Files
test/source/blender/blenlib/intern/boxpack_2d.cc
Brecht Van Lommel 4571d99edb Fix: Build error with GCC 11.1 after recent changes
Remove the padding optimization, it's not significant with the size
of this struct. And by removing the extra padding for bias the size
is the same as before.

Pull Request: https://projects.blender.org/blender/blender/pulls/134769
2025-02-18 21:10:51 +01:00

748 lines
21 KiB
C++

/* SPDX-FileCopyrightText: 2023 Blender Authors
*
* SPDX-License-Identifier: GPL-2.0-or-later */
/** \file
* \ingroup bli
*/
#include <cmath> /* for fabsf */
#include <cstdlib> /* for qsort */
#include "MEM_guardedalloc.h"
#include "BLI_boxpack_2d.h" /* own include */
#include "BLI_listbase.h"
#include "BLI_utildefines.h"
#include "BLI_sort.h" /* qsort_r */
#define qsort_r BLI_qsort_r
#include "BLI_strict_flags.h" /* IWYU pragma: keep. Keep last. */
/* de-duplicate as we pack */
#define USE_MERGE
/* use strip-free */
#define USE_FREE_STRIP
/* slight bias, needed when packing many boxes the _exact_ same size */
#define USE_PACK_BIAS
/* BoxPacker for backing 2D rectangles into a square
*
* The defined Below are for internal use only */
struct BoxVert {
float x;
float y;
int free; /* vert status */
bool used;
uint index;
#ifdef USE_PACK_BIAS
float bias;
#endif
BoxPack *trb; /* top right box */
BoxPack *blb; /* bottom left box */
BoxPack *brb; /* bottom right box */
BoxPack *tlb; /* top left box */
/* Store last intersecting boxes here
* speedup intersection testing */
BoxPack *isect_cache[4];
};
/* free vert flags */
#define EPSILON 0.0000001f
#define EPSILON_MERGE 0.00001f
#ifdef USE_PACK_BIAS
# define EPSILON_BIAS 0.000001f
#endif
#define BLF 1
#define TRF 2
#define TLF 4
#define BRF 8
#define CORNERFLAGS (BLF | TRF | TLF | BRF)
BLI_INLINE int quad_flag(uint q)
{
BLI_assert(q < 4);
return (1 << q);
}
#define BL 0
#define TR 1
#define TL 2
#define BR 3
/* -------------------------------------------------------------------- */
/** \name Box Accessor Functions
* \{ */
static float box_xmin_get(const BoxPack *box)
{
return box->v[BL]->x;
}
static float box_xmax_get(const BoxPack *box)
{
return box->v[TR]->x;
}
static float box_ymin_get(const BoxPack *box)
{
return box->v[BL]->y;
}
static float box_ymax_get(const BoxPack *box)
{
return box->v[TR]->y;
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Box Placement
* \{ */
BLI_INLINE void box_v34x_update(BoxPack *box)
{
box->v[TL]->x = box->v[BL]->x;
box->v[BR]->x = box->v[TR]->x;
}
BLI_INLINE void box_v34y_update(BoxPack *box)
{
box->v[TL]->y = box->v[TR]->y;
box->v[BR]->y = box->v[BL]->y;
}
static void box_xmin_set(BoxPack *box, const float f)
{
box->v[TR]->x = f + box->w;
box->v[BL]->x = f;
box_v34x_update(box);
}
static void box_xmax_set(BoxPack *box, const float f)
{
box->v[BL]->x = f - box->w;
box->v[TR]->x = f;
box_v34x_update(box);
}
static void box_ymin_set(BoxPack *box, const float f)
{
box->v[TR]->y = f + box->h;
box->v[BL]->y = f;
box_v34y_update(box);
}
static void box_ymax_set(BoxPack *box, const float f)
{
box->v[BL]->y = f - box->h;
box->v[TR]->y = f;
box_v34y_update(box);
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Box Utils
* \{ */
static float box_area(const BoxPack *box)
{
return box->w * box->h;
}
static bool box_isect(const BoxPack *box_a, const BoxPack *box_b)
{
return !(box_xmin_get(box_a) + EPSILON >= box_xmax_get(box_b) ||
box_ymin_get(box_a) + EPSILON >= box_ymax_get(box_b) ||
box_xmax_get(box_a) - EPSILON <= box_xmin_get(box_b) ||
box_ymax_get(box_a) - EPSILON <= box_ymin_get(box_b));
}
/** \} */
/* compiler should inline */
static float max_ff(const float a, const float b)
{
return b > a ? b : a;
}
#ifdef USE_PACK_BIAS
/* set when used is enabled */
static void vert_bias_update(BoxVert *v)
{
BLI_assert(v->used);
v->bias = (v->x * v->y) * EPSILON_BIAS;
}
#endif
#if 0
# define BOXDEBUG(b) \
printf("\tBox Debug i %i, w:%.3f h:%.3f x:%.3f y:%.3f\n", b->index, b->w, b->h, b->x, b->y)
#endif
/* -------------------------------------------------------------------- */
/** \name Box/Vert Sorting
* \{ */
/* qsort function - sort largest to smallest */
static int box_areasort(const void *p1, const void *p2)
{
const BoxPack *b1 = static_cast<const BoxPack *>(p1);
const BoxPack *b2 = static_cast<const BoxPack *>(p2);
const float a1 = box_area(b1);
const float a2 = box_area(b2);
if (a1 < a2) {
return 1;
}
if (a1 > a2) {
return -1;
}
return 0;
}
/* qsort vertex sorting function
* sorts from lower left to top right It uses the current box's width and height
* as offsets when sorting, this has the result of not placing boxes outside
* the bounds of the existing backed area where possible
*/
struct VertSortContext {
BoxVert *vertarray;
float box_width, box_height;
};
static int vertex_sort(const void *p1, const void *p2, void *vs_ctx_p)
{
const VertSortContext *vs_ctx = static_cast<const VertSortContext *>(vs_ctx_p);
const BoxVert *v1, *v2;
float a1, a2;
v1 = &vs_ctx->vertarray[*((const uint *)p1)];
v2 = &vs_ctx->vertarray[*((const uint *)p2)];
#ifdef USE_FREE_STRIP
/* push free verts to the end so we can strip */
if (UNLIKELY(v1->free == 0 && v2->free == 0)) {
return 0;
}
if (UNLIKELY(v1->free == 0)) {
return 1;
}
if (UNLIKELY(v2->free == 0)) {
return -1;
}
#endif
a1 = max_ff(v1->x + vs_ctx->box_width, v1->y + vs_ctx->box_height);
a2 = max_ff(v2->x + vs_ctx->box_width, v2->y + vs_ctx->box_height);
#ifdef USE_PACK_BIAS
a1 += v1->bias;
a2 += v2->bias;
#endif
/* sort largest to smallest */
if (a1 > a2) {
return 1;
}
if (a1 < a2) {
return -1;
}
return 0;
}
/** \} */
void BLI_box_pack_2d(
BoxPack *boxarray, const uint len, const bool sort_boxes, float *r_tot_x, float *r_tot_y)
{
uint box_index, verts_pack_len, i, j, k;
uint *vertex_pack_indices; /* an array of indices used for sorting verts */
bool isect;
float tot_x = 0.0f, tot_y = 0.0f;
BoxPack *box, *box_test; /* Current box and another for intersection tests. */
BoxVert *vert; /* The current vert. */
VertSortContext vs_ctx;
if (!len) {
*r_tot_x = tot_x;
*r_tot_y = tot_y;
return;
}
if (sort_boxes) {
/* Sort boxes, biggest first.
* Be careful, qsort is not deterministic! */
qsort(boxarray, size_t(len), sizeof(BoxPack), box_areasort);
}
/* Add verts to the boxes, these are only used internally. */
vert = static_cast<BoxVert *>(MEM_mallocN(sizeof(BoxVert[4]) * size_t(len), "BoxPack Verts"));
vertex_pack_indices = static_cast<uint *>(
MEM_mallocN(sizeof(int[3]) * size_t(len), "BoxPack Indices"));
vs_ctx.vertarray = vert;
for (box = boxarray, box_index = 0, i = 0; box_index < len; box_index++, box++) {
vert->blb = vert->brb = vert->tlb = vert->isect_cache[0] = vert->isect_cache[1] =
vert->isect_cache[2] = vert->isect_cache[3] = nullptr;
vert->free = CORNERFLAGS & ~TRF;
vert->trb = box;
vert->used = false;
vert->index = i++;
box->v[BL] = vert++;
vert->trb = vert->brb = vert->tlb = vert->isect_cache[0] = vert->isect_cache[1] =
vert->isect_cache[2] = vert->isect_cache[3] = nullptr;
vert->free = CORNERFLAGS & ~BLF;
vert->blb = box;
vert->used = false;
vert->index = i++;
box->v[TR] = vert++;
vert->trb = vert->blb = vert->tlb = vert->isect_cache[0] = vert->isect_cache[1] =
vert->isect_cache[2] = vert->isect_cache[3] = nullptr;
vert->free = CORNERFLAGS & ~BRF;
vert->brb = box;
vert->used = false;
vert->index = i++;
box->v[TL] = vert++;
vert->trb = vert->blb = vert->brb = vert->isect_cache[0] = vert->isect_cache[1] =
vert->isect_cache[2] = vert->isect_cache[3] = nullptr;
vert->free = CORNERFLAGS & ~TLF;
vert->tlb = box;
vert->used = false;
vert->index = i++;
box->v[BR] = vert++;
}
vert = nullptr;
/* Pack the First box!
* then enter the main box-packing loop */
box = boxarray; /* Get the first box. */
/* First time, no boxes packed */
box->v[BL]->free = 0; /* Can't use any if these */
box->v[BR]->free &= ~(BLF | BRF);
box->v[TL]->free &= ~(BLF | TLF);
tot_x = box->w;
tot_y = box->h;
/* This sets all the vertex locations */
box_xmin_set(box, 0.0f);
box_ymin_set(box, 0.0f);
box->x = box->y = 0.0f;
for (i = 0; i < 4; i++) {
box->v[i]->used = true;
#ifdef USE_PACK_BIAS
vert_bias_update(box->v[i]);
#endif
}
for (i = 0; i < 3; i++) {
vertex_pack_indices[i] = box->v[i + 1]->index;
}
verts_pack_len = 3;
box++; /* next box, needed for the loop below */
/* ...done packing the first box */
/* Main box-packing loop */
for (box_index = 1; box_index < len; box_index++, box++) {
/* These floats are used for sorting re-sorting */
vs_ctx.box_width = box->w;
vs_ctx.box_height = box->h;
qsort_r(vertex_pack_indices, size_t(verts_pack_len), sizeof(int), vertex_sort, &vs_ctx);
#ifdef USE_FREE_STRIP
/* strip free vertices */
i = verts_pack_len - 1;
while ((i != 0) && vs_ctx.vertarray[vertex_pack_indices[i]].free == 0) {
i--;
}
verts_pack_len = i + 1;
#endif
/* Pack the box in with the others */
/* sort the verts */
isect = true;
for (i = 0; i < verts_pack_len && isect; i++) {
vert = &vs_ctx.vertarray[vertex_pack_indices[i]];
// printf("\ttesting vert %i %i %i %f %f\n", i,
// vert->free, verts_pack_len, vert->x, vert->y);
/* This vert has a free quadrant
* Test if we can place the box here
* `vert->free & quad_flags[j]` - Checks. */
for (j = 0; (j < 4) && isect; j++) {
if (vert->free & quad_flag(j)) {
switch (j) {
case BL:
box_xmax_set(box, vert->x);
box_ymax_set(box, vert->y);
break;
case TR:
box_xmin_set(box, vert->x);
box_ymin_set(box, vert->y);
break;
case TL:
box_xmax_set(box, vert->x);
box_ymin_set(box, vert->y);
break;
case BR:
box_xmin_set(box, vert->x);
box_ymax_set(box, vert->y);
break;
}
/* Now we need to check that the box intersects
* with any other boxes
* Assume no intersection... */
isect = false;
if (/* Constrain boxes to positive X/Y values */
box_xmin_get(box) < 0.0f || box_ymin_get(box) < 0.0f ||
/* check for last intersected */
(vert->isect_cache[j] && box_isect(box, vert->isect_cache[j])))
{
/* Here we check that the last intersected
* box will intersect with this one using
* isect_cache that can store a pointer to a
* box for each quadrant
* big speedup */
isect = true;
}
else {
/* do a full search for colliding box
* this is really slow, some spatially divided
* data-structure would be better */
for (box_test = boxarray; box_test != box; box_test++) {
if (box_isect(box, box_test)) {
/* Store the last intersecting here as cache
* for faster checking next time around */
vert->isect_cache[j] = box_test;
isect = true;
break;
}
}
}
if (!isect) {
/* maintain the total width and height */
tot_x = max_ff(box_xmax_get(box), tot_x);
tot_y = max_ff(box_ymax_get(box), tot_y);
/* Place the box */
vert->free &= ~quad_flag(j);
switch (j) {
case TR:
box->v[BL] = vert;
vert->trb = box;
break;
case TL:
box->v[BR] = vert;
vert->tlb = box;
break;
case BR:
box->v[TL] = vert;
vert->brb = box;
break;
case BL:
box->v[TR] = vert;
vert->blb = box;
break;
}
/* Mask free flags for verts that are
* on the bottom or side so we don't get
* boxes outside the given rectangle ares
*
* We can do an else/if here because only the first
* box can be at the very bottom left corner */
if (box_xmin_get(box) <= 0) {
box->v[TL]->free &= ~(TLF | BLF);
box->v[BL]->free &= ~(TLF | BLF);
}
else if (box_ymin_get(box) <= 0) {
box->v[BL]->free &= ~(BRF | BLF);
box->v[BR]->free &= ~(BRF | BLF);
}
/* The following block of code does a logical
* check with 2 adjacent boxes, its possible to
* flag verts on one or both of the boxes
* as being used by checking the width or
* height of both boxes */
if (vert->tlb && vert->trb && ELEM(box, vert->tlb, vert->trb)) {
if (UNLIKELY(fabsf(vert->tlb->h - vert->trb->h) < EPSILON_MERGE)) {
#ifdef USE_MERGE
# define A (vert->trb->v[TL])
# define B (vert->tlb->v[TR])
# define MASK (BLF | BRF)
BLI_assert(A->used != B->used);
if (A->used) {
A->free &= B->free & ~MASK;
B = A;
}
else {
B->free &= A->free & ~MASK;
A = B;
}
BLI_assert((A->free & MASK) == 0);
# undef A
# undef B
# undef MASK
#else
vert->tlb->v[TR]->free &= ~BLF;
vert->trb->v[TL]->free &= ~BRF;
#endif
}
else if (vert->tlb->h > vert->trb->h) {
vert->trb->v[TL]->free &= ~(TLF | BLF);
}
else /* if (vert->tlb->h < vert->trb->h) */ {
vert->tlb->v[TR]->free &= ~(TRF | BRF);
}
}
else if (vert->blb && vert->brb && ELEM(box, vert->blb, vert->brb)) {
if (UNLIKELY(fabsf(vert->blb->h - vert->brb->h) < EPSILON_MERGE)) {
#ifdef USE_MERGE
# define A (vert->blb->v[BR])
# define B (vert->brb->v[BL])
# define MASK (TRF | TLF)
BLI_assert(A->used != B->used);
if (A->used) {
A->free &= B->free & ~MASK;
B = A;
}
else {
B->free &= A->free & ~MASK;
A = B;
}
BLI_assert((A->free & MASK) == 0);
# undef A
# undef B
# undef MASK
#else
vert->blb->v[BR]->free &= ~TRF;
vert->brb->v[BL]->free &= ~TLF;
#endif
}
else if (vert->blb->h > vert->brb->h) {
vert->brb->v[BL]->free &= ~(TLF | BLF);
}
else /* if (vert->blb->h < vert->brb->h) */ {
vert->blb->v[BR]->free &= ~(TRF | BRF);
}
}
/* Horizontal */
if (vert->tlb && vert->blb && ELEM(box, vert->tlb, vert->blb)) {
if (UNLIKELY(fabsf(vert->tlb->w - vert->blb->w) < EPSILON_MERGE)) {
#ifdef USE_MERGE
# define A (vert->blb->v[TL])
# define B (vert->tlb->v[BL])
# define MASK (TRF | BRF)
BLI_assert(A->used != B->used);
if (A->used) {
A->free &= B->free & ~MASK;
B = A;
}
else {
B->free &= A->free & ~MASK;
A = B;
}
BLI_assert((A->free & MASK) == 0);
# undef A
# undef B
# undef MASK
#else
vert->blb->v[TL]->free &= ~TRF;
vert->tlb->v[BL]->free &= ~BRF;
#endif
}
else if (vert->tlb->w > vert->blb->w) {
vert->blb->v[TL]->free &= ~(TLF | TRF);
}
else /* if (vert->tlb->w < vert->blb->w) */ {
vert->tlb->v[BL]->free &= ~(BLF | BRF);
}
}
else if (vert->trb && vert->brb && ELEM(box, vert->trb, vert->brb)) {
if (UNLIKELY(fabsf(vert->trb->w - vert->brb->w) < EPSILON_MERGE)) {
#ifdef USE_MERGE
# define A (vert->brb->v[TR])
# define B (vert->trb->v[BR])
# define MASK (TLF | BLF)
BLI_assert(A->used != B->used);
if (A->used) {
A->free &= B->free & ~MASK;
B = A;
}
else {
B->free &= A->free & ~MASK;
A = B;
}
BLI_assert((A->free & MASK) == 0);
# undef A
# undef B
# undef MASK
#else
vert->brb->v[TR]->free &= ~TLF;
vert->trb->v[BR]->free &= ~BLF;
#endif
}
else if (vert->trb->w > vert->brb->w) {
vert->brb->v[TR]->free &= ~(TLF | TRF);
}
else /* if (vert->trb->w < vert->brb->w) */ {
vert->trb->v[BR]->free &= ~(BLF | BRF);
}
}
/* End logical check */
for (k = 0; k < 4; k++) {
if (box->v[k]->used == false) {
box->v[k]->used = true;
#ifdef USE_PACK_BIAS
vert_bias_update(box->v[k]);
#endif
vertex_pack_indices[verts_pack_len] = box->v[k]->index;
verts_pack_len++;
}
}
/* The Box verts are only used internally
* Update the box x and y since that's what external
* functions will see */
box->x = box_xmin_get(box);
box->y = box_ymin_get(box);
}
}
}
}
}
*r_tot_x = tot_x;
*r_tot_y = tot_y;
/* free all the verts, not really needed because they shouldn't be
* touched anymore but accessing the pointers would crash blender */
for (box_index = 0; box_index < len; box_index++) {
box = boxarray + box_index;
box->v[0] = box->v[1] = box->v[2] = box->v[3] = nullptr;
}
MEM_freeN(vertex_pack_indices);
MEM_freeN(vs_ctx.vertarray);
}
void BLI_box_pack_2d_fixedarea(ListBase *boxes, int width, int height, ListBase *packed)
{
ListBase spaces = {nullptr};
FixedSizeBoxPack *full_rect = MEM_cnew<FixedSizeBoxPack>(__func__);
full_rect->w = width;
full_rect->h = height;
BLI_addhead(&spaces, full_rect);
/* The basic idea of the algorithm is to keep a list of free spaces in the packing area.
* Then, for each box to be packed, we try to find a space that can contain it.
* The found space is then split into the area that is occupied by the box and the
* remaining area, which is reinserted into the free space list.
* By inserting the smaller remaining spaces first, the algorithm tries to use these
* smaller spaces first instead of "wasting" a large space. */
LISTBASE_FOREACH_MUTABLE (FixedSizeBoxPack *, box, boxes) {
LISTBASE_FOREACH (FixedSizeBoxPack *, space, &spaces) {
/* Skip this space if it's too small. */
if (box->w > space->w || box->h > space->h) {
continue;
}
/* Pack this box into this space. */
box->x = space->x;
box->y = space->y;
BLI_remlink(boxes, box);
BLI_addtail(packed, box);
if (box->w == space->w && box->h == space->h) {
/* Box exactly fills space, so just remove the space. */
BLI_remlink(&spaces, space);
MEM_freeN(space);
}
else if (box->w == space->w) {
/* Box fills the entire width, so we can just contract the box
* to the upper part that remains. */
space->y += box->h;
space->h -= box->h;
}
else if (box->h == space->h) {
/* Box fills the entire height, so we can just contract the box
* to the right part that remains. */
space->x += box->w;
space->w -= box->w;
}
else {
/* Split the remaining L-shaped space into two spaces.
* There are two ways to do so, we pick the one that produces the biggest
* remaining space:
*
* Horizontal Split Vertical Split
* ################### ###################
* # # # - #
* # Large # # Small - #
* # # # - #
* #********---------# #******** Large #
* # Box * Small # # Box * #
* # * # # * #
* ################### ###################
*/
int area_hsplit_large = space->w * (space->h - box->h);
int area_vsplit_large = (space->w - box->w) * space->h;
/* Perform split. This space becomes the larger space,
* while the new smaller space is inserted _before_ it. */
FixedSizeBoxPack *new_space = MEM_cnew<FixedSizeBoxPack>(__func__);
if (area_hsplit_large > area_vsplit_large) {
new_space->x = space->x + box->w;
new_space->y = space->y;
new_space->w = space->w - box->w;
new_space->h = box->h;
space->y += box->h;
space->h -= box->h;
}
else {
new_space->x = space->x;
new_space->y = space->y + box->h;
new_space->w = box->w;
new_space->h = space->h - box->h;
space->x += box->w;
space->w -= box->w;
}
BLI_addhead(&spaces, new_space);
}
break;
}
}
BLI_freelistN(&spaces);
}