source_index];
if ([[maybe_unused]] const auto *input_field_source = std::get_if<aai::InputFieldSource>(
&field_source.data))
{
input_by_field_source_index.add_new(field_source_index,
input_by_field_source_index.size());
}
else {
const auto &socket_field_source = std::get<aai::SocketFieldSource>(field_source.data);
const bNodeSocket &bsocket = *socket_field_source.socket;
if (lf::OutputSocket *lf_field_socket = graph_params.lf_output_by_bsocket.lookup_default(
&bsocket, nullptr))
{
lf::OutputSocket *lf_usage_socket = graph_params.usage_by_bsocket.lookup_default(
&bsocket, nullptr);
lf::OutputSocket &lf_attribute_set_socket = this->get_extracted_attributes(
*lf_field_socket,
lf_usage_socket,
graph_params.lf_graph,
graph_params.socket_usage_inputs);
lf_attribute_set_by_field_source_index.add(field_source_index, &lf_attribute_set_socket);
}
else {
input_by_field_source_index.add_new(field_source_index,
input_by_field_source_index.size());
}
}
}
{
Vector<lf::GraphInputSocket *> attribute_set_inputs;
const int num = input_by_field_source_index.size() +
all_required_caller_propagation_indices.size();
for ([[maybe_unused]] const int i : IndexRange(num)) {
attribute_set_inputs.append(&graph_params.lf_graph.add_input(
CPPType::get<bke::AnonymousAttributeSet>(), "Attribute Set"));
}
for (const auto item : input_by_field_source_index.items()) {
const int field_source_index = item.key;
const int attribute_set_index = item.value;
lf::GraphInputSocket &lf_attribute_set_socket = *attribute_set_inputs[attribute_set_index];
lf_attribute_set_by_field_source_index.add(field_source_index, &lf_attribute_set_socket);
}
for (const int i : all_required_caller_propagation_indices.index_range()) {
const int caller_propagation_index = all_required_caller_propagation_indices[i];
lf::GraphInputSocket &lf_attribute_set_socket =
*attribute_set_inputs[input_by_field_source_index.size() + i];
lf_attribute_set_by_caller_propagation_index.add_new(caller_propagation_index,
&lf_attribute_set_socket);
}
}
}
/**
* Build the graph that contains all nodes that are not contained in any zone. This graph is
* called when this geometry nodes node group is evaluated.
*/
void build_root_graph()
{
lf::Graph &lf_graph = lf_graph_info_->graph;
this->build_group_input_node(lf_graph);
if (btree_.group_output_node() == nullptr) {
this->build_fallback_output_node(lf_graph);
}
for (const bNodeTreeInterfaceSocket *interface_input : btree_.interface_inputs()) {
lf::GraphOutputSocket &lf_socket = lf_graph.add_output(
CPPType::get<bool>(),
StringRef("Usage: ") + (interface_input->name ? interface_input->name : ""));
group_input_usage_sockets_.append(&lf_socket);
}
Vector<lf::GraphInputSocket *> lf_output_usages;
for (const bNodeTreeInterfaceSocket *interface_output : btree_.interface_outputs()) {
lf::GraphInputSocket &lf_socket = lf_graph.add_input(
CPPType::get<bool>(),
StringRef("Usage: ") + (interface_output->name ? interface_output->name : ""));
group_output_used_sockets_.append(&lf_socket);
lf_output_usages.append(&lf_socket);
}
BuildGraphParams graph_params{lf_graph};
if (const bNode *group_output_bnode = btree_.group_output_node()) {
for (const bNodeSocket *bsocket : group_output_bnode->input_sockets().drop_back(1)) {
graph_params.usage_by_bsocket.add(bsocket, lf_output_usages[bsocket->index()]);
}
}
this->insert_nodes_and_zones(
tree_zones_->nodes_outside_zones, tree_zones_->root_zones, graph_params);
for (const auto item : graph_params.lf_output_by_bsocket.items()) {
this->insert_links_from_socket(*item.key, *item.value, graph_params);
}
this->build_group_input_usages(graph_params);
this->add_default_inputs(graph_params);
this->build_attribute_propagation_input_node(lf_graph);
Map<int, lf::OutputSocket *> lf_attribute_set_by_field_source_index;
Map<int, lf::OutputSocket *> lf_attribute_set_by_caller_propagation_index;
this->build_attribute_set_inputs_outside_of_zones(
graph_params,
lf_attribute_set_by_field_source_index,
lf_attribute_set_by_caller_propagation_index);
this->link_attribute_set_inputs(lf_graph,
graph_params,
lf_attribute_set_by_field_source_index,
lf_attribute_set_by_caller_propagation_index);
this->fix_link_cycles(lf_graph, graph_params.socket_usage_inputs);
// std::cout << "\n\n" << lf_graph.to_dot() << "\n\n";
lf_graph.update_node_indices();
lf_graph_info_->num_inline_nodes_approximate += lf_graph.nodes().size();
}
/**
* Build a lazy-function from the generated graph. This is then the lazy-function that must be
* executed by others to run a geometry node group.
*/
void build_geometry_nodes_group_function()
{
GeometryNodesGroupFunction &function = lf_graph_info_->function;
Vector<const lf::GraphInputSocket *> lf_graph_inputs;
Vector<const lf::GraphOutputSocket *> lf_graph_outputs;
lf_graph_inputs.extend(group_input_sockets_);
function.inputs.main = lf_graph_inputs.index_range().take_back(group_input_sockets_.size());
lf_graph_inputs.extend(group_output_used_sockets_);
function.inputs.output_usages = lf_graph_inputs.index_range().take_back(
group_output_used_sockets_.size());
for (auto [output_index, lf_socket] : attribute_set_by_geometry_output_.items()) {
lf_graph_inputs.append(lf_socket);
function.inputs.attributes_to_propagate.geometry_outputs.append(output_index);
}
function.inputs.attributes_to_propagate.range = lf_graph_inputs.index_range().take_back(
attribute_set_by_geometry_output_.size());
lf_graph_outputs.extend(standard_group_output_sockets_);
function.outputs.main = lf_graph_outputs.index_range().take_back(
standard_group_output_sockets_.size());
lf_graph_outputs.extend(group_input_usage_sockets_);
function.outputs.input_usages = lf_graph_outputs.index_range().take_back(
group_input_usage_sockets_.size());
function.function = &scope_.construct<lf::GraphExecutor>(
lf_graph_info_->graph,
std::move(lf_graph_inputs),
std::move(lf_graph_outputs),
&scope_.construct<GeometryNodesLazyFunctionLogger>(*lf_graph_info_),
&scope_.construct<GeometryNodesLazyFunctionSideEffectProvider>(),
nullptr);
}
void build_attribute_set_inputs_outside_of_zones(
BuildGraphParams &graph_params,
Map<int, lf::OutputSocket *> &lf_attribute_set_by_field_source_index,
Map<int, lf::OutputSocket *> &lf_attribute_set_by_caller_propagation_index)
{
const Vector<int> all_required_field_sources = this->find_all_required_field_source_indices(
graph_params.lf_attribute_set_input_by_output_geometry_bsocket,
graph_params.lf_attribute_set_input_by_field_source_index);
for (const int field_source_index : all_required_field_sources) {
const aai::FieldSource &field_source =
attribute_inferencing_.all_field_sources[field_source_index];
lf::OutputSocket *lf_attribute_set_socket;
if (const auto *input_field_source = std::get_if<aai::InputFieldSource>(&field_source.data))
{
const int input_index = input_field_source->input_index;
lf::OutputSocket &lf_field_socket = const_cast<lf::OutputSocket &>(
*group_input_sockets_[input_index]);
lf::OutputSocket *lf_usage_socket = const_cast<lf::OutputSocket *>(
group_input_usage_sockets_[input_index]->origin());
lf_attribute_set_socket = &this->get_extracted_attributes(
lf_field_socket,
lf_usage_socket,
graph_params.lf_graph,
graph_params.socket_usage_inputs);
}
else {
const auto &socket_field_source = std::get<aai::SocketFieldSource>(field_source.data);
const bNodeSocket &bsocket = *socket_field_source.socket;
lf::OutputSocket &lf_field_socket = *graph_params.lf_output_by_bsocket.lookup(&bsocket);
lf::OutputSocket *lf_usage_socket = graph_params.usage_by_bsocket.lookup_default(&bsocket,
nullptr);
lf_attribute_set_socket = &this->get_extracted_attributes(
lf_field_socket,
lf_usage_socket,
graph_params.lf_graph,
graph_params.socket_usage_inputs);
}
lf_attribute_set_by_field_source_index.add_new(field_source_index, lf_attribute_set_socket);
}
for (const int caller_propagation_index :
attribute_inferencing_.propagated_output_geometry_indices.index_range())
{
const int group_output_index =
attribute_inferencing_.propagated_output_geometry_indices[caller_propagation_index];
lf::OutputSocket &lf_attribute_set_socket = const_cast<lf::OutputSocket &>(
*attribute_set_by_geometry_output_.lookup(group_output_index));
lf_attribute_set_by_caller_propagation_index.add(caller_propagation_index,
&lf_attribute_set_socket);
}
}
Vector<int> find_all_required_field_source_indices(
const Map<const bNodeSocket *, lf::InputSocket *>
&lf_attribute_set_input_by_output_geometry_bsocket,
const MultiValueMap<int, lf::InputSocket *> &lf_attribute_set_input_by_field_source_index)
{
BitVector<> all_required_field_sources(attribute_inferencing_.all_field_sources.size(), false);
for (const bNodeSocket *geometry_output_bsocket :
lf_attribute_set_input_by_output_geometry_bsocket.keys())
{
all_required_field_sources |=
attribute_inferencing_
.required_fields_by_geometry_socket[geometry_output_bsocket->index_in_tree()];
}
for (const int field_source_index : lf_attribute_set_input_by_field_source_index.keys()) {
all_required_field_sources[field_source_index].set();
}
Vector<int> indices;
bits::foreach_1_index(all_required_field_sources, [&](const int i) { indices.append(i); });
return indices;
}
Vector<int> find_all_required_caller_propagation_indices(
const Map<const bNodeSocket *, lf::InputSocket *>
&lf_attribute_set_input_by_output_geometry_bsocket,
const MultiValueMap<int, lf::InputSocket *>
&lf_attribute_set_input_by_caller_propagation_index)
{
BitVector<> all_required_caller_propagation_indices(
attribute_inferencing_.propagated_output_geometry_indices.size(), false);
for (const bNodeSocket *geometry_output_bs :
lf_attribute_set_input_by_output_geometry_bsocket.keys())
{
all_required_caller_propagation_indices |=
attribute_inferencing_
.propagate_to_output_by_geometry_socket[geometry_output_bs->index_in_tree()];
}
for (const int caller_propagation_index :
lf_attribute_set_input_by_caller_propagation_index.keys())
{
all_required_caller_propagation_indices[caller_propagation_index].set();
}
Vector<int> indices;
bits::foreach_1_index(all_required_caller_propagation_indices,
[&](const int i) { indices.append(i); });
return indices;
}
void link_attribute_set_inputs(
lf::Graph &lf_graph,
BuildGraphParams &graph_params,
const Map<int, lf::OutputSocket *> &lf_attribute_set_by_field_source_index,
const Map<int, lf::OutputSocket *> &lf_attribute_set_by_caller_propagation_index)
{
JoinAttributeSetsCache join_attribute_sets_cache;
for (const MapItem<const bNodeSocket *, lf::InputSocket *> item :
graph_params.lf_attribute_set_input_by_output_geometry_bsocket.items())
{
const bNodeSocket &geometry_output_bsocket = *item.key;
lf::InputSocket &lf_attribute_set_input = *item.value;
Vector<lf::OutputSocket *> lf_attribute_set_sockets;
const BoundedBitSpan required_fields =
attribute_inferencing_
.required_fields_by_geometry_socket[geometry_output_bsocket.index_in_tree()];
bits::foreach_1_index(required_fields, [&](const int field_source_index) {
const auto &field_source = attribute_inferencing_.all_field_sources[field_source_index];
if (const auto *socket_field_source = std::get_if<aai::SocketFieldSource>(
&field_source.data))
{
if (&socket_field_source->socket->owner_node() == &geometry_output_bsocket.owner_node())
{
return;
}
}
lf_attribute_set_sockets.append(
lf_attribute_set_by_field_source_index.lookup(field_source_index));
});
const BoundedBitSpan required_caller_propagations =
attribute_inferencing_
.propagate_to_output_by_geometry_socket[geometry_output_bsocket.index_in_tree()];
bits::foreach_1_index(required_caller_propagations, [&](const int caller_propagation_index) {
lf_attribute_set_sockets.append(
lf_attribute_set_by_caller_propagation_index.lookup(caller_propagation_index));
});
if (lf::OutputSocket *lf_attribute_set = this->join_attribute_sets(
lf_attribute_set_sockets,
join_attribute_sets_cache,
lf_graph,
graph_params.socket_usage_inputs))
{
lf_graph.add_link(*lf_attribute_set, lf_attribute_set_input);
}
else {
static const bke::AnonymousAttributeSet empty_set;
lf_attribute_set_input.set_default_value(&empty_set);
}
}
for (const auto item : graph_params.lf_attribute_set_input_by_field_source_index.items()) {
const int field_source_index = item.key;
lf::OutputSocket &lf_attribute_set_socket = *lf_attribute_set_by_field_source_index.lookup(
field_source_index);
for (lf::InputSocket *lf_attribute_set_input : item.value) {
lf_graph.add_link(lf_attribute_set_socket, *lf_attribute_set_input);
}
}
for (const auto item : graph_params.lf_attribute_set_input_by_caller_propagation_index.items())
{
const int caller_propagation_index = item.key;
lf::OutputSocket &lf_attribute_set_socket =
*lf_attribute_set_by_caller_propagation_index.lookup(caller_propagation_index);
for (lf::InputSocket *lf_attribute_set_input : item.value) {
lf_graph.add_link(lf_attribute_set_socket, *lf_attribute_set_input);
}
}
}
void insert_nodes_and_zones(const Span<const bNode *> bnodes,
const Span<const bNodeTreeZone *> zones,
BuildGraphParams &graph_params)
{
Vector<const bNode *> nodes_to_insert = bnodes;
Map<const bNode *, const bNodeTreeZone *> zone_by_output;
for (const bNodeTreeZone *zone : zones) {
nodes_to_insert.append(zone->output_node);
zone_by_output.add(zone->output_node, zone);
}
/* Insert nodes from right to left so that usage sockets can be build in the same pass. */
std::sort(nodes_to_insert.begin(), nodes_to_insert.end(), [](const bNode *a, const bNode *b) {
return a->runtime->toposort_right_to_left_index < b->runtime->toposort_right_to_left_index;
});
for (const bNode *bnode : nodes_to_insert) {
this->build_output_socket_usages(*bnode, graph_params);
if (const bNodeTreeZone *zone = zone_by_output.lookup_default(bnode, nullptr)) {
this->insert_child_zone_node(*zone, graph_params);
}
else {
this->insert_node_in_graph(*bnode, graph_params);
}
}
}
void link_border_link_inputs_and_usages(const bNodeTreeZone &zone,
const Span<lf::GraphInputSocket *> lf_inputs,
const Span<int> lf_border_link_input_indices,
const Span<lf::GraphOutputSocket *> lf_usages,
const Span<int> lf_border_link_usage_indices,
BuildGraphParams &graph_params)
{
lf::Graph &lf_graph = graph_params.lf_graph;
for (const int border_link_i : zone.border_links.index_range()) {
const bNodeLink &border_link = *zone.border_links[border_link_i];
lf::GraphInputSocket &lf_from = *lf_inputs[lf_border_link_input_indices[border_link_i]];
const Vector<lf::InputSocket *> lf_link_targets = this->find_link_targets(border_link,
graph_params);
for (lf::InputSocket *lf_to : lf_link_targets) {
lf_graph.add_link(lf_from, *lf_to);
}
lf::GraphOutputSocket &lf_usage_output =
*lf_usages[lf_border_link_usage_indices[border_link_i]];
if (lf::OutputSocket *lf_usage = graph_params.usage_by_bsocket.lookup_default(
border_link.tosock, nullptr))
{
lf_graph.add_link(*lf_usage, lf_usage_output);
}
else {
static const bool static_false = false;
lf_usage_output.set_default_value(&static_false);
}
}
}
lf::OutputSocket &get_extracted_attributes(lf::OutputSocket &lf_field_socket,
lf::OutputSocket *lf_usage_socket,
lf::Graph &lf_graph,
Set<lf::InputSocket *> &socket_usage_inputs)
{
auto &lazy_function = scope_.construct<LazyFunctionForAnonymousAttributeSetExtract>();
lf::Node &lf_node = lf_graph.add_function(lazy_function);
lf::InputSocket &lf_use_input = lf_node.input(0);
lf::InputSocket &lf_field_input = lf_node.input(1);
socket_usage_inputs.add_new(&lf_use_input);
if (lf_usage_socket) {
lf_graph.add_link(*lf_usage_socket, lf_use_input);
}
else {
static const bool static_false = false;
lf_use_input.set_default_value(&static_false);
}
lf_graph.add_link(lf_field_socket, lf_field_input);
return lf_node.output(0);
}
/**
* Join multiple attributes set into a single attribute set that can be passed into a node.
*/
lf::OutputSocket *join_attribute_sets(const Span<lf::OutputSocket *> lf_attribute_set_sockets,
JoinAttributeSetsCache &cache,
lf::Graph &lf_graph,
Set<lf::InputSocket *> &socket_usage_inputs)
{
if (lf_attribute_set_sockets.is_empty()) {
return nullptr;
}
if (lf_attribute_set_sockets.size() == 1) {
return lf_attribute_set_sockets[0];
}
Vector<lf::OutputSocket *, 16> key = lf_attribute_set_sockets;
std::sort(key.begin(), key.end());
return cache.lookup_or_add_cb(key, [&]() {
const auto &lazy_function = LazyFunctionForAnonymousAttributeSetJoin::get_cached(
lf_attribute_set_sockets.size(), scope_);
lf::Node &lf_node = lf_graph.add_function(lazy_function);
for (const int i : lf_attribute_set_sockets.index_range()) {
lf::OutputSocket &lf_attribute_set_socket = *lf_attribute_set_sockets[i];
lf::InputSocket &lf_use_input = lf_node.input(lazy_function.get_use_input(i));
/* Some attribute sets could potentially be set unused in the future based on more dynamic
* analysis of the node tree. */
static const bool static_true = true;
lf_use_input.set_default_value(&static_true);
socket_usage_inputs.add(&lf_use_input);
lf::InputSocket &lf_attribute_set_input = lf_node.input(
lazy_function.get_attribute_set_input(i));
lf_graph.add_link(lf_attribute_set_socket, lf_attribute_set_input);
}
return &lf_node.output(0);
});
}
void insert_child_zone_node(const bNodeTreeZone &child_zone, BuildGraphParams &graph_params)
{
const int child_zone_i = child_zone.index;
ZoneBuildInfo &child_zone_info = zone_build_infos_[child_zone_i];
lf::FunctionNode &child_zone_node = graph_params.lf_graph.add_function(
*child_zone_info.lazy_function);
mapping_->zone_node_map.add_new(&child_zone, &child_zone_node);
for (const int i : child_zone_info.indices.inputs.main.index_range()) {
const bNodeSocket &bsocket = child_zone.input_node->input_socket(i);
lf::InputSocket &lf_input_socket = child_zone_node.input(
child_zone_info.indices.inputs.main[i]);
lf::OutputSocket &lf_usage_socket = child_zone_node.output(
child_zone_info.indices.outputs.input_usages[i]);
mapping_->bsockets_by_lf_socket_map.add(&lf_input_socket, &bsocket);
graph_params.lf_inputs_by_bsocket.add(&bsocket, &lf_input_socket);
graph_params.usage_by_bsocket.add(&bsocket, &lf_usage_socket);
}
for (const int i : child_zone_info.indices.outputs.main.index_range()) {
const bNodeSocket &bsocket = child_zone.output_node->output_socket(i);
lf::OutputSocket &lf_output_socket = child_zone_node.output(
child_zone_info.indices.outputs.main[i]);
lf::InputSocket &lf_usage_input = child_zone_node.input(
child_zone_info.indices.inputs.output_usages[i]);
mapping_->bsockets_by_lf_socket_map.add(&lf_output_socket, &bsocket);
graph_params.lf_output_by_bsocket.add(&bsocket, &lf_output_socket);
graph_params.socket_usage_inputs.add(&lf_usage_input);
if (lf::OutputSocket *lf_usage = graph_params.usage_by_bsocket.lookup_default(&bsocket,
nullptr))
{
graph_params.lf_graph.add_link(*lf_usage, lf_usage_input);
}
else {
static const bool static_false = false;
lf_usage_input.set_default_value(&static_false);
}
}
const Span<const bNodeLink *> child_border_links = child_zone.border_links;
for (const int child_border_link_i : child_border_links.index_range()) {
lf::InputSocket &child_border_link_input = child_zone_node.input(
child_zone_info.indices.inputs.border_links[child_border_link_i]);
const bNodeLink &link = *child_border_links[child_border_link_i];
graph_params.lf_input_by_border_link.add(&link, &child_border_link_input);
lf::OutputSocket &lf_usage = child_zone_node.output(
child_zone_info.indices.outputs.border_link_usages[child_border_link_i]);
graph_params.lf_inputs_by_bsocket.add(link.tosock, &child_border_link_input);
graph_params.usage_by_bsocket.add(link.tosock, &lf_usage);
}
for (const auto item : child_zone_info.indices.inputs.attributes_by_field_source_index.items())
{
const int field_source_index = item.key;
const int child_zone_input_index = item.value;
lf::InputSocket &lf_attribute_set_input = child_zone_node.input(child_zone_input_index);
graph_params.lf_attribute_set_input_by_field_source_index.add(field_source_index,
&lf_attribute_set_input);
}
for (const auto item :
child_zone_info.indices.inputs.attributes_by_caller_propagation_index.items())
{
const int caller_propagation_index = item.key;
const int child_zone_input_index = item.value;
lf::InputSocket &lf_attribute_set_input = child_zone_node.input(child_zone_input_index);
BLI_assert(lf_attribute_set_input.type().is<bke::AnonymousAttributeSet>());
graph_params.lf_attribute_set_input_by_caller_propagation_index.add(caller_propagation_index,
&lf_attribute_set_input);
}
}
void build_group_input_node(lf::Graph &lf_graph)
{
const Span<const bNodeTreeInterfaceSocket *> interface_inputs = btree_.interface_inputs();
for (const bNodeTreeInterfaceSocket *interface_input : interface_inputs) {
const bNodeSocketType *typeinfo = interface_input->socket_typeinfo();
lf::GraphInputSocket &lf_socket = lf_graph.add_input(
*typeinfo->geometry_nodes_cpp_type,
interface_input->name ? interface_input->name : nullptr);
group_input_sockets_.append(&lf_socket);
}
}
/**
* Build an output node that just outputs default values in the case when there is no Group
* Output node in the tree.
*/
void build_fallback_output_node(lf::Graph &lf_graph)
{
for (const bNodeTreeInterfaceSocket *interface_output : btree_.interface_outputs()) {
const bNodeSocketType *typeinfo = interface_output->socket_typeinfo();
const CPPType &type = *typeinfo->geometry_nodes_cpp_type;
lf::GraphOutputSocket &lf_socket = lf_graph.add_output(
type, interface_output->name ? interface_output->name : "");
const void *default_value = typeinfo->geometry_nodes_default_cpp_value;
if (default_value == nullptr) {
default_value = type.default_value();
}
lf_socket.set_default_value(default_value);
standard_group_output_sockets_.append(&lf_socket);
}
}
void insert_node_in_graph(const bNode &bnode, BuildGraphParams &graph_params)
{
const bNodeType *node_type = bnode.typeinfo;
if (node_type == nullptr) {
return;
}
if (bnode.is_muted()) {
this->build_muted_node(bnode, graph_params);
return;
}
switch (node_type->type) {
case NODE_FRAME: {
/* Ignored. */
break;
}
case NODE_REROUTE: {
this->build_reroute_node(bnode, graph_params);
break;
}
case NODE_GROUP_INPUT: {
this->handle_group_input_node(bnode, graph_params);
break;
}
case NODE_GROUP_OUTPUT: {
this->build_group_output_node(bnode, graph_params);
break;
}
case NODE_CUSTOM_GROUP:
case NODE_GROUP: {
this->build_group_node(bnode, graph_params);
break;
}
case GEO_NODE_VIEWER: {
this->build_viewer_node(bnode, graph_params);
break;
}
case GEO_NODE_SWITCH: {
this->build_switch_node(bnode, graph_params);
break;
}
case GEO_NODE_INDEX_SWITCH: {
this->build_index_switch_node(bnode, graph_params);
break;
}
case GEO_NODE_BAKE: {
this->build_bake_node(bnode, graph_params);
break;
}
case GEO_NODE_MENU_SWITCH: {
this->build_menu_switch_node(bnode, graph_params);
break;
}
default: {
if (node_type->geometry_node_execute) {
this->build_geometry_node(bnode, graph_params);
break;
}
const NodeMultiFunctions::Item &fn_item = node_multi_functions_.try_get(bnode);
if (fn_item.fn != nullptr) {
this->build_multi_function_node(bnode, fn_item, graph_params);
break;
}
if (node_type == &bke::NodeTypeUndefined) {
this->build_undefined_node(bnode, graph_params);
break;
}
/* Nodes that don't match any of the criteria above are just ignored. */
break;
}
}
}
void build_muted_node(const bNode &bnode, BuildGraphParams &graph_params)
{
auto &lazy_function = scope_.construct<LazyFunctionForMutedNode>(
bnode, mapping_->lf_index_by_bsocket);
lf::Node &lf_node = graph_params.lf_graph.add_function(lazy_function);
for (const bNodeSocket *bsocket : bnode.input_sockets()) {
const int lf_index = mapping_->lf_index_by_bsocket[bsocket->index_in_tree()];
if (lf_index == -1) {
continue;
}
lf::InputSocket &lf_socket = lf_node.input(lf_index);
graph_params.lf_inputs_by_bsocket.add(bsocket, &lf_socket);
mapping_->bsockets_by_lf_socket_map.add(&lf_socket, bsocket);
}
for (const bNodeSocket *bsocket : bnode.output_sockets()) {
const int lf_index = mapping_->lf_index_by_bsocket[bsocket->index_in_tree()];
if (lf_index == -1) {
continue;
}
lf::OutputSocket &lf_socket = lf_node.output(lf_index);
graph_params.lf_output_by_bsocket.add_new(bsocket, &lf_socket);
mapping_->bsockets_by_lf_socket_map.add(&lf_socket, bsocket);
}
this->build_muted_node_usages(bnode, graph_params);
}
/**
* An input of a muted node is used when any of its internally linked outputs is used.
*/
void build_muted_node_usages(const bNode &bnode, BuildGraphParams &graph_params)
{
/* Find all outputs that use a specific input. */
MultiValueMap<const bNodeSocket *, const bNodeSocket *> outputs_by_input;
for (const bNodeLink &blink : bnode.internal_links()) {
outputs_by_input.add(blink.fromsock, blink.tosock);
}
for (const auto item : outputs_by_input.items()) {
const bNodeSocket &input_bsocket = *item.key;
const Span<const bNodeSocket *> output_bsockets = item.value;
/* The input is used if any of the internally linked outputs is used. */
Vector<lf::OutputSocket *> lf_socket_usages;
for (const bNodeSocket *output_bsocket : output_bsockets) {
if (lf::OutputSocket *lf_socket = graph_params.usage_by_bsocket.lookup_default(
output_bsocket, nullptr))
{
lf_socket_usages.append(lf_socket);
}
}
graph_params.usage_by_bsocket.add(&input_bsocket,
this->or_socket_usages(lf_socket_usages, graph_params));
}
}
void build_reroute_node(const bNode &bnode, BuildGraphParams &graph_params)
{
const bNodeSocket &input_bsocket = bnode.input_socket(0);
const bNodeSocket &output_bsocket = bnode.output_socket(0);
const CPPType *type = get_socket_cpp_type(input_bsocket);
if (type == nullptr) {
return;
}
auto &lazy_function = scope_.construct<LazyFunctionForRerouteNode>(*type);
lf::Node &lf_node = graph_params.lf_graph.add_function(lazy_function);
lf::InputSocket &lf_input = lf_node.input(0);
lf::OutputSocket &lf_output = lf_node.output(0);
graph_params.lf_inputs_by_bsocket.add(&input_bsocket, &lf_input);
graph_params.lf_output_by_bsocket.add_new(&output_bsocket, &lf_output);
mapping_->bsockets_by_lf_socket_map.add(&lf_input, &input_bsocket);
mapping_->bsockets_by_lf_socket_map.add(&lf_output, &output_bsocket);
if (lf::OutputSocket *lf_usage = graph_params.usage_by_bsocket.lookup_default(
&bnode.output_socket(0), nullptr))
{
graph_params.usage_by_bsocket.add(&bnode.input_socket(0), lf_usage);
}
}
void handle_group_input_node(const bNode &bnode, BuildGraphParams &graph_params)
{
for (const int i : btree_.interface_inputs().index_range()) {
const bNodeSocket &bsocket = bnode.output_socket(i);
lf::GraphInputSocket &lf_socket = *const_cast<lf::GraphInputSocket *>(
group_input_sockets_[i]);
graph_params.lf_output_by_bsocket.add_new(&bsocket, &lf_socket);
mapping_->bsockets_by_lf_socket_map.add(&lf_socket, &bsocket);
}
}
void build_group_output_node(const bNode &bnode, BuildGraphParams &graph_params)
{
Vector<lf::GraphOutputSocket *> lf_graph_outputs;
for (const int i : btree_.interface_outputs().index_range()) {
const bNodeTreeInterfaceSocket &interface_output = *btree_.interface_outputs()[i];
const bNodeSocket &bsocket = bnode.input_socket(i);
const bNodeSocketType *typeinfo = interface_output.socket_typeinfo();
const CPPType &type = *typeinfo->geometry_nodes_cpp_type;
lf::GraphOutputSocket &lf_socket = graph_params.lf_graph.add_output(
type, interface_output.name ? interface_output.name : "");
lf_graph_outputs.append(&lf_socket);
graph_params.lf_inputs_by_bsocket.add(&bsocket, &lf_socket);
mapping_->bsockets_by_lf_socket_map.add(&lf_socket, &bsocket);
}
if (&bnode == btree_.group_output_node()) {
standard_group_output_sockets_ = lf_graph_outputs.as_span();
}
}
void build_group_node(const bNode &bnode, BuildGraphParams &graph_params)
{
const bNodeTree *group_btree = reinterpret_cast<bNodeTree *>(bnode.id);
if (group_btree == nullptr) {
return;
}
const GeometryNodesLazyFunctionGraphInfo *group_lf_graph_info =
ensure_geometry_nodes_lazy_function_graph(*group_btree);
if (group_lf_graph_info == nullptr) {
return;
}
auto &lazy_function = scope_.construct<LazyFunctionForGroupNode>(
bnode, *group_lf_graph_info, *lf_graph_info_);
lf::FunctionNode &lf_node = graph_params.lf_graph.add_function(lazy_function);
for (const int i : bnode.input_sockets().index_range()) {
const bNodeSocket &bsocket = bnode.input_socket(i);
BLI_assert(!bsocket.is_multi_input());
lf::InputSocket &lf_socket = lf_node.input(i);
graph_params.lf_inputs_by_bsocket.add(&bsocket, &lf_socket);
mapping_->bsockets_by_lf_socket_map.add(&lf_socket, &bsocket);
}
for (const int i : bnode.output_sockets().index_range()) {
const bNodeSocket &bsocket = bnode.output_socket(i);
lf::OutputSocket &lf_socket = lf_node.output(i);
graph_params.lf_output_by_bsocket.add_new(&bsocket, &lf_socket);
mapping_->bsockets_by_lf_socket_map.add(&lf_socket, &bsocket);
}
mapping_->group_node_map.add(&bnode, &lf_node);
lf_graph_info_->num_inline_nodes_approximate +=
group_lf_graph_info->num_inline_nodes_approximate;
static const bool static_false = false;
for (const bNodeSocket *bsocket : bnode.output_sockets()) {
{
const int lf_input_index =
mapping_->lf_input_index_for_output_bsocket_usage[bsocket->index_in_all_outputs()];
if (lf_input_index != -1) {
lf::InputSocket &lf_input = lf_node.input(lf_input_index);
lf_input.set_default_value(&static_false);
graph_params.socket_usage_inputs.add(&lf_input);
}
}
{
/* Keep track of attribute set inputs that need to be populated later. */
const int lf_input_index = mapping_->lf_input_index_for_attribute_propagation_to_output
[bsocket->index_in_all_outputs()];
if (lf_input_index != -1) {
lf::InputSocket &lf_input = lf_node.input(lf_input_index);
graph_params.lf_attribute_set_input_by_output_geometry_bsocket.add(bsocket, &lf_input);
}
}
}
this->build_group_node_socket_usage(bnode, lf_node, graph_params, *group_lf_graph_info);
}
void build_group_node_socket_usage(const bNode &bnode,
lf::FunctionNode &lf_group_node,
BuildGraphParams &graph_params,
const GeometryNodesLazyFunctionGraphInfo &group_lf_graph_info)
{
for (const bNodeSocket *input_bsocket : bnode.input_sockets()) {
const int input_index = input_bsocket->index();
const InputUsageHint &input_usage_hint =
group_lf_graph_info.mapping.group_input_usage_hints[input_index];
switch (input_usage_hint.type) {
case InputUsageHintType::Never: {
/* Nothing to do. */
break;
}
case InputUsageHintType::DependsOnOutput: {
Vector<lf::OutputSocket *> output_usages;
for (const int i : input_usage_hint.output_dependencies) {
if (lf::OutputSocket *lf_socket = graph_params.usage_by_bsocket.lookup_default(
&bnode.output_socket(i), nullptr))
{
output_usages.append(lf_socket);
}
}
graph_params.usage_by_bsocket.add(input_bsocket,
this->or_socket_usages(output_usages, graph_params));
break;
}
case InputUsageHintType::DynamicSocket: {
graph_params.usage_by_bsocket.add(
input_bsocket,
&lf_group_node.output(
group_lf_graph_info.function.outputs.input_usages[input_index]));
break;
}
}
}
for (const bNodeSocket *output_bsocket : bnode.output_sockets()) {
const int lf_input_index =
mapping_
->lf_input_index_for_output_bsocket_usage[output_bsocket->index_in_all_outputs()];
BLI_assert(lf_input_index >= 0);
lf::InputSocket &lf_socket = lf_group_node.input(lf_input_index);
if (lf::OutputSocket *lf_output_is_used = graph_params.usage_by_bsocket.lookup_default(
output_bsocket, nullptr))
{
graph_params.lf_graph.add_link(*lf_output_is_used, lf_socket);
}
else {
static const bool static_false = false;
lf_socket.set_default_value(&static_false);
}
}
}
void build_geometry_node(const bNode &bnode, BuildGraphParams &graph_params)
{
auto &lazy_function = scope_.construct<LazyFunctionForGeometryNode>(bnode, *lf_graph_info_);
lf::Node &lf_node = graph_params.lf_graph.add_function(lazy_function);
for (const bNodeSocket *bsocket : bnode.input_sockets()) {
const int lf_index = mapping_->lf_index_by_bsocket[bsocket->index_in_tree()];
if (lf_index == -1) {
continue;
}
lf::InputSocket &lf_socket = lf_node.input(lf_index);
if (bsocket->is_multi_input()) {
auto &multi_input_lazy_function = scope_.construct<LazyFunctionForMultiInput>(*bsocket);
lf::Node &lf_multi_input_node = graph_params.lf_graph.add_function(
multi_input_lazy_function);
graph_params.lf_graph.add_link(lf_multi_input_node.output(0), lf_socket);
graph_params.multi_input_socket_nodes.add_new(bsocket, &lf_multi_input_node);
for (lf::InputSocket *lf_multi_input_socket : lf_multi_input_node.inputs()) {
mapping_->bsockets_by_lf_socket_map.add(lf_multi_input_socket, bsocket);
const void *default_value = lf_multi_input_socket->type().default_value();
lf_multi_input_socket->set_default_value(default_value);
}
}
else {
graph_params.lf_inputs_by_bsocket.add(bsocket, &lf_socket);
mapping_->bsockets_by_lf_socket_map.add(&lf_socket, bsocket);
}
}
for (const bNodeSocket *bsocket : bnode.output_sockets()) {
const int lf_index = mapping_->lf_index_by_bsocket[bsocket->index_in_tree()];
if (lf_index == -1) {
continue;
}
lf::OutputSocket &lf_socket = lf_node.output(lf_index);
graph_params.lf_output_by_bsocket.add_new(bsocket, &lf_socket);
mapping_->bsockets_by_lf_socket_map.add(&lf_socket, bsocket);
}
for (const bNodeSocket *bsocket : bnode.output_sockets()) {
{
const int lf_input_index =
mapping_->lf_input_index_for_output_bsocket_usage[bsocket->index_in_all_outputs()];
if (lf_input_index != -1) {
lf::InputSocket &lf_input_socket = lf_node.input(lf_input_index);
if (lf::OutputSocket *lf_usage = graph_params.usage_by_bsocket.lookup_default(bsocket,
nullptr))
{
graph_params.lf_graph.add_link(*lf_usage, lf_input_socket);
}
else {
static const bool static_false = false;
lf_input_socket.set_default_value(&static_false);
}
graph_params.socket_usage_inputs.add_new(&lf_node.input(lf_input_index));
}
}
{
/* Keep track of attribute set inputs that need to be populated later. */
const int lf_input_index = mapping_->lf_input_index_for_attribute_propagation_to_output
[bsocket->index_in_all_outputs()];
if (lf_input_index != -1) {
graph_params.lf_attribute_set_input_by_output_geometry_bsocket.add(
bsocket, &lf_node.input(lf_input_index));
}
}
}
this->build_standard_node_input_socket_usage(bnode, graph_params);
}
void build_standard_node_input_socket_usage(const bNode &bnode, BuildGraphParams &graph_params)
{
if (bnode.input_sockets().is_empty()) {
return;
}
Vector<lf::OutputSocket *> output_usages;
for (const bNodeSocket *output_socket : bnode.output_sockets()) {
if (!output_socket->is_available()) {
continue;
}
if (lf::OutputSocket *is_used_socket = graph_params.usage_by_bsocket.lookup_default(
output_socket, nullptr))
{
output_usages.append_non_duplicates(is_used_socket);
}
}
/* Assume every input is used when any output is used. */
lf::OutputSocket *lf_usage = this->or_socket_usages(output_usages, graph_params);
if (lf_usage == nullptr) {
return;
}
for (const bNodeSocket *input_socket : bnode.input_sockets()) {
if (input_socket->is_available()) {
graph_params.usage_by_bsocket.add(input_socket, lf_usage);
}
}
}
void build_multi_function_node(const bNode &bnode,
const NodeMultiFunctions::Item &fn_item,
BuildGraphParams &graph_params)
{
auto &lazy_function = scope_.construct<LazyFunctionForMultiFunctionNode>(
bnode, fn_item, mapping_->lf_index_by_bsocket);
lf::Node &lf_node = graph_params.lf_graph.add_function(lazy_function);
for (const bNodeSocket *bsocket : bnode.input_sockets()) {
const int lf_index = mapping_->lf_index_by_bsocket[bsocket->index_in_tree()];
if (lf_index == -1) {
continue;
}
BLI_assert(!bsocket->is_multi_input());
lf::InputSocket &lf_socket = lf_node.input(lf_index);
graph_params.lf_inputs_by_bsocket.add(bsocket, &lf_socket);
mapping_->bsockets_by_lf_socket_map.add(&lf_socket, bsocket);
}
for (const bNodeSocket *bsocket : bnode.output_sockets()) {
const int lf_index = mapping_->lf_index_by_bsocket[bsocket->index_in_tree()];
if (lf_index == -1) {
continue;
}
lf::OutputSocket &lf_socket = lf_node.output(lf_index);
graph_params.lf_output_by_bsocket.add(bsocket, &lf_socket);
mapping_->bsockets_by_lf_socket_map.add(&lf_socket, bsocket);
}
this->build_standard_node_input_socket_usage(bnode, graph_params);
}
void build_viewer_node(const bNode &bnode, BuildGraphParams &graph_params)
{
auto &lazy_function = scope_.construct<LazyFunctionForViewerNode>(
bnode, mapping_->lf_index_by_bsocket);
lf::FunctionNode &lf_viewer_node = graph_params.lf_graph.add_function(lazy_function);
for (const bNodeSocket *bsocket : bnode.input_sockets()) {
const int lf_index = mapping_->lf_index_by_bsocket[bsocket->index_in_tree()];
if (lf_index == -1) {
continue;
}
lf::InputSocket &lf_socket = lf_viewer_node.input(lf_index);
graph_params.lf_inputs_by_bsocket.add(bsocket, &lf_socket);
mapping_->bsockets_by_lf_socket_map.add(&lf_socket, bsocket);
}
mapping_->possible_side_effect_node_map.add(&bnode, &lf_viewer_node);
{
auto &usage_lazy_function = scope_.construct<LazyFunctionForViewerInputUsage>(
lf_viewer_node);
lf::FunctionNode &lf_usage_node = graph_params.lf_graph.add_function(usage_lazy_function);
for (const bNodeSocket *bsocket : bnode.input_sockets()) {
if (bsocket->is_available()) {
graph_params.usage_by_bsocket.add(bsocket, &lf_usage_node.output(0));
}
}
}
}
lf::FunctionNode *insert_simulation_input_node(const bNodeTree &node_tree,
const bNode &bnode,
BuildGraphParams &graph_params)
{
const NodeGeometrySimulationInput *storage = static_cast<const NodeGeometrySimulationInput *>(
bnode.storage);
if (node_tree.node_by_id(storage->output_node_id) == nullptr) {
return nullptr;
}
std::unique_ptr<LazyFunction> lazy_function = get_simulation_input_lazy_function(
node_tree, bnode, *lf_graph_info_);
lf::FunctionNode &lf_node = graph_params.lf_graph.add_function(*lazy_function);
scope_.add(std::move(lazy_function));
for (const int i : bnode.input_sockets().index_range().drop_back(1)) {
const bNodeSocket &bsocket = bnode.input_socket(i);
lf::InputSocket &lf_socket = lf_node.input(
mapping_->lf_index_by_bsocket[bsocket.index_in_tree()]);
graph_params.lf_inputs_by_bsocket.add(&bsocket, &lf_socket);
mapping_->bsockets_by_lf_socket_map.add(&lf_socket, &bsocket);
}
for (const int i : bnode.output_sockets().index_range().drop_back(1)) {
const bNodeSocket &bsocket = bnode.output_socket(i);
lf::OutputSocket &lf_socket = lf_node.output(
mapping_->lf_index_by_bsocket[bsocket.index_in_tree()]);
graph_params.lf_output_by_bsocket.add(&bsocket, &lf_socket);
mapping_->bsockets_by_lf_socket_map.add(&lf_socket, &bsocket);
}
return &lf_node;
}
lf::FunctionNode &insert_simulation_output_node(const bNode &bnode,
BuildGraphParams &graph_params)
{
std::unique_ptr<LazyFunction> lazy_function = get_simulation_output_lazy_function(
bnode, *lf_graph_info_);
lf::FunctionNode &lf_node = graph_params.lf_graph.add_function(*lazy_function);
scope_.add(std::move(lazy_function));
for (const int i : bnode.input_sockets().index_range().drop_back(1)) {
const bNodeSocket &bsocket = bnode.input_socket(i);
lf::InputSocket &lf_socket = lf_node.input(
mapping_->lf_index_by_bsocket[bsocket.index_in_tree()]);
graph_params.lf_inputs_by_bsocket.add(&bsocket, &lf_socket);
mapping_->bsockets_by_lf_socket_map.add(&lf_socket, &bsocket);
}
for (const int i : bnode.output_sockets().index_range().drop_back(1)) {
const bNodeSocket &bsocket = bnode.output_socket(i);
lf::OutputSocket &lf_socket = lf_node.output(
mapping_->lf_index_by_bsocket[bsocket.index_in_tree()]);
graph_params.lf_output_by_bsocket.add(&bsocket, &lf_socket);
mapping_->bsockets_by_lf_socket_map.add(&lf_socket, &bsocket);
}
mapping_->possible_side_effect_node_map.add(&bnode, &lf_node);
return lf_node;
}
void build_bake_node(const bNode &bnode, BuildGraphParams &graph_params)
{
std::unique_ptr<LazyFunction> lazy_function = get_bake_lazy_function(bnode, *lf_graph_info_);
lf::FunctionNode &lf_node = graph_params.lf_graph.add_function(*lazy_function);
scope_.add(std::move(lazy_function));
for (const int i : bnode.input_sockets().index_range().drop_back(1)) {
const bNodeSocket &bsocket = bnode.input_socket(i);
lf::InputSocket &lf_socket = lf_node.input(
mapping_->lf_index_by_bsocket[bsocket.index_in_tree()]);
graph_params.lf_inputs_by_bsocket.add(&bsocket, &lf_socket);
mapping_->bsockets_by_lf_socket_map.add(&lf_socket, &bsocket);
}
for (const int i : bnode.output_sockets().index_range().drop_back(1)) {
const bNodeSocket &bsocket = bnode.output_socket(i);
lf::OutputSocket &lf_socket = lf_node.output(
mapping_->lf_index_by_bsocket[bsocket.index_in_tree()]);
graph_params.lf_output_by_bsocket.add(&bsocket, &lf_socket);
mapping_->bsockets_by_lf_socket_map.add(&lf_socket, &bsocket);
}
mapping_->possible_side_effect_node_map.add(&bnode, &lf_node);
this->build_bake_node_socket_usage(bnode, graph_params);
}
void build_bake_node_socket_usage(const bNode &bnode, BuildGraphParams &graph_params)
{
const LazyFunction &usage_fn = scope_.construct<LazyFunctionForBakeInputsUsage>(bnode);
lf::FunctionNode &lf_usage_node = graph_params.lf_graph.add_function(usage_fn);
const int items_num = bnode.input_sockets().size() - 1;
for (const int i : IndexRange(items_num)) {
graph_params.usage_by_bsocket.add(&bnode.input_socket(i), &lf_usage_node.output(0));
}
}
void build_switch_node(const bNode &bnode, BuildGraphParams &graph_params)
{
std::unique_ptr<LazyFunction> lazy_function = get_switch_node_lazy_function(bnode);
lf::FunctionNode &lf_node = graph_params.lf_graph.add_function(*lazy_function);
scope_.add(std::move(lazy_function));
for (const int i : bnode.input_sockets().index_range()) {
graph_params.lf_inputs_by_bsocket.add(&bnode.input_socket(i), &lf_node.input(i));
mapping_->bsockets_by_lf_socket_map.add(&lf_node.input(i), &bnode.input_socket(i));
}
graph_params.lf_output_by_bsocket.add(&bnode.output_socket(0), &lf_node.output(0));
mapping_->bsockets_by_lf_socket_map.add(&lf_node.output(0), &bnode.output_socket(0));
this->build_switch_node_socket_usage(bnode, graph_params);
}
void build_switch_node_socket_usage(const bNode &bnode, BuildGraphParams &graph_params)
{
const bNodeSocket &switch_input_bsocket = bnode.input_socket(0);
const bNodeSocket &false_input_bsocket = bnode.input_socket(1);
const bNodeSocket &true_input_bsocket = bnode.input_socket(2);
const bNodeSocket &output_bsocket = bnode.output_socket(0);
lf::OutputSocket *output_is_used_socket = graph_params.usage_by_bsocket.lookup_default(
&output_bsocket, nullptr);
if (output_is_used_socket == nullptr) {
return;
}
graph_params.usage_by_bsocket.add(&switch_input_bsocket, output_is_used_socket);
if (switch_input_bsocket.is_directly_linked()) {
/* The condition input is dynamic, so the usage of the other inputs is as well. */
static const LazyFunctionForSwitchSocketUsage switch_socket_usage_fn;
lf::Node &lf_node = graph_params.lf_graph.add_function(switch_socket_usage_fn);
graph_params.lf_inputs_by_bsocket.add(&switch_input_bsocket, &lf_node.input(0));
graph_params.usage_by_bsocket.add(&false_input_bsocket, &lf_node.output(0));
graph_params.usage_by_bsocket.add(&true_input_bsocket, &lf_node.output(1));
}
else {
if (switch_input_bsocket.default_value_typed<bNodeSocketValueBoolean>()->value) {
graph_params.usage_by_bsocket.add(&true_input_bsocket, output_is_used_socket);
}
else {
graph_params.usage_by_bsocket.add(&false_input_bsocket, output_is_used_socket);
}
}
}
void build_index_switch_node(const bNode &bnode, BuildGraphParams &graph_params)
{
std::unique_ptr<LazyFunction> lazy_function = get_index_switch_node_lazy_function(
bnode, *lf_graph_info_);
lf::FunctionNode &lf_node = graph_params.lf_graph.add_function(*lazy_function);
scope_.add(std::move(lazy_function));
for (const int i : bnode.input_sockets().drop_back(1).index_range()) {
graph_params.lf_inputs_by_bsocket.add(&bnode.input_socket(i), &lf_node.input(i));
mapping_->bsockets_by_lf_socket_map.add(&lf_node.input(i), &bnode.input_socket(i));
}
graph_params.lf_output_by_bsocket.add(&bnode.output_socket(0), &lf_node.output(0));
mapping_->bsockets_by_lf_socket_map.add(&lf_node.output(0), &bnode.output_socket(0));
this->build_index_switch_node_socket_usage(bnode, graph_params);
}
void build_index_switch_node_socket_usage(const bNode &bnode, BuildGraphParams &graph_params)
{
const bNodeSocket &index_socket = bnode.input_socket(0);
const int items_num = bnode.input_sockets().size() - 1;
lf::OutputSocket *output_is_used = graph_params.usage_by_bsocket.lookup_default(
&bnode.output_socket(0), nullptr);
if (output_is_used == nullptr) {
return;
}
graph_params.usage_by_bsocket.add(&index_socket, output_is_used);
if (index_socket.is_directly_linked()) {
/* The condition input is dynamic, so the usage of the other inputs is as well. */
auto usage_fn = std::make_unique<LazyFunctionForIndexSwitchSocketUsage>(bnode);
lf::Node &lf_node = graph_params.lf_graph.add_function(*usage_fn);
scope_.add(std::move(usage_fn));
graph_params.lf_inputs_by_bsocket.add(&index_socket, &lf_node.input(0));
for (const int i : IndexRange(items_num)) {
graph_params.usage_by_bsocket.add(&bnode.input_socket(i + 1), &lf_node.output(i));
}
}
else {
const int index = index_socket.default_value_typed<bNodeSocketValueInt>()->value;
if (IndexRange(items_num).contains(index)) {
graph_params.usage_by_bsocket.add(&bnode.input_socket(index + 1), output_is_used);
}
}
}
void build_menu_switch_node(const bNode &bnode, BuildGraphParams &graph_params)
{
std::unique_ptr<LazyFunction> lazy_function = get_menu_switch_node_lazy_function(
bnode, *lf_graph_info_);
lf::FunctionNode &lf_node = graph_params.lf_graph.add_function(*lazy_function);
scope_.add(std::move(lazy_function));
int input_index = 0;
for (const bNodeSocket *bsocket : bnode.input_sockets().drop_back(1)) {
if (bsocket->is_available()) {
lf::InputSocket &lf_socket = lf_node.input(input_index);
graph_params.lf_inputs_by_bsocket.add(bsocket, &lf_socket);
mapping_->bsockets_by_lf_socket_map.add(&lf_socket, bsocket);
input_index++;
}
}
for (const bNodeSocket *bsocket : bnode.output_sockets()) {
if (bsocket->is_available()) {
lf::OutputSocket &lf_socket = lf_node.output(0);
graph_params.lf_output_by_bsocket.add(bsocket, &lf_socket);
mapping_->bsockets_by_lf_socket_map.add(&lf_socket, bsocket);
break;
}
}
this->build_menu_switch_node_socket_usage(bnode, graph_params);
}
void build_menu_switch_node_socket_usage(const bNode &bnode, BuildGraphParams &graph_params)
{
const NodeMenuSwitch &storage = *static_cast<NodeMenuSwitch *>(bnode.storage);
const NodeEnumDefinition &enum_def = storage.enum_definition;
const bNodeSocket *switch_input_bsocket = bnode.input_sockets()[0];
Vector<const bNodeSocket *> input_bsockets(enum_def.items_num);
for (const int i : IndexRange(enum_def.items_num)) {
input_bsockets[i] = bnode.input_sockets()[i + 1];
}
const bNodeSocket *output_bsocket = bnode.output_sockets()[0];
lf::OutputSocket *output_is_used_socket = graph_params.usage_by_bsocket.lookup_default(
output_bsocket, nullptr);
if (output_is_used_socket == nullptr) {
return;
}
graph_params.usage_by_bsocket.add(switch_input_bsocket, output_is_used_socket);
if (switch_input_bsocket->is_directly_linked()) {
/* The condition input is dynamic, so the usage of the other inputs is as well. */
std::unique_ptr<LazyFunction> lazy_function =
get_menu_switch_node_socket_usage_lazy_function(bnode);
lf::FunctionNode &lf_node = graph_params.lf_graph.add_function(*lazy_function);
scope_.add(std::move(lazy_function));
graph_params.lf_inputs_by_bsocket.add(switch_input_bsocket, &lf_node.input(0));
for (const int i : IndexRange(enum_def.items_num)) {
graph_params.usage_by_bsocket.add(input_bsockets[i], &lf_node.output(i));
}
}
else {
const int condition =
switch_input_bsocket->default_value_typed<bNodeSocketValueMenu>()->value;
for (const int i : IndexRange(enum_def.items_num)) {
const NodeEnumItem &enum_item = enum_def.items()[i];
if (enum_item.identifier == condition) {
graph_params.usage_by_bsocket.add(input_bsockets[i], output_is_used_socket);
break;
}
}
}
}
void build_undefined_node(const bNode &bnode, BuildGraphParams &graph_params)
{
auto &lazy_function = scope_.construct<LazyFunctionForUndefinedNode>(
bnode, mapping_->lf_index_by_bsocket);
lf::FunctionNode &lf_node = graph_params.lf_graph.add_function(lazy_function);
for (const bNodeSocket *bsocket : bnode.output_sockets()) {
const int lf_index = mapping_->lf_index_by_bsocket[bsocket->index_in_tree()];
if (lf_index == -1) {
continue;
}
lf::OutputSocket &lf_socket = lf_node.output(lf_index);
graph_params.lf_output_by_bsocket.add(bsocket, &lf_socket);
mapping_->bsockets_by_lf_socket_map.add(&lf_socket, bsocket);
}
}
struct TypeWithLinks {
const bNodeSocketType *typeinfo;
Vector<const bNodeLink *> links;
};
void insert_links_from_socket(const bNodeSocket &from_bsocket,
lf::OutputSocket &from_lf_socket,
BuildGraphParams &graph_params)
{
if (from_bsocket.owner_node().is_dangling_reroute()) {
return;
}
const bNodeSocketType &from_typeinfo = *from_bsocket.typeinfo;
/* Group available target sockets by type so that they can be handled together. */
const Vector<TypeWithLinks> types_with_links = this->group_link_targets_by_type(from_bsocket);
for (const TypeWithLinks &type_with_links : types_with_links) {
if (type_with_links.typeinfo == nullptr) {
continue;
}
if (type_with_links.typeinfo->geometry_nodes_cpp_type == nullptr) {
continue;
}
const bNodeSocketType &to_typeinfo = *type_with_links.typeinfo;
const CPPType &to_type = *to_typeinfo.geometry_nodes_cpp_type;
const Span<const bNodeLink *> links = type_with_links.links;
lf::OutputSocket *converted_from_lf_socket = this->insert_type_conversion_if_necessary(
from_lf_socket, from_typeinfo, to_typeinfo, graph_params.lf_graph);
for (const bNodeLink *link : links) {
const Vector<lf::InputSocket *> lf_link_targets = this->find_link_targets(*link,
graph_params);
if (converted_from_lf_socket == nullptr) {
const void *default_value = to_type.default_value();
for (lf::InputSocket *to_lf_socket : lf_link_targets) {
to_lf_socket->set_default_value(default_value);
}
}
else {
for (lf::InputSocket *to_lf_socket : lf_link_targets) {
graph_params.lf_graph.add_link(*converted_from_lf_socket, *to_lf_socket);
}
}
}
}
}
Vector<TypeWithLinks> group_link_targets_by_type(const bNodeSocket &from_bsocket)
{
const Span<const bNodeLink *> links_from_bsocket = from_bsocket.directly_linked_links();
Vector<TypeWithLinks> types_with_links;
for (const bNodeLink *link : links_from_bsocket) {
if (link->is_muted()) {
continue;
}
if (!link->is_available()) {
continue;
}
const bNodeSocket &to_bsocket = *link->tosock;
bool inserted = false;
for (TypeWithLinks &types_with_links : types_with_links) {
if (types_with_links.typeinfo == to_bsocket.typeinfo) {
types_with_links.links.append(link);
inserted = true;
break;
}
}
if (inserted) {
continue;
}
types_with_links.append({to_bsocket.typeinfo, {link}});
}
return types_with_links;
}
Vector<lf::InputSocket *> find_link_targets(const bNodeLink &link,
const BuildGraphParams &graph_params)
{
if (lf::InputSocket *lf_input_socket = graph_params.lf_input_by_border_link.lookup_default(
&link, nullptr))
{
return {lf_input_socket};
}
const bNodeSocket &to_bsocket = *link.tosock;
if (to_bsocket.is_multi_input()) {
/* TODO: Cache this index on the link. */
int link_index = 0;
for (const bNodeLink *multi_input_link : to_bsocket.directly_linked_links()) {
if (multi_input_link == &link) {
break;
}
if (multi_input_link->is_muted() || !multi_input_link->fromsock->is_available() ||
multi_input_link->fromnode->is_dangling_reroute())
{
continue;
}
link_index++;
}
if (to_bsocket.owner_node().is_muted()) {
if (link_index == 0) {
return Vector<lf::InputSocket *>(graph_params.lf_inputs_by_bsocket.lookup(&to_bsocket));
}
}
else {
lf::Node *multi_input_lf_node = graph_params.multi_input_socket_nodes.lookup_default(
&to_bsocket, nullptr);
if (multi_input_lf_node == nullptr) {
return {};
}
return {&multi_input_lf_node->input(link_index)};
}
}
else {
return Vector<lf::InputSocket *>(graph_params.lf_inputs_by_bsocket.lookup(&to_bsocket));
}
return {};
}
lf::OutputSocket *insert_type_conversion_if_necessary(lf::OutputSocket &from_socket,
const bNodeSocketType &from_typeinfo,
const bNodeSocketType &to_typeinfo,
lf::Graph &lf_graph)
{
if (from_typeinfo.type == to_typeinfo.type) {
return &from_socket;
}
if (from_typeinfo.base_cpp_type && to_typeinfo.base_cpp_type) {
if (conversions_->is_convertible(*from_typeinfo.base_cpp_type, *to_typeinfo.base_cpp_type)) {
const MultiFunction &multi_fn = *conversions_->get_conversion_multi_function(
mf::DataType::ForSingle(*from_typeinfo.base_cpp_type),
mf::DataType::ForSingle(*to_typeinfo.base_cpp_type));
auto &fn = scope_.construct<LazyFunctionForMultiFunctionConversion>(multi_fn);
lf::Node &conversion_node = lf_graph.add_function(fn);
lf_graph.add_link(from_socket, conversion_node.input(0));
return &conversion_node.output(0);
}
}
return nullptr;
}
void add_default_inputs(BuildGraphParams &graph_params)
{
for (auto item : graph_params.lf_inputs_by_bsocket.items()) {
const bNodeSocket &bsocket = *item.key;
const Span<lf::InputSocket *> lf_sockets = item.value;
for (lf::InputSocket *lf_socket : lf_sockets) {
if (lf_socket->origin() != nullptr) {
/* Is linked already. */
continue;
}
this->add_default_input(bsocket, *lf_socket, graph_params);
}
}
}
void add_default_input(const bNodeSocket &input_bsocket,
lf::InputSocket &input_lf_socket,
BuildGraphParams &graph_params)
{
if (this->try_add_implicit_input(input_bsocket, input_lf_socket, graph_params)) {
return;
}
GMutablePointer value = get_socket_default_value(scope_.linear_allocator(), input_bsocket);
if (value.get() == nullptr) {
/* Not possible to add a default value. */
return;
}
input_lf_socket.set_default_value(value.get());
if (!value.type()->is_trivially_destructible()) {
scope_.add_destruct_call([value]() mutable { value.destruct(); });
}
}
bool try_add_implicit_input(const bNodeSocket &input_bsocket,
lf::InputSocket &input_lf_socket,
BuildGraphParams &graph_params)
{
const bNode &bnode = input_bsocket.owner_node();
const SocketDeclaration *socket_decl = input_bsocket.runtime->declaration;
if (socket_decl == nullptr) {
return false;
}
if (socket_decl->input_field_type != InputSocketFieldType::Implicit) {
return false;
}
const ImplicitInputValueFn *implicit_input_fn = socket_decl->implicit_input_fn.get();
if (implicit_input_fn == nullptr) {
return false;
}
std::function<void(void *)> init_fn = [&bnode, implicit_input_fn](void *r_value) {
(*implicit_input_fn)(bnode, r_value);
};
const CPPType &type = input_lf_socket.type();
auto &lazy_function = scope_.construct<LazyFunctionForImplicitInput>(type, std::move(init_fn));
lf::Node &lf_node = graph_params.lf_graph.add_function(lazy_function);
graph_params.lf_graph.add_link(lf_node.output(0), input_lf_socket);
return true;
}
/**
* Every output geometry socket that may propagate attributes has to know which attributes
* should be propagated. Therefore, every one of these outputs gets a corresponding attribute
* set input.
*/
void build_attribute_propagation_input_node(lf::Graph &lf_graph)
{
const aal::RelationsInNode &tree_relations =
btree_.runtime->anonymous_attribute_inferencing->tree_relations;
Vector<int> output_indices;
for (const aal::PropagateRelation &relation : tree_relations.propagate_relations) {
output_indices.append_non_duplicates(relation.to_geometry_output);
}
for (const int i : output_indices.index_range()) {
const int output_index = output_indices[i];
const char *name = btree_.interface_outputs()[output_index]->name;
lf::GraphInputSocket &lf_socket = lf_graph.add_input(
CPPType::get<bke::AnonymousAttributeSet>(),
StringRef("Propagate: ") + (name ? name : ""));
attribute_set_by_geometry_output_.add(output_index, &lf_socket);
}
}
/**
* Combine multiple socket usages with a logical or. Inserts a new node for that purpose if
* necessary.
*/
lf::OutputSocket *or_socket_usages(MutableSpan<lf::OutputSocket *> usages,
BuildGraphParams &graph_params)
{
if (usages.is_empty()) {
return nullptr;
}
if (usages.size() == 1) {
return usages[0];
}
std::sort(usages.begin(), usages.end());
return graph_params.socket_usages_combination_cache.lookup_or_add_cb_as(usages, [&]() {
auto &logical_or_fn = scope_.construct<LazyFunctionForLogicalOr>(usages.size());
lf::Node &logical_or_node = graph_params.lf_graph.add_function(logical_or_fn);
for (const int i : usages.index_range()) {
graph_params.lf_graph.add_link(*usages[i], logical_or_node.input(i));
}
return &logical_or_node.output(0);
});
}
void build_output_socket_usages(const bNode &bnode, BuildGraphParams &graph_params)
{
/* Output sockets are used when any of their linked inputs are used. */
for (const bNodeSocket *socket : bnode.output_sockets()) {
if (!socket->is_available()) {
continue;
}
/* Determine when linked target sockets are used. */
Vector<lf::OutputSocket *> target_usages;
for (const bNodeLink *link : socket->directly_linked_links()) {
if (!link->is_used()) {
continue;
}
const bNodeSocket &target_socket = *link->tosock;
if (lf::OutputSocket *is_used_socket = graph_params.usage_by_bsocket.lookup_default(
&target_socket, nullptr))
{
target_usages.append_non_duplicates(is_used_socket);
}
}
/* Combine target socket usages into the usage of the current socket. */
graph_params.usage_by_bsocket.add(socket,
this->or_socket_usages(target_usages, graph_params));
}
}
void build_group_input_usages(BuildGraphParams &graph_params)
{
const Span<const bNode *> group_input_nodes = btree_.group_input_nodes();
for (const int i : btree_.interface_inputs().index_range()) {
Vector<lf::OutputSocket *> target_usages;
for (const bNode *group_input_node : group_input_nodes) {
if (lf::OutputSocket *lf_socket = graph_params.usage_by_bsocket.lookup_default(
&group_input_node->output_socket(i), nullptr))
{
target_usages.append_non_duplicates(lf_socket);
}
}
lf::OutputSocket *lf_socket = this->or_socket_usages(target_usages, graph_params);
lf::InputSocket *lf_group_output = const_cast<lf::InputSocket *>(
group_input_usage_sockets_[i]);
InputUsageHint input_usage_hint;
if (lf_socket == nullptr) {
static const bool static_false = false;
lf_group_output->set_default_value(&static_false);
input_usage_hint.type = InputUsageHintType::Never;
}
else {
graph_params.lf_graph.add_link(*lf_socket, *lf_group_output);
if (lf_socket->node().is_interface()) {
/* Can support slightly more complex cases where it depends on more than one output in
* the future. */
input_usage_hint.type = InputUsageHintType::DependsOnOutput;
input_usage_hint.output_dependencies = {
group_output_used_sockets_.first_index_of(lf_socket)};
}
else {
input_usage_hint.type = InputUsageHintType::DynamicSocket;
}
}
lf_graph_info_->mapping.group_input_usage_hints.append(std::move(input_usage_hint));
}
}
/**
* By depending on "the future" (whether a specific socket is used in the future), it is
* possible to introduce cycles in the graph. This function finds those cycles and breaks them
* by removing specific links.
*
* Example for a cycle: There is a `Distribute Points on Faces` node and its `Normal` output is
* only used when the number of generated points is larger than 1000 because of some switch
* node later in the tree. In this case, to know whether the `Normal` output is needed, one
* first has to compute the points, but for that one has to know whether the normal information
* has to be added to the points. The fix is to always add the normal information in this case.
*/
void fix_link_cycles(lf::Graph &lf_graph, const Set<lf::InputSocket *> &socket_usage_inputs)
{
lf_graph.update_socket_indices();
const int sockets_num = lf_graph.socket_num();
struct SocketState {
bool done = false;
bool in_stack = false;
};
Array<SocketState> socket_states(sockets_num);
Vector<lf::Socket *> lf_sockets_to_check;
for (lf::Node *lf_node : lf_graph.nodes()) {
if (lf_node->is_function()) {
for (lf::OutputSocket *lf_socket : lf_node->outputs()) {
if (lf_socket->targets().is_empty()) {
lf_sockets_to_check.append(lf_socket);
}
}
}
if (lf_node->outputs().is_empty()) {
for (lf::InputSocket *lf_socket : lf_node->inputs()) {
lf_sockets_to_check.append(lf_socket);
}
}
}
Vector<lf::Socket *> lf_socket_stack;
while (!lf_sockets_to_check.is_empty()) {
lf::Socket *lf_inout_socket = lf_sockets_to_check.last();
lf::Node &lf_node = lf_inout_socket->node();
SocketState &state = socket_states[lf_inout_socket->index_in_graph()];
if (!state.in_stack) {
lf_socket_stack.append(lf_inout_socket);
state.in_stack = true;
}
Vector<lf::Socket *, 16> lf_origin_sockets;
if (lf_inout_socket->is_input()) {
lf::InputSocket &lf_input_socket = lf_inout_socket->as_input();
if (lf::OutputSocket *lf_origin_socket = lf_input_socket.origin()) {
lf_origin_sockets.append(lf_origin_socket);
}
}
else {
lf::OutputSocket &lf_output_socket = lf_inout_socket->as_output();
if (lf_node.is_function()) {
lf::FunctionNode &lf_function_node = static_cast<lf::FunctionNode &>(lf_node);
const lf::LazyFunction &fn = lf_function_node.function();
fn.possible_output_dependencies(
lf_output_socket.index(), [&](const Span<int> input_indices) {
for (const int input_index : input_indices) {
lf_origin_sockets.append(&lf_node.input(input_index));
}
});
}
}
bool pushed_socket = false;
bool detected_cycle = false;
for (lf::Socket *lf_origin_socket : lf_origin_sockets) {
if (socket_states[lf_origin_socket->index_in_graph()].in_stack) {
/* A cycle has been detected. The cycle is broken by removing a link and replacing it
* with a constant "true" input. This can only affect inputs which determine whether a
* specific value is used. Therefore, setting it to a constant true can result in more
* computation later, but does not change correctness.
*
* After the cycle is broken, the cycle-detection is "rolled back" to the socket where
* the first socket of the cycle was found. This is necessary in case another cycle
* goes through this socket. */
detected_cycle = true;
const int index_in_socket_stack = lf_socket_stack.first_index_of(lf_origin_socket);
const int index_in_sockets_to_check = lf_sockets_to_check.first_index_of(
lf_origin_socket);
const Span<lf::Socket *> cycle = lf_socket_stack.as_span().drop_front(
index_in_socket_stack);
bool broke_cycle = false;
for (lf::Socket *lf_cycle_socket : cycle) {
if (lf_cycle_socket->is_input() &&
socket_usage_inputs.contains(&lf_cycle_socket->as_input()))
{
lf::InputSocket &lf_cycle_input_socket = lf_cycle_socket->as_input();
lf_graph.clear_origin(lf_cycle_input_socket);
static const bool static_true = true;
lf_cycle_input_socket.set_default_value(&static_true);
broke_cycle = true;
}
/* This is actually removed from the stack when it is resized below. */
SocketState &lf_cycle_socket_state = socket_states[lf_cycle_socket->index_in_graph()];
lf_cycle_socket_state.in_stack = false;
}
if (!broke_cycle) {
BLI_assert_unreachable();
}
/* Roll back algorithm by removing the sockets that corresponded to the cycle from the
* stacks. */
lf_socket_stack.resize(index_in_socket_stack);
/* The +1 is there so that the socket itself is not removed. */
lf_sockets_to_check.resize(index_in_sockets_to_check + 1);
break;
}
else if (!socket_states[lf_origin_socket->index_in_graph()].done) {
lf_sockets_to_check.append(lf_origin_socket);
pushed_socket = true;
}
}
if (detected_cycle) {
continue;
}
if (pushed_socket) {
continue;
}
state.done = true;
state.in_stack = false;
lf_sockets_to_check.pop_last();
lf_socket_stack.pop_last();
}
}
};
const GeometryNodesLazyFunctionGraphInfo *ensure_geometry_nodes_lazy_function_graph(
const bNodeTree &btree)
{
btree.ensure_topology_cache();
btree.ensure_interface_cache();
if (btree.has_available_link_cycle()) {
return nullptr;
}
const bNodeTreeZones *tree_zones = btree.zones();
if (tree_zones == nullptr) {
return nullptr;
}
for (const std::unique_ptr<bNodeTreeZone> &zone : tree_zones->zones) {
if (zone->input_node == nullptr || zone->output_node == nullptr) {
/* Simulations and repeats need input and output nodes. */
return nullptr;
}
}
if (const ID *id_orig = DEG_get_original_id(const_cast<ID *>(&btree.id))) {
if (id_orig->tag & LIB_TAG_MISSING) {
return nullptr;
}
}
for (const bNodeTreeInterfaceSocket *interface_bsocket : btree.interface_inputs()) {
const bNodeSocketType *typeinfo = interface_bsocket->socket_typeinfo();
if (typeinfo->geometry_nodes_cpp_type == nullptr) {
return nullptr;
}
}
for (const bNodeTreeInterfaceSocket *interface_bsocket : btree.interface_outputs()) {
const bNodeSocketType *typeinfo = interface_bsocket->socket_typeinfo();
if (typeinfo->geometry_nodes_cpp_type == nullptr) {
return nullptr;
}
}
std::unique_ptr<GeometryNodesLazyFunctionGraphInfo> &lf_graph_info_ptr =
btree.runtime->geometry_nodes_lazy_function_graph_info;
if (lf_graph_info_ptr) {
return lf_graph_info_ptr.get();
}
std::lock_guard lock{btree.runtime->geometry_nodes_lazy_function_graph_info_mutex};
if (lf_graph_info_ptr) {
return lf_graph_info_ptr.get();
}
auto lf_graph_info = std::make_unique<GeometryNodesLazyFunctionGraphInfo>();
GeometryNodesLazyFunctionBuilder builder{btree, *lf_graph_info};
builder.build();
lf_graph_info_ptr = std::move(lf_graph_info);
return lf_graph_info_ptr.get();
}
destruct_ptr<lf::LocalUserData> GeoNodesLFUserData::get_local(LinearAllocator<> &allocator)
{
return allocator.construct<GeoNodesLFLocalUserData>(*this);
}
void GeoNodesLFLocalUserData::ensure_tree_logger(const GeoNodesLFUserData &user_data) const
{
if (geo_eval_log::GeoModifierLog *log = user_data.call_data->eval_log) {
tree_logger_.emplace(&log->get_local_tree_logger(*user_data.compute_context));
return;
}
this->tree_logger_.emplace(nullptr);
}
std::optional<FoundNestedNodeID> find_nested_node_id(const GeoNodesLFUserData &user_data,
const int node_id)
{
FoundNestedNodeID found;
Vector<int> node_ids;
for (const ComputeContext *context = user_data.compute_context; context != nullptr;
context = context->parent())
{
if (const auto *node_context = dynamic_cast<const bke::GroupNodeComputeContext *>(context)) {
node_ids.append(node_context->node_id());
}
else if (dynamic_cast<const bke::RepeatZoneComputeContext *>(context) != nullptr) {
found.is_in_loop = true;
}
else if (dynamic_cast<const bke::SimulationZoneComputeContext *>(context) != nullptr) {
found.is_in_simulation = true;
}
}
std::reverse(node_ids.begin(), node_ids.end());
node_ids.append(node_id);
const bNestedNodeRef *nested_node_ref =
user_data.call_data->root_ntree->nested_node_ref_from_node_id_path(node_ids);
if (nested_node_ref == nullptr) {
return std::nullopt;
}
found.id = nested_node_ref->id;
return found;
}
GeoNodesOperatorDepsgraphs::~GeoNodesOperatorDepsgraphs()
{
if (Depsgraph *graph = this->extra) {
DEG_graph_free(graph);
}
}
static const ID *get_only_evaluated_id(const Depsgraph &depsgraph, const ID &id_orig)
{
const ID *id = DEG_get_evaluated_id(&depsgraph, const_cast<ID *>(&id_orig));
if (id == &id_orig) {
return nullptr;
}
return id;
}
const ID *GeoNodesOperatorDepsgraphs::get_evaluated_id(const ID &id_orig) const
{
if (const Depsgraph *graph = this->active) {
if (const ID *id = get_only_evaluated_id(*graph, id_orig)) {
return id;
}
}
if (const Depsgraph *graph = this->extra) {
if (const ID *id = get_only_evaluated_id(*graph, id_orig)) {
return id;
}
}
return nullptr;
}
const Object *GeoNodesCallData::self_object() const
{
if (this->modifier_data) {
return this->modifier_data->self_object;
}
if (this->operator_data) {
return DEG_get_evaluated_object(this->operator_data->depsgraphs->active,
const_cast<Object *>(this->operator_data->self_object_orig));
}
return nullptr;
}
} // namespace blender::nodes