Files
test/source/blender/blenlib/intern/expr_pylike_eval.cc
Brecht Van Lommel e2e1984e60 Refactor: Convert remainder of blenlib to C++
A few headers like BLI_math_constants.h and BLI_utildefines.h keep working
for C code, for remaining makesdna and userdef defaults code in C.

Pull Request: https://projects.blender.org/blender/blender/pulls/134406
2025-02-12 23:01:08 +01:00

1069 lines
26 KiB
C++

/* SPDX-FileCopyrightText: 2018 Blender Authors, Alexander Gavrilov. All rights reserved.
*
* SPDX-License-Identifier: GPL-2.0-or-later */
/** \file
* \ingroup bli
*
* Simple evaluator for a subset of Python expressions that can be
* computed using purely double precision floating point values.
*
* Supported subset:
*
* - Identifiers use only ASCII characters.
* - Literals:
* floating point and decimal integer.
* - Constants:
* pi, True, False
* - Operators:
* +, -, *, /, ==, !=, <, <=, >, >=, and, or, not, ternary if
* - Functions:
* min, max, radians, degrees,
* abs, fabs, floor, ceil, trunc, int,
* sin, cos, tan, asin, acos, atan, atan2,
* exp, log, sqrt, pow, fmod
*
* The implementation has no global state and can be used multi-threaded.
*/
#include <cctype>
#include <cfenv>
#include <cmath>
#include <cstddef>
#include <cstdlib>
#include <cstring>
#include <variant>
#include "MEM_guardedalloc.h"
#include "BLI_alloca.h"
#include "BLI_expr_pylike_eval.h"
#include "BLI_math_base.h"
#include "BLI_utildefines.h"
#include "BLI_vector.hh"
#ifdef _MSC_VER
# pragma fenv_access(on)
#endif
/* -------------------------------------------------------------------- */
/** \name Internal Types
* \{ */
enum eOpCode {
/* Double constant: (-> dval). */
OPCODE_CONST,
/* 1 argument function call: (a -> func1(a)). */
OPCODE_FUNC1,
/* 2 argument function call: (a b -> func2(a,b)). */
OPCODE_FUNC2,
/* 3 argument function call: (a b c -> func3(a,b,c)). */
OPCODE_FUNC3,
/* Parameter access: (-> params[ival]) */
OPCODE_PARAMETER,
/* Minimum of multiple inputs: (a b c... -> min); ival = arg count. */
OPCODE_MIN,
/* Maximum of multiple inputs: (a b c... -> max); ival = arg count. */
OPCODE_MAX,
/* Jump (pc += jmp_offset) */
OPCODE_JMP,
/* Pop and jump if zero: (a -> ); JUMP IF NOT a. */
OPCODE_JMP_ELSE,
/* Jump if nonzero, or pop: (a -> a JUMP) IF a ELSE (a -> ). */
OPCODE_JMP_OR,
/* Jump if zero, or pop: (a -> a JUMP) IF NOT a ELSE (a -> ). */
OPCODE_JMP_AND,
/* For comparison chaining: (a b -> 0 JUMP) IF NOT func2(a,b) ELSE (a b -> b). */
OPCODE_CMP_CHAIN,
};
using UnaryOpFunc = double (*)(double);
using BinaryOpFunc = double (*)(double, double);
using TernaryOpFunc = double (*)(double, double, double);
struct ExprOp {
eOpCode opcode;
int jmp_offset;
union {
int ival;
double dval;
void *ptr;
UnaryOpFunc func1;
BinaryOpFunc func2;
TernaryOpFunc func3;
} arg;
};
struct ExprPyLike_Parsed {
blender::Vector<ExprOp> ops;
int max_stack;
};
/** \} */
/* -------------------------------------------------------------------- */
/** \name Public API
* \{ */
void BLI_expr_pylike_free(ExprPyLike_Parsed *expr)
{
MEM_delete(expr);
}
bool BLI_expr_pylike_is_valid(const ExprPyLike_Parsed *expr)
{
return expr != nullptr && expr->ops.size() > 0;
}
bool BLI_expr_pylike_is_constant(const ExprPyLike_Parsed *expr)
{
return expr != nullptr && expr->ops.size() == 1 && expr->ops[0].opcode == OPCODE_CONST;
}
bool BLI_expr_pylike_is_using_param(const ExprPyLike_Parsed *expr, int index)
{
int i;
if (expr == nullptr) {
return false;
}
for (i = 0; i < expr->ops.size(); i++) {
if (expr->ops[i].opcode == OPCODE_PARAMETER && expr->ops[i].arg.ival == index) {
return true;
}
}
return false;
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Stack Machine Evaluation
* \{ */
eExprPyLike_EvalStatus BLI_expr_pylike_eval(ExprPyLike_Parsed *expr,
const double *param_values,
int param_values_len,
double *r_result)
{
*r_result = 0.0;
if (!BLI_expr_pylike_is_valid(expr)) {
return EXPR_PYLIKE_INVALID;
}
#define FAIL_IF(condition) \
if (condition) { \
return EXPR_PYLIKE_FATAL_ERROR; \
} \
((void)0)
/* Check the stack requirement is at least remotely sane and allocate on the actual stack. */
FAIL_IF(expr->max_stack <= 0 || expr->max_stack > 1000);
double *stack = BLI_array_alloca(stack, expr->max_stack);
/* Evaluate expression. */
ExprOp *ops = expr->ops.data();
int sp = 0, pc;
feclearexcept(FE_ALL_EXCEPT);
for (pc = 0; pc >= 0 && pc < expr->ops.size(); pc++) {
switch (ops[pc].opcode) {
/* Arithmetic */
case OPCODE_CONST:
FAIL_IF(sp >= expr->max_stack);
stack[sp++] = ops[pc].arg.dval;
break;
case OPCODE_PARAMETER:
FAIL_IF(sp >= expr->max_stack || ops[pc].arg.ival >= param_values_len);
stack[sp++] = param_values[ops[pc].arg.ival];
break;
case OPCODE_FUNC1:
FAIL_IF(sp < 1);
stack[sp - 1] = ops[pc].arg.func1(stack[sp - 1]);
break;
case OPCODE_FUNC2:
FAIL_IF(sp < 2);
stack[sp - 2] = ops[pc].arg.func2(stack[sp - 2], stack[sp - 1]);
sp--;
break;
case OPCODE_FUNC3:
FAIL_IF(sp < 3);
stack[sp - 3] = ops[pc].arg.func3(stack[sp - 3], stack[sp - 2], stack[sp - 1]);
sp -= 2;
break;
case OPCODE_MIN:
FAIL_IF(sp < ops[pc].arg.ival);
for (int j = 1; j < ops[pc].arg.ival; j++, sp--) {
CLAMP_MAX(stack[sp - 2], stack[sp - 1]);
}
break;
case OPCODE_MAX:
FAIL_IF(sp < ops[pc].arg.ival);
for (int j = 1; j < ops[pc].arg.ival; j++, sp--) {
CLAMP_MIN(stack[sp - 2], stack[sp - 1]);
}
break;
/* Jumps */
case OPCODE_JMP:
pc += ops[pc].jmp_offset;
break;
case OPCODE_JMP_ELSE:
FAIL_IF(sp < 1);
if (!stack[--sp]) {
pc += ops[pc].jmp_offset;
}
break;
case OPCODE_JMP_OR:
case OPCODE_JMP_AND:
FAIL_IF(sp < 1);
if (!stack[sp - 1] == !(ops[pc].opcode == OPCODE_JMP_OR)) {
pc += ops[pc].jmp_offset;
}
else {
sp--;
}
break;
/* For chaining comparisons, i.e. "a < b < c" as "a < b and b < c" */
case OPCODE_CMP_CHAIN:
FAIL_IF(sp < 2);
/* If comparison fails, return 0 and jump to end. */
if (!ops[pc].arg.func2(stack[sp - 2], stack[sp - 1])) {
stack[sp - 2] = 0.0;
pc += ops[pc].jmp_offset;
}
/* Otherwise keep b on the stack and proceed. */
else {
stack[sp - 2] = stack[sp - 1];
}
sp--;
break;
default:
return EXPR_PYLIKE_FATAL_ERROR;
}
}
FAIL_IF(sp != 1 || pc != expr->ops.size());
#undef FAIL_IF
*r_result = stack[0];
/* Detect floating point evaluation errors. */
int flags = fetestexcept(FE_DIVBYZERO | FE_INVALID);
if (flags) {
return (flags & FE_INVALID) ? EXPR_PYLIKE_MATH_ERROR : EXPR_PYLIKE_DIV_BY_ZERO;
}
return EXPR_PYLIKE_SUCCESS;
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Built-In Operations
* \{ */
static double op_negate(double arg)
{
return -arg;
}
static double op_mul(double a, double b)
{
return a * b;
}
static double op_div(double a, double b)
{
return a / b;
}
static double op_add(double a, double b)
{
return a + b;
}
static double op_sub(double a, double b)
{
return a - b;
}
static double op_radians(double arg)
{
return arg * M_PI / 180.0;
}
static double op_degrees(double arg)
{
return arg * 180.0 / M_PI;
}
static double op_log2(double a, double b)
{
return log(a) / log(b);
}
static double op_lerp(double a, double b, double x)
{
return a * (1.0 - x) + b * x;
}
static double op_clamp(double arg)
{
CLAMP(arg, 0.0, 1.0);
return arg;
}
static double op_clamp3(double arg, double minv, double maxv)
{
CLAMP(arg, minv, maxv);
return arg;
}
static double op_smoothstep(double a, double b, double x)
{
double t = (x - a) / (b - a);
CLAMP(t, 0.0, 1.0);
return t * t * (3.0 - 2.0 * t);
}
static double op_not(double a)
{
return a ? 0.0 : 1.0;
}
static double op_eq(double a, double b)
{
return a == b ? 1.0 : 0.0;
}
static double op_ne(double a, double b)
{
return a != b ? 1.0 : 0.0;
}
static double op_lt(double a, double b)
{
return a < b ? 1.0 : 0.0;
}
static double op_le(double a, double b)
{
return a <= b ? 1.0 : 0.0;
}
static double op_gt(double a, double b)
{
return a > b ? 1.0 : 0.0;
}
static double op_ge(double a, double b)
{
return a >= b ? 1.0 : 0.0;
}
struct BuiltinConstDef {
const char *name;
double value;
};
static BuiltinConstDef builtin_consts[] = {
{"pi", M_PI}, {"True", 1.0}, {"False", 0.0}, {nullptr, 0.0}};
struct BuiltinOpDef {
const char *name;
std::variant<UnaryOpFunc, BinaryOpFunc, TernaryOpFunc> funcptr;
/* Returns the required argument count of the given function call code. */
int arg_count()
{
if (std::holds_alternative<UnaryOpFunc>(funcptr)) {
return 1;
}
if (std::holds_alternative<BinaryOpFunc>(funcptr)) {
return 2;
}
if (std::holds_alternative<TernaryOpFunc>(funcptr)) {
return 3;
}
BLI_assert_msg(0, "unexpected function pointer");
return -1;
}
};
#ifdef _MSC_VER
/* Prevent MSVC from inlining calls to ceil/floor so the table below can get a function pointer to
* them. */
# pragma function(ceil)
# pragma function(floor)
#endif
static BuiltinOpDef builtin_ops[] = {
{"radians", UnaryOpFunc(op_radians)},
{"degrees", UnaryOpFunc(op_degrees)},
{"abs", UnaryOpFunc(fabs)},
{"fabs", UnaryOpFunc(fabs)},
{"floor", UnaryOpFunc(floor)},
{"ceil", UnaryOpFunc(ceil)},
{"trunc", UnaryOpFunc(trunc)},
{"round", UnaryOpFunc(round)},
{"int", UnaryOpFunc(trunc)},
{"sin", UnaryOpFunc(sin)},
{"cos", UnaryOpFunc(cos)},
{"tan", UnaryOpFunc(tan)},
{"asin", UnaryOpFunc(asin)},
{"acos", UnaryOpFunc(acos)},
{"atan", UnaryOpFunc(atan)},
{"atan2", BinaryOpFunc(atan2)},
{"exp", UnaryOpFunc(exp)},
{"log", UnaryOpFunc(log)},
{"log", BinaryOpFunc(op_log2)},
{"sqrt", UnaryOpFunc(sqrt)},
{"pow", BinaryOpFunc(pow)},
{"fmod", BinaryOpFunc(fmod)},
{"lerp", TernaryOpFunc(op_lerp)},
{"clamp", UnaryOpFunc(op_clamp)},
{"clamp", TernaryOpFunc(op_clamp3)},
{"smoothstep", TernaryOpFunc(op_smoothstep)},
{nullptr},
};
/** \} */
/* -------------------------------------------------------------------- */
/** \name Expression Parser State
* \{ */
#define MAKE_CHAR2(a, b) (((a) << 8) | (b))
#define CHECK_ERROR(condition) \
if (!(condition)) { \
return false; \
} \
((void)0)
/* For simplicity simple token types are represented by their own character;
* these are special identifiers for multi-character tokens. */
#define TOKEN_ID MAKE_CHAR2('I', 'D')
#define TOKEN_NUMBER MAKE_CHAR2('0', '0')
#define TOKEN_GE MAKE_CHAR2('>', '=')
#define TOKEN_LE MAKE_CHAR2('<', '=')
#define TOKEN_NE MAKE_CHAR2('!', '=')
#define TOKEN_EQ MAKE_CHAR2('=', '=')
#define TOKEN_AND MAKE_CHAR2('A', 'N')
#define TOKEN_OR MAKE_CHAR2('O', 'R')
#define TOKEN_NOT MAKE_CHAR2('N', 'O')
#define TOKEN_IF MAKE_CHAR2('I', 'F')
#define TOKEN_ELSE MAKE_CHAR2('E', 'L')
static const char *token_eq_characters = "!=><";
static const char *token_characters = "~`!@#$%^&*+-=/\\?:;<>(){}[]|.,\"'";
struct KeywordTokenDef {
const char *name;
short token;
};
static KeywordTokenDef keyword_list[] = {
{"and", TOKEN_AND},
{"or", TOKEN_OR},
{"not", TOKEN_NOT},
{"if", TOKEN_IF},
{"else", TOKEN_ELSE},
{nullptr, TOKEN_ID},
};
struct ExprParseState {
int param_names_len = 0;
const char **param_names = nullptr;
/* Original expression */
const char *expr = nullptr;
const char *cur = nullptr;
/* Current token */
short token = 0;
blender::Vector<char> tokenbuf;
double tokenval = 0.0;
/* Opcode buffer */
int last_jmp = 0;
blender::Vector<ExprOp> ops;
/* Stack space requirement tracking */
int stack_ptr = 0;
int max_stack = 0;
};
/* Add one operation and track stack usage. */
static ExprOp *parse_add_op(ExprParseState *state, eOpCode code, int stack_delta)
{
/* track evaluation stack depth */
state->stack_ptr += stack_delta;
CLAMP_MIN(state->stack_ptr, 0);
CLAMP_MIN(state->max_stack, state->stack_ptr);
/* allocate the new instruction */
ExprOp op{code};
state->ops.append(op);
return &state->ops.last();
}
/* Add one jump operation and return an index for parse_set_jump. */
static int parse_add_jump(ExprParseState *state, eOpCode code)
{
parse_add_op(state, code, -1);
return state->last_jmp = state->ops.size();
}
/* Set the jump offset in a previously added jump operation. */
static void parse_set_jump(ExprParseState *state, int jump)
{
state->last_jmp = state->ops.size();
state->ops[jump - 1].jmp_offset = state->ops.size() - jump;
}
/* Add a function call operation, applying constant folding when possible. */
static bool parse_add_func(ExprParseState *state,
std::variant<UnaryOpFunc, BinaryOpFunc, TernaryOpFunc> funcptr)
{
ExprOp *prev_ops = state->ops.end();
int jmp_gap = state->ops.size() - state->last_jmp;
feclearexcept(FE_ALL_EXCEPT);
if (std::holds_alternative<UnaryOpFunc>(funcptr)) {
UnaryOpFunc func = std::get<UnaryOpFunc>(funcptr);
if (jmp_gap >= 1 && prev_ops[-1].opcode == OPCODE_CONST) {
/* volatile because some compilers overly aggressive optimize this call out.
* see D6012 for details. */
volatile double result = func(prev_ops[-1].arg.dval);
if (fetestexcept(FE_DIVBYZERO | FE_INVALID) == 0) {
prev_ops[-1].arg.dval = result;
return true;
}
}
parse_add_op(state, OPCODE_FUNC1, 0)->arg.func1 = func;
}
else if (std::holds_alternative<BinaryOpFunc>(funcptr)) {
BinaryOpFunc func = std::get<BinaryOpFunc>(funcptr);
if (jmp_gap >= 2 && prev_ops[-2].opcode == OPCODE_CONST && prev_ops[-1].opcode == OPCODE_CONST)
{
/* volatile because some compilers overly aggressive optimize this call out.
* see D6012 for details. */
volatile double result = func(prev_ops[-2].arg.dval, prev_ops[-1].arg.dval);
if (fetestexcept(FE_DIVBYZERO | FE_INVALID) == 0) {
prev_ops[-2].arg.dval = result;
state->ops.resize(state->ops.size() - 1);
state->stack_ptr--;
return true;
}
}
parse_add_op(state, OPCODE_FUNC2, -1)->arg.func2 = func;
}
else if (std::holds_alternative<TernaryOpFunc>(funcptr)) {
TernaryOpFunc func = std::get<TernaryOpFunc>(funcptr);
if (jmp_gap >= 3 && prev_ops[-3].opcode == OPCODE_CONST &&
prev_ops[-2].opcode == OPCODE_CONST && prev_ops[-1].opcode == OPCODE_CONST)
{
/* volatile because some compilers overly aggressive optimize this call out.
* see D6012 for details. */
volatile double result = func(
prev_ops[-3].arg.dval, prev_ops[-2].arg.dval, prev_ops[-1].arg.dval);
if (fetestexcept(FE_DIVBYZERO | FE_INVALID) == 0) {
prev_ops[-3].arg.dval = result;
state->ops.resize(state->ops.size() - 2);
state->stack_ptr -= 2;
return true;
}
}
parse_add_op(state, OPCODE_FUNC3, -2)->arg.func3 = func;
}
else {
BLI_assert(false);
return false;
}
return true;
}
/* Extract the next token from raw characters. */
static bool parse_next_token(ExprParseState *state)
{
/* Skip white-space. */
while (isspace(*state->cur)) {
state->cur++;
}
/* End of string. */
if (*state->cur == 0) {
state->token = 0;
return true;
}
/* Floating point numbers. */
if (isdigit(*state->cur) || (state->cur[0] == '.' && isdigit(state->cur[1]))) {
char *end, *out = state->tokenbuf.data();
bool is_float = false;
while (isdigit(*state->cur)) {
*out++ = *state->cur++;
}
if (*state->cur == '.') {
is_float = true;
*out++ = *state->cur++;
while (isdigit(*state->cur)) {
*out++ = *state->cur++;
}
}
if (ELEM(*state->cur, 'e', 'E')) {
is_float = true;
*out++ = *state->cur++;
if (ELEM(*state->cur, '+', '-')) {
*out++ = *state->cur++;
}
CHECK_ERROR(isdigit(*state->cur));
while (isdigit(*state->cur)) {
*out++ = *state->cur++;
}
}
*out = 0;
/* Forbid C-style octal constants. */
if (!is_float && state->tokenbuf[0] == '0') {
for (char *p = state->tokenbuf.data() + 1; *p; p++) {
if (*p != '0') {
return false;
}
}
}
state->token = TOKEN_NUMBER;
state->tokenval = strtod(state->tokenbuf.data(), &end);
return (end == out);
}
/* ?= tokens */
if (state->cur[1] == '=' && strchr(token_eq_characters, state->cur[0])) {
state->token = MAKE_CHAR2(state->cur[0], state->cur[1]);
state->cur += 2;
return true;
}
/* Special characters (single character tokens) */
if (strchr(token_characters, *state->cur)) {
state->token = *state->cur++;
return true;
}
/* Identifiers */
if (isalpha(*state->cur) || ELEM(*state->cur, '_')) {
char *out = state->tokenbuf.data();
while (isalnum(*state->cur) || ELEM(*state->cur, '_')) {
*out++ = *state->cur++;
}
*out = 0;
for (int i = 0; keyword_list[i].name; i++) {
if (STREQ(state->tokenbuf.data(), keyword_list[i].name)) {
state->token = keyword_list[i].token;
return true;
}
}
state->token = TOKEN_ID;
return true;
}
return false;
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Recursive Descent Parser
* \{ */
static bool parse_expr(ExprParseState *state);
static int parse_function_args(ExprParseState *state)
{
if (!parse_next_token(state) || state->token != '(' || !parse_next_token(state)) {
return -1;
}
int arg_count = 0;
for (;;) {
if (!parse_expr(state)) {
return -1;
}
arg_count++;
switch (state->token) {
case ',':
if (!parse_next_token(state)) {
return -1;
}
break;
case ')':
if (!parse_next_token(state)) {
return -1;
}
return arg_count;
default:
return -1;
}
}
}
static bool parse_unary(ExprParseState *state)
{
int i;
switch (state->token) {
case '+':
return parse_next_token(state) && parse_unary(state);
case '-':
CHECK_ERROR(parse_next_token(state) && parse_unary(state));
parse_add_func(state, op_negate);
return true;
case '(':
return parse_next_token(state) && parse_expr(state) && state->token == ')' &&
parse_next_token(state);
case TOKEN_NUMBER:
parse_add_op(state, OPCODE_CONST, 1)->arg.dval = state->tokenval;
return parse_next_token(state);
case TOKEN_ID:
/* Parameters: search in reverse order in case of duplicate names -
* the last one should win. */
for (i = state->param_names_len - 1; i >= 0; i--) {
if (STREQ(state->tokenbuf.data(), state->param_names[i])) {
parse_add_op(state, OPCODE_PARAMETER, 1)->arg.ival = i;
return parse_next_token(state);
}
}
/* Ordinary builtin constants. */
for (i = 0; builtin_consts[i].name; i++) {
if (STREQ(state->tokenbuf.data(), builtin_consts[i].name)) {
parse_add_op(state, OPCODE_CONST, 1)->arg.dval = builtin_consts[i].value;
return parse_next_token(state);
}
}
/* Ordinary builtin functions. */
for (i = 0; builtin_ops[i].name; i++) {
if (STREQ(state->tokenbuf.data(), builtin_ops[i].name)) {
int args = parse_function_args(state);
/* Search for other arg count versions if necessary. */
if (args != builtin_ops[i].arg_count()) {
for (int j = i + 1; builtin_ops[j].name; j++) {
if (builtin_ops[j].arg_count() == args &&
STREQ(builtin_ops[j].name, builtin_ops[i].name))
{
i = j;
break;
}
}
}
CHECK_ERROR(builtin_ops[i].name && builtin_ops[i].arg_count() == args);
return parse_add_func(state, builtin_ops[i].funcptr);
}
}
/* Specially supported functions. */
if (STREQ(state->tokenbuf.data(), "min")) {
int count = parse_function_args(state);
CHECK_ERROR(count > 0);
parse_add_op(state, OPCODE_MIN, 1 - count)->arg.ival = count;
return true;
}
if (STREQ(state->tokenbuf.data(), "max")) {
int count = parse_function_args(state);
CHECK_ERROR(count > 0);
parse_add_op(state, OPCODE_MAX, 1 - count)->arg.ival = count;
return true;
}
return false;
default:
return false;
}
}
static bool parse_mul(ExprParseState *state)
{
CHECK_ERROR(parse_unary(state));
for (;;) {
switch (state->token) {
case '*':
CHECK_ERROR(parse_next_token(state) && parse_unary(state));
parse_add_func(state, op_mul);
break;
case '/':
CHECK_ERROR(parse_next_token(state) && parse_unary(state));
parse_add_func(state, op_div);
break;
default:
return true;
}
}
}
static bool parse_add(ExprParseState *state)
{
CHECK_ERROR(parse_mul(state));
for (;;) {
switch (state->token) {
case '+':
CHECK_ERROR(parse_next_token(state) && parse_mul(state));
parse_add_func(state, op_add);
break;
case '-':
CHECK_ERROR(parse_next_token(state) && parse_mul(state));
parse_add_func(state, op_sub);
break;
default:
return true;
}
}
}
static BinaryOpFunc parse_get_cmp_func(short token)
{
switch (token) {
case TOKEN_EQ:
return op_eq;
case TOKEN_NE:
return op_ne;
case '>':
return op_gt;
case TOKEN_GE:
return op_ge;
case '<':
return op_lt;
case TOKEN_LE:
return op_le;
default:
return nullptr;
}
}
static bool parse_cmp_chain(ExprParseState *state, BinaryOpFunc cur_func)
{
BinaryOpFunc next_func = parse_get_cmp_func(state->token);
if (next_func) {
parse_add_op(state, OPCODE_CMP_CHAIN, -1)->arg.func2 = cur_func;
int jump = state->last_jmp = state->ops.size();
CHECK_ERROR(parse_next_token(state) && parse_add(state));
CHECK_ERROR(parse_cmp_chain(state, next_func));
parse_set_jump(state, jump);
}
else {
parse_add_func(state, cur_func);
}
return true;
}
static bool parse_cmp(ExprParseState *state)
{
CHECK_ERROR(parse_add(state));
BinaryOpFunc func = parse_get_cmp_func(state->token);
if (func) {
CHECK_ERROR(parse_next_token(state) && parse_add(state));
return parse_cmp_chain(state, func);
}
return true;
}
static bool parse_not(ExprParseState *state)
{
if (state->token == TOKEN_NOT) {
CHECK_ERROR(parse_next_token(state) && parse_not(state));
parse_add_func(state, op_not);
return true;
}
return parse_cmp(state);
}
static bool parse_and(ExprParseState *state)
{
CHECK_ERROR(parse_not(state));
if (state->token == TOKEN_AND) {
int jump = parse_add_jump(state, OPCODE_JMP_AND);
CHECK_ERROR(parse_next_token(state) && parse_and(state));
parse_set_jump(state, jump);
}
return true;
}
static bool parse_or(ExprParseState *state)
{
CHECK_ERROR(parse_and(state));
if (state->token == TOKEN_OR) {
int jump = parse_add_jump(state, OPCODE_JMP_OR);
CHECK_ERROR(parse_next_token(state) && parse_or(state));
parse_set_jump(state, jump);
}
return true;
}
static bool parse_expr(ExprParseState *state)
{
/* Temporarily set the constant expression evaluation barrier */
int prev_last_jmp = state->last_jmp;
int start = state->last_jmp = state->ops.size();
CHECK_ERROR(parse_or(state));
if (state->token == TOKEN_IF) {
/* Ternary IF expression in python requires swapping the
* main body with condition, so stash the body opcodes. */
const int size = state->ops.size() - start;
blender::Vector<ExprOp> body(size);
std::copy_n(state->ops.data() + start, size, body.data());
state->ops.resize(start);
state->last_jmp = start;
state->stack_ptr--;
/* Parse condition. */
if (!parse_next_token(state) || !parse_or(state) || state->token != TOKEN_ELSE ||
!parse_next_token(state))
{
return false;
}
int jmp_else = parse_add_jump(state, OPCODE_JMP_ELSE);
/* Add body back. */
const size_t body_offset = state->ops.size();
state->ops.resize(body_offset + size);
std::copy_n(body.data(), size, state->ops.data() + body_offset);
body.clear_and_shrink();
state->stack_ptr++;
int jmp_end = parse_add_jump(state, OPCODE_JMP);
/* Parse the else block. */
parse_set_jump(state, jmp_else);
CHECK_ERROR(parse_expr(state));
parse_set_jump(state, jmp_end);
}
/* If no actual jumps happened, restore previous barrier */
else if (state->last_jmp == start) {
state->last_jmp = prev_last_jmp;
}
return true;
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Main Parsing Function
* \{ */
ExprPyLike_Parsed *BLI_expr_pylike_parse(const char *expression,
const char **param_names,
int param_names_len)
{
/* Prepare the parser state. */
ExprParseState state;
state.cur = state.expr = expression;
state.param_names_len = param_names_len;
state.param_names = param_names;
state.tokenbuf.resize(strlen(expression) + 1);
/* Parse the expression. */
ExprPyLike_Parsed *expr = MEM_new<ExprPyLike_Parsed>("ExprPyLike_Parsed(empty)");
if (parse_next_token(&state) && parse_expr(&state) && state.token == 0) {
BLI_assert(state.stack_ptr == 1);
expr->max_stack = state.max_stack;
expr->ops = std::move(state.ops);
}
else {
/* Always return a non-nullptr object so that parse failure can be cached. */
}
return expr;
}
/** \} */