A few headers like BLI_math_constants.h and BLI_utildefines.h keep working for C code, for remaining makesdna and userdef defaults code in C. Pull Request: https://projects.blender.org/blender/blender/pulls/134406
604 lines
12 KiB
C++
604 lines
12 KiB
C++
/* SPDX-FileCopyrightText: 2001-2002 NaN Holding BV. All rights reserved.
|
|
*
|
|
* SPDX-License-Identifier: GPL-2.0-or-later */
|
|
|
|
/** \file
|
|
* \ingroup bli
|
|
*/
|
|
|
|
#ifndef __MATH_BASE_INLINE_C__
|
|
#define __MATH_BASE_INLINE_C__
|
|
|
|
#include <float.h>
|
|
#include <limits.h>
|
|
#include <math.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
|
|
#include "BLI_assert.h"
|
|
#include "BLI_math_inline.h"
|
|
#include "BLI_sys_types.h"
|
|
|
|
/* copied from BLI_utildefines.h */
|
|
#ifdef __GNUC__
|
|
# define UNLIKELY(x) __builtin_expect(!!(x), 0)
|
|
#else
|
|
# define UNLIKELY(x) (x)
|
|
#endif
|
|
|
|
MINLINE float pow2f(float x)
|
|
{
|
|
return x * x;
|
|
}
|
|
MINLINE float pow3f(float x)
|
|
{
|
|
return pow2f(x) * x;
|
|
}
|
|
MINLINE float pow4f(float x)
|
|
{
|
|
return pow2f(pow2f(x));
|
|
}
|
|
MINLINE float pow5f(float x)
|
|
{
|
|
return pow4f(x) * x;
|
|
}
|
|
MINLINE float pow7f(float x)
|
|
{
|
|
return pow2f(pow3f(x)) * x;
|
|
}
|
|
|
|
MINLINE float sqrt3f(float f)
|
|
{
|
|
if (UNLIKELY(f == 0.0f)) {
|
|
return 0.0f;
|
|
}
|
|
if (UNLIKELY(f < 0.0f)) {
|
|
return -(float)(exp(log(-f) / 3.0));
|
|
}
|
|
return (float)(exp(log(f) / 3.0));
|
|
}
|
|
|
|
MINLINE double sqrt3d(double d)
|
|
{
|
|
if (UNLIKELY(d == 0.0)) {
|
|
return 0.0;
|
|
}
|
|
if (UNLIKELY(d < 0.0)) {
|
|
return -exp(log(-d) / 3.0);
|
|
}
|
|
return exp(log(d) / 3.0);
|
|
}
|
|
|
|
MINLINE float sqrtf_signed(float f)
|
|
{
|
|
return (f >= 0.0f) ? sqrtf(f) : -sqrtf(-f);
|
|
}
|
|
|
|
MINLINE float interpf(float target, float origin, float fac)
|
|
{
|
|
return (fac * target) + (1.0f - fac) * origin;
|
|
}
|
|
|
|
MINLINE double interpd(double target, double origin, double fac)
|
|
{
|
|
return (fac * target) + (1.0f - fac) * origin;
|
|
}
|
|
|
|
MINLINE float ratiof(float min, float max, float pos)
|
|
{
|
|
float range = max - min;
|
|
return range == 0 ? 0 : ((pos - min) / range);
|
|
}
|
|
|
|
MINLINE double ratiod(double min, double max, double pos)
|
|
{
|
|
double range = max - min;
|
|
return range == 0 ? 0 : ((pos - min) / range);
|
|
}
|
|
|
|
MINLINE float power_of_2(float val)
|
|
{
|
|
return (float)pow(2.0, ceil(log((double)val) / M_LN2));
|
|
}
|
|
|
|
MINLINE int is_power_of_2_i(int n)
|
|
{
|
|
return (n & (n - 1)) == 0;
|
|
}
|
|
|
|
MINLINE int power_of_2_max_i(int n)
|
|
{
|
|
if (is_power_of_2_i(n)) {
|
|
return n;
|
|
}
|
|
|
|
do {
|
|
n = n & (n - 1);
|
|
} while (!is_power_of_2_i(n));
|
|
|
|
return n * 2;
|
|
}
|
|
|
|
MINLINE int power_of_2_min_i(int n)
|
|
{
|
|
while (!is_power_of_2_i(n)) {
|
|
n = n & (n - 1);
|
|
}
|
|
|
|
return n;
|
|
}
|
|
|
|
MINLINE unsigned int power_of_2_max_u(unsigned int x)
|
|
{
|
|
x -= 1;
|
|
x |= (x >> 1);
|
|
x |= (x >> 2);
|
|
x |= (x >> 4);
|
|
x |= (x >> 8);
|
|
x |= (x >> 16);
|
|
return x + 1;
|
|
}
|
|
|
|
MINLINE unsigned int log2_floor_u(unsigned int x)
|
|
{
|
|
return x <= 1 ? 0 : 1 + log2_floor_u(x >> 1);
|
|
}
|
|
|
|
MINLINE unsigned int log2_ceil_u(unsigned int x)
|
|
{
|
|
if (is_power_of_2_i((int)x)) {
|
|
return log2_floor_u(x);
|
|
}
|
|
return log2_floor_u(x) + 1;
|
|
}
|
|
|
|
/* rounding and clamping */
|
|
|
|
#define _round_clamp_fl_impl(arg, ty, min, max) \
|
|
{ \
|
|
float r = floorf(arg + 0.5f); \
|
|
if (UNLIKELY(r <= (float)min)) { \
|
|
return (ty)min; \
|
|
} \
|
|
if (UNLIKELY(r >= (float)max)) { \
|
|
return (ty)max; \
|
|
} \
|
|
return (ty)r; \
|
|
}
|
|
|
|
#define _round_clamp_db_impl(arg, ty, min, max) \
|
|
{ \
|
|
double r = floor(arg + 0.5); \
|
|
if (UNLIKELY(r <= (double)min)) { \
|
|
return (ty)min; \
|
|
} \
|
|
if (UNLIKELY(r >= (double)max)) { \
|
|
return (ty)max; \
|
|
} \
|
|
return (ty)r; \
|
|
}
|
|
|
|
#define _round_fl_impl(arg, ty) \
|
|
{ \
|
|
return (ty)floorf(arg + 0.5f); \
|
|
}
|
|
#define _round_db_impl(arg, ty) \
|
|
{ \
|
|
return (ty)floor(arg + 0.5); \
|
|
}
|
|
|
|
MINLINE unsigned char round_fl_to_uchar(float a){_round_fl_impl(a, unsigned char)} MINLINE
|
|
short round_fl_to_short(float a){_round_fl_impl(a, short)} MINLINE
|
|
int round_fl_to_int(float a){_round_fl_impl(a, int)} MINLINE
|
|
unsigned int round_fl_to_uint(float a){_round_fl_impl(a, unsigned int)}
|
|
|
|
MINLINE int round_db_to_int(double a){_round_db_impl(a, int)}
|
|
|
|
#undef _round_fl_impl
|
|
#undef _round_db_impl
|
|
|
|
MINLINE unsigned char round_fl_to_uchar_clamp(float a){
|
|
_round_clamp_fl_impl(a, unsigned char, 0, UCHAR_MAX)} MINLINE
|
|
int round_fl_to_int_clamp(float a){_round_clamp_fl_impl(a, int, INT_MIN, INT_MAX)}
|
|
|
|
MINLINE unsigned char round_db_to_uchar_clamp(double a){
|
|
_round_clamp_db_impl(a, unsigned char, 0, UCHAR_MAX)} MINLINE
|
|
short round_db_to_short_clamp(double a){
|
|
_round_clamp_db_impl(a, short, SHRT_MIN, SHRT_MAX)} MINLINE
|
|
int round_db_to_int_clamp(double a){_round_clamp_db_impl(a, int, INT_MIN, INT_MAX)}
|
|
|
|
#undef _round_clamp_fl_impl
|
|
#undef _round_clamp_db_impl
|
|
|
|
MINLINE float round_to_even(float f)
|
|
{
|
|
return roundf(f * 0.5f) * 2.0f;
|
|
}
|
|
|
|
MINLINE int divide_round_i(int a, int b)
|
|
{
|
|
return (2 * a + b) / (2 * b);
|
|
}
|
|
|
|
/**
|
|
* Integer division that floors negative result.
|
|
* \note This works like Python's int division.
|
|
*/
|
|
MINLINE int divide_floor_i(int a, int b)
|
|
{
|
|
int d = a / b;
|
|
int r = a % b; /* Optimizes into a single division. */
|
|
return r ? d - ((a < 0) ^ (b < 0)) : d;
|
|
}
|
|
|
|
MINLINE uint divide_ceil_u(uint a, uint b)
|
|
{
|
|
return (a + b - 1) / b;
|
|
}
|
|
|
|
MINLINE uint64_t divide_ceil_ul(uint64_t a, uint64_t b)
|
|
{
|
|
return (a + b - 1) / b;
|
|
}
|
|
|
|
MINLINE uint ceil_to_multiple_u(uint a, uint b)
|
|
{
|
|
return divide_ceil_u(a, b) * b;
|
|
}
|
|
|
|
MINLINE uint64_t ceil_to_multiple_ul(uint64_t a, uint64_t b)
|
|
{
|
|
return divide_ceil_ul(a, b) * b;
|
|
}
|
|
|
|
MINLINE int mod_i(int i, int n)
|
|
{
|
|
return (i % n + n) % n;
|
|
}
|
|
|
|
MINLINE float floored_fmod(const float f, const float n)
|
|
{
|
|
return f - n * floorf(f / n);
|
|
}
|
|
|
|
MINLINE float fractf(float a)
|
|
{
|
|
return a - floorf(a);
|
|
}
|
|
|
|
/* Adapted from `godot-engine` math_funcs.h. */
|
|
MINLINE float wrapf(float value, float max, float min)
|
|
{
|
|
float range = max - min;
|
|
return (range != 0.0f) ? value - (range * floorf((value - min) / range)) : min;
|
|
}
|
|
|
|
MINLINE float pingpongf(float value, float scale)
|
|
{
|
|
if (scale == 0.0f) {
|
|
return 0.0f;
|
|
}
|
|
return fabsf(fractf((value - scale) / (scale * 2.0f)) * scale * 2.0f - scale);
|
|
}
|
|
|
|
/* Square. */
|
|
|
|
MINLINE int square_s(short a)
|
|
{
|
|
return a * a;
|
|
}
|
|
|
|
MINLINE int square_i(int a)
|
|
{
|
|
return a * a;
|
|
}
|
|
|
|
MINLINE unsigned int square_uint(unsigned int a)
|
|
{
|
|
return a * a;
|
|
}
|
|
|
|
MINLINE float square_f(float a)
|
|
{
|
|
return a * a;
|
|
}
|
|
|
|
/* Cube. */
|
|
|
|
MINLINE int cube_i(int a)
|
|
{
|
|
return a * a * a;
|
|
}
|
|
|
|
MINLINE float cube_f(float a)
|
|
{
|
|
return a * a * a;
|
|
}
|
|
|
|
/* Min/max */
|
|
|
|
MINLINE float min_ff(float a, float b)
|
|
{
|
|
return (a < b) ? a : b;
|
|
}
|
|
MINLINE float max_ff(float a, float b)
|
|
{
|
|
return (a > b) ? a : b;
|
|
}
|
|
/* See: https://www.iquilezles.org/www/articles/smin/smin.htm. */
|
|
MINLINE float smoothminf(float a, float b, float c)
|
|
{
|
|
if (c != 0.0f) {
|
|
float h = max_ff(c - fabsf(a - b), 0.0f) / c;
|
|
return min_ff(a, b) - h * h * h * c * (1.0f / 6.0f);
|
|
}
|
|
return min_ff(a, b);
|
|
}
|
|
|
|
MINLINE float smoothstep(float edge0, float edge1, float x)
|
|
{
|
|
float result;
|
|
if (x < edge0) {
|
|
result = 0.0f;
|
|
}
|
|
else if (x >= edge1) {
|
|
result = 1.0f;
|
|
}
|
|
else {
|
|
float t = (x - edge0) / (edge1 - edge0);
|
|
result = (3.0f - 2.0f * t) * (t * t);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
MINLINE double min_dd(double a, double b)
|
|
{
|
|
return (a < b) ? a : b;
|
|
}
|
|
MINLINE double max_dd(double a, double b)
|
|
{
|
|
return (a > b) ? a : b;
|
|
}
|
|
|
|
MINLINE int min_ii(int a, int b)
|
|
{
|
|
return (a < b) ? a : b;
|
|
}
|
|
MINLINE int max_ii(int a, int b)
|
|
{
|
|
return (b < a) ? a : b;
|
|
}
|
|
|
|
MINLINE uint min_uu(uint a, uint b)
|
|
{
|
|
return (a < b) ? a : b;
|
|
}
|
|
MINLINE uint max_uu(uint a, uint b)
|
|
{
|
|
return (b < a) ? a : b;
|
|
}
|
|
|
|
MINLINE unsigned long long min_ulul(unsigned long long a, unsigned long long b)
|
|
{
|
|
return (a < b) ? a : b;
|
|
}
|
|
MINLINE unsigned long long max_ulul(unsigned long long a, unsigned long long b)
|
|
{
|
|
return (b < a) ? a : b;
|
|
}
|
|
|
|
MINLINE double max_ddd(double a, double b, double c)
|
|
{
|
|
return max_dd(max_dd(a, b), c);
|
|
}
|
|
|
|
MINLINE float min_fff(float a, float b, float c)
|
|
{
|
|
return min_ff(min_ff(a, b), c);
|
|
}
|
|
MINLINE float max_fff(float a, float b, float c)
|
|
{
|
|
return max_ff(max_ff(a, b), c);
|
|
}
|
|
|
|
MINLINE int min_iii(int a, int b, int c)
|
|
{
|
|
return min_ii(min_ii(a, b), c);
|
|
}
|
|
MINLINE int max_iii(int a, int b, int c)
|
|
{
|
|
return max_ii(max_ii(a, b), c);
|
|
}
|
|
|
|
MINLINE float min_ffff(float a, float b, float c, float d)
|
|
{
|
|
return min_ff(min_fff(a, b, c), d);
|
|
}
|
|
MINLINE float max_ffff(float a, float b, float c, float d)
|
|
{
|
|
return max_ff(max_fff(a, b, c), d);
|
|
}
|
|
|
|
MINLINE int min_iiii(int a, int b, int c, int d)
|
|
{
|
|
return min_ii(min_iii(a, b, c), d);
|
|
}
|
|
MINLINE int max_iiii(int a, int b, int c, int d)
|
|
{
|
|
return max_ii(max_iii(a, b, c), d);
|
|
}
|
|
|
|
MINLINE size_t min_zz(size_t a, size_t b)
|
|
{
|
|
return (a < b) ? a : b;
|
|
}
|
|
MINLINE size_t max_zz(size_t a, size_t b)
|
|
{
|
|
return (b < a) ? a : b;
|
|
}
|
|
|
|
MINLINE int clamp_i(int value, int min, int max)
|
|
{
|
|
return min_ii(max_ii(value, min), max);
|
|
}
|
|
|
|
MINLINE float clamp_f(float value, float min, float max)
|
|
{
|
|
if (value > max) {
|
|
return max;
|
|
}
|
|
if (value < min) {
|
|
return min;
|
|
}
|
|
return value;
|
|
}
|
|
|
|
MINLINE int compare_ff(float a, float b, const float max_diff)
|
|
{
|
|
return fabsf(a - b) <= max_diff;
|
|
}
|
|
|
|
MINLINE uint ulp_diff_ff(float a, float b)
|
|
{
|
|
BLI_assert(sizeof(float) == sizeof(uint));
|
|
|
|
const uint sign_bit = 0x80000000;
|
|
const uint infinity = 0x7f800000;
|
|
|
|
union {
|
|
float f;
|
|
uint i;
|
|
} ua, ub;
|
|
ua.f = a;
|
|
ub.f = b;
|
|
|
|
const uint a_sign = ua.i & sign_bit;
|
|
const uint b_sign = ub.i & sign_bit;
|
|
const uint a_abs = ua.i & ~sign_bit;
|
|
const uint b_abs = ub.i & ~sign_bit;
|
|
|
|
if (a_abs > infinity || b_abs > infinity) {
|
|
/* NaNs always return maximum ulps apart. */
|
|
return 0xffffffff;
|
|
}
|
|
if (a_sign == b_sign) {
|
|
const uint min_abs = a_abs < b_abs ? a_abs : b_abs;
|
|
const uint max_abs = a_abs > b_abs ? a_abs : b_abs;
|
|
return max_abs - min_abs;
|
|
}
|
|
return a_abs + b_abs;
|
|
}
|
|
|
|
MINLINE int compare_ff_relative(float a, float b, const float max_diff, const int max_ulps)
|
|
{
|
|
BLI_assert(max_ulps >= 0 && max_ulps < (1 << 22));
|
|
|
|
if (fabsf(a - b) <= max_diff) {
|
|
return 1;
|
|
}
|
|
|
|
return (ulp_diff_ff(a, b) <= (uint)max_ulps) ? 1 : 0;
|
|
}
|
|
|
|
MINLINE bool compare_threshold_relative(const float value1, const float value2, const float thresh)
|
|
{
|
|
const float abs_diff = fabsf(value1 - value2);
|
|
/* Avoid letting the threshold get too small just because the values happen to be close to zero.
|
|
*/
|
|
if (fabsf(value2) < 1) {
|
|
return abs_diff > thresh;
|
|
}
|
|
/* Using relative threshold in general. */
|
|
return abs_diff > thresh * fabsf(value2);
|
|
}
|
|
|
|
MINLINE float signf(float f)
|
|
{
|
|
return (f < 0.0f) ? -1.0f : 1.0f;
|
|
}
|
|
|
|
MINLINE float compatible_signf(float f)
|
|
{
|
|
if (f > 0.0f) {
|
|
return 1.0f;
|
|
}
|
|
if (f < 0.0f) {
|
|
return -1.0f;
|
|
}
|
|
return 0.0f;
|
|
}
|
|
|
|
MINLINE int signum_i_ex(float a, float eps)
|
|
{
|
|
if (a > eps) {
|
|
return 1;
|
|
}
|
|
if (a < -eps) {
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
MINLINE int signum_i(float a)
|
|
{
|
|
if (a > 0.0f) {
|
|
return 1;
|
|
}
|
|
if (a < 0.0f) {
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
MINLINE int integer_digits_f(const float f)
|
|
{
|
|
return (f == 0.0f) ? 0 : (int)floor(log10(fabs(f))) + 1;
|
|
}
|
|
|
|
MINLINE int integer_digits_d(const double d)
|
|
{
|
|
return (d == 0.0) ? 0 : (int)floor(log10(fabs(d))) + 1;
|
|
}
|
|
|
|
MINLINE int integer_digits_i(const int i)
|
|
{
|
|
return (int)log10((double)i) + 1;
|
|
}
|
|
|
|
/* Low level conversion functions */
|
|
MINLINE unsigned char unit_float_to_uchar_clamp(float val)
|
|
{
|
|
return (unsigned char)((
|
|
(val <= 0.0f) ? 0 : ((val > (1.0f - 0.5f / 255.0f)) ? 255 : ((255.0f * val) + 0.5f))));
|
|
}
|
|
|
|
MINLINE unsigned short unit_float_to_ushort_clamp(float val)
|
|
{
|
|
return (unsigned short)((val >= 1.0f - 0.5f / 65535) ? 65535 :
|
|
(val <= 0.0f) ? 0 :
|
|
(val * 65535.0f + 0.5f));
|
|
}
|
|
|
|
MINLINE unsigned char unit_ushort_to_uchar(unsigned short val)
|
|
{
|
|
return (unsigned char)(((val) >= 65535 - 128) ? 255 : ((val) + 128) >> 8);
|
|
}
|
|
|
|
#define unit_float_to_uchar_clamp_v3(v1, v2) \
|
|
{ \
|
|
(v1)[0] = unit_float_to_uchar_clamp((v2[0])); \
|
|
(v1)[1] = unit_float_to_uchar_clamp((v2[1])); \
|
|
(v1)[2] = unit_float_to_uchar_clamp((v2[2])); \
|
|
} \
|
|
((void)0)
|
|
#define unit_float_to_uchar_clamp_v4(v1, v2) \
|
|
{ \
|
|
(v1)[0] = unit_float_to_uchar_clamp((v2[0])); \
|
|
(v1)[1] = unit_float_to_uchar_clamp((v2[1])); \
|
|
(v1)[2] = unit_float_to_uchar_clamp((v2[2])); \
|
|
(v1)[3] = unit_float_to_uchar_clamp((v2[3])); \
|
|
} \
|
|
((void)0)
|
|
|
|
#endif /* __MATH_BASE_INLINE_C__ */
|