Files
test/source/gameengine/GameLogic/SCA_ISensor.cpp
Andre Susano Pinto 656ee61718 Merge from trunk
(The last time there was some files missing due to failed connection to svn server while merging.. thats why this stuff of reverting last merge and redoing it)

svn merge -r 16231:16608 https://svn.blender.org/svnroot/bf-blender/trunk/blender
2008-09-19 14:15:36 +00:00

443 lines
12 KiB
C++

/**
* Abstract class for sensor logic bricks
*
* $Id$
*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): none yet.
*
* ***** END GPL LICENSE BLOCK *****
*/
#include "SCA_ISensor.h"
#include "SCA_EventManager.h"
#include "SCA_LogicManager.h"
// needed for IsTriggered()
#include "SCA_PythonController.h"
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
/* Native functions */
void SCA_ISensor::ReParent(SCA_IObject* parent)
{
SCA_ILogicBrick::ReParent(parent);
// will be done when the sensor is activated
//m_eventmgr->RegisterSensor(this);
this->SetActive(false);
}
SCA_ISensor::SCA_ISensor(SCA_IObject* gameobj,
class SCA_EventManager* eventmgr,
PyTypeObject* T ) :
SCA_ILogicBrick(gameobj,T),
m_triggered(false)
{
m_links = 0;
m_suspended = false;
m_invert = false;
m_level = false;
m_reset = false;
m_pos_ticks = 0;
m_neg_ticks = 0;
m_pos_pulsemode = false;
m_neg_pulsemode = false;
m_pulse_frequency = 0;
m_eventmgr = eventmgr;
}
SCA_ISensor::~SCA_ISensor()
{
// intentionally empty
}
bool SCA_ISensor::IsPositiveTrigger() {
bool result = false;
if (m_eventval) {
result = (m_eventval->GetNumber() != 0.0);
}
if (m_invert) {
result = !result;
}
return result;
}
void SCA_ISensor::SetPulseMode(bool posmode,
bool negmode,
int freq) {
m_pos_pulsemode = posmode;
m_neg_pulsemode = negmode;
m_pulse_frequency = freq;
}
void SCA_ISensor::SetInvert(bool inv) {
m_invert = inv;
}
void SCA_ISensor::SetLevel(bool lvl) {
m_level = lvl;
}
float SCA_ISensor::GetNumber() {
return IsPositiveTrigger();
}
void SCA_ISensor::Suspend() {
m_suspended = true;
}
bool SCA_ISensor::IsSuspended() {
return m_suspended;
}
void SCA_ISensor::Resume() {
m_suspended = false;
}
void SCA_ISensor::Init() {
printf("Sensor %s has no init function, please report this bug to Blender.org\n", m_name.Ptr());
}
void SCA_ISensor::DecLink() {
m_links--;
if (m_links < 0)
{
printf("Warning: sensor %s has negative m_links: %d\n", m_name.Ptr(), m_links);
m_links = 0;
}
if (!m_links)
{
// sensor is detached from all controllers, remove it from manager
UnregisterToManager();
}
}
/* python integration */
PyTypeObject SCA_ISensor::Type = {
PyObject_HEAD_INIT(&PyType_Type)
0,
"SCA_ISensor",
sizeof(SCA_ISensor),
0,
PyDestructor,
0,
__getattr,
__setattr,
0, //&MyPyCompare,
__repr,
0, //&cvalue_as_number,
0,
0,
0,
0
};
PyParentObject SCA_ISensor::Parents[] = {
&SCA_ISensor::Type,
&SCA_ILogicBrick::Type,
&CValue::Type,
NULL
};
PyMethodDef SCA_ISensor::Methods[] = {
{"isPositive", (PyCFunction) SCA_ISensor::sPyIsPositive,
METH_NOARGS, IsPositive_doc},
{"isTriggered", (PyCFunction) SCA_ISensor::sPyIsTriggered,
METH_VARARGS, IsTriggered_doc},
{"getUsePosPulseMode", (PyCFunction) SCA_ISensor::sPyGetUsePosPulseMode,
METH_NOARGS, GetUsePosPulseMode_doc},
{"setUsePosPulseMode", (PyCFunction) SCA_ISensor::sPySetUsePosPulseMode,
METH_VARARGS, SetUsePosPulseMode_doc},
{"getFrequency", (PyCFunction) SCA_ISensor::sPyGetFrequency,
METH_NOARGS, GetFrequency_doc},
{"setFrequency", (PyCFunction) SCA_ISensor::sPySetFrequency,
METH_VARARGS, SetFrequency_doc},
{"getUseNegPulseMode", (PyCFunction) SCA_ISensor::sPyGetUseNegPulseMode,
METH_NOARGS, GetUseNegPulseMode_doc},
{"setUseNegPulseMode", (PyCFunction) SCA_ISensor::sPySetUseNegPulseMode,
METH_VARARGS, SetUseNegPulseMode_doc},
{"getInvert", (PyCFunction) SCA_ISensor::sPyGetInvert,
METH_NOARGS, GetInvert_doc},
{"setInvert", (PyCFunction) SCA_ISensor::sPySetInvert,
METH_VARARGS, SetInvert_doc},
{"getLevel", (PyCFunction) SCA_ISensor::sPyGetLevel,
METH_NOARGS, GetLevel_doc},
{"setLevel", (PyCFunction) SCA_ISensor::sPySetLevel,
METH_VARARGS, SetLevel_doc},
{"reset", (PyCFunction) SCA_ISensor::sPyReset,
METH_NOARGS, Reset_doc},
{NULL,NULL} //Sentinel
};
PyObject*
SCA_ISensor::_getattr(const STR_String& attr)
{
_getattr_up(SCA_ILogicBrick);
}
void SCA_ISensor::RegisterToManager()
{
// sensor is just activated, initialize it
Init();
m_newControllers.erase(m_newControllers.begin(), m_newControllers.end());
m_eventmgr->RegisterSensor(this);
}
void SCA_ISensor::UnregisterToManager()
{
m_eventmgr->RemoveSensor(this);
}
void SCA_ISensor::Activate(class SCA_LogicManager* logicmgr, CValue* event)
{
// calculate if a __triggering__ is wanted
// don't evaluate a sensor that is not connected to any controller
if (m_links && !m_suspended) {
bool result = this->Evaluate(event);
if (result) {
logicmgr->AddActivatedSensor(this);
// reset these counters so that pulse are synchronized with transition
m_pos_ticks = 0;
m_neg_ticks = 0;
} else
{
/* First, the pulsing behaviour, if pulse mode is
* active. It seems something goes wrong if pulse mode is
* not set :( */
if (m_pos_pulsemode) {
m_pos_ticks++;
if (m_pos_ticks > m_pulse_frequency) {
if ( this->IsPositiveTrigger() )
{
logicmgr->AddActivatedSensor(this);
}
m_pos_ticks = 0;
}
}
if (m_neg_pulsemode)
{
m_neg_ticks++;
if (m_neg_ticks > m_pulse_frequency) {
if (!this->IsPositiveTrigger() )
{
logicmgr->AddActivatedSensor(this);
}
m_neg_ticks = 0;
}
}
}
if (!m_newControllers.empty())
{
if (!IsActive() && m_level)
{
// This level sensor is connected to at least one controller that was just made
// active but it did not generate an event yet, do it now to those controllers only
for (std::vector<SCA_IController*>::iterator ci=m_newControllers.begin();
ci != m_newControllers.end(); ci++)
{
logicmgr->AddTriggeredController(*ci, this);
}
}
// clear the list. Instead of using clear, which also release the memory,
// use erase, which keeps the memory available for next time.
m_newControllers.erase(m_newControllers.begin(), m_newControllers.end());
}
}
}
/* Python functions: */
char SCA_ISensor::IsPositive_doc[] =
"isPositive()\n"
"\tReturns whether the sensor is in an active state.\n";
PyObject* SCA_ISensor::PyIsPositive(PyObject* self)
{
int retval = IsPositiveTrigger();
return PyInt_FromLong(retval);
}
char SCA_ISensor::IsTriggered_doc[] =
"isTriggered()\n"
"\tReturns whether the sensor has triggered the current controller.\n";
PyObject* SCA_ISensor::PyIsTriggered(PyObject* self)
{
// check with the current controller
int retval = 0;
if (SCA_PythonController::m_sCurrentController)
retval = SCA_PythonController::m_sCurrentController->IsTriggered(this);
return PyInt_FromLong(retval);
}
/**
* getUsePulseMode: getter for the pulse mode (KX_TRUE = on)
*/
char SCA_ISensor::GetUsePosPulseMode_doc[] =
"getUsePosPulseMode()\n"
"\tReturns whether positive pulse mode is active.\n";
PyObject* SCA_ISensor::PyGetUsePosPulseMode(PyObject* self)
{
return BoolToPyArg(m_pos_pulsemode);
}
/**
* setUsePulseMode: setter for the pulse mode (KX_TRUE = on)
*/
char SCA_ISensor::SetUsePosPulseMode_doc[] =
"setUsePosPulseMode(pulse?)\n"
"\t - pulse? : Pulse when a positive event occurs?\n"
"\t (KX_TRUE, KX_FALSE)\n"
"\tSet whether to do pulsing when positive pulses occur.\n";
PyObject* SCA_ISensor::PySetUsePosPulseMode(PyObject* self, PyObject* args, PyObject* kwds)
{
int pyarg = 0;
if(!PyArg_ParseTuple(args, "i", &pyarg)) { return NULL; }
m_pos_pulsemode = PyArgToBool(pyarg);
Py_Return;
}
/**
* getFrequency: getter for the pulse mode interval
*/
char SCA_ISensor::GetFrequency_doc[] =
"getFrequency()\n"
"\tReturns the frequency of the updates in pulse mode.\n" ;
PyObject* SCA_ISensor::PyGetFrequency(PyObject* self)
{
return PyInt_FromLong(m_pulse_frequency);
}
/**
* setFrequency: setter for the pulse mode (KX_TRUE = on)
*/
char SCA_ISensor::SetFrequency_doc[] =
"setFrequency(pulse_frequency)\n"
"\t- pulse_frequency: The frequency of the updates in pulse mode (integer)"
"\tSet the frequency of the updates in pulse mode.\n"
"\tIf the frequency is negative, it is set to 0.\n" ;
PyObject* SCA_ISensor::PySetFrequency(PyObject* self, PyObject* args, PyObject* kwds)
{
int pulse_frequencyArg = 0;
if(!PyArg_ParseTuple(args, "i", &pulse_frequencyArg)) {
return NULL;
}
/* We can do three things here: clip, ignore and raise an exception. */
/* Exceptions don't work yet, ignoring is not desirable now... */
if (pulse_frequencyArg < 0) {
pulse_frequencyArg = 0;
};
m_pulse_frequency = pulse_frequencyArg;
Py_Return;
}
char SCA_ISensor::GetInvert_doc[] =
"getInvert()\n"
"\tReturns whether or not pulses from this sensor are inverted.\n" ;
PyObject* SCA_ISensor::PyGetInvert(PyObject* self)
{
return BoolToPyArg(m_invert);
}
char SCA_ISensor::SetInvert_doc[] =
"setInvert(invert?)\n"
"\t- invert?: Invert the event-values? (KX_TRUE, KX_FALSE)\n"
"\tSet whether to invert pulses.\n";
PyObject* SCA_ISensor::PySetInvert(PyObject* self, PyObject* args, PyObject* kwds)
{
int pyarg = 0;
if(!PyArg_ParseTuple(args, "i", &pyarg)) { return NULL; }
m_invert = PyArgToBool(pyarg);
Py_Return;
}
char SCA_ISensor::GetLevel_doc[] =
"getLevel()\n"
"\tReturns whether this sensor is a level detector or a edge detector.\n"
"\tIt makes a difference only in case of logic state transition (state actuator).\n"
"\tA level detector will immediately generate a pulse, negative or positive\n"
"\tdepending on the sensor condition, as soon as the state is activated.\n"
"\tA edge detector will wait for a state change before generating a pulse.\n";
PyObject* SCA_ISensor::PyGetLevel(PyObject* self)
{
return BoolToPyArg(m_level);
}
char SCA_ISensor::SetLevel_doc[] =
"setLevel(level?)\n"
"\t- level?: Detect level instead of edge? (KX_TRUE, KX_FALSE)\n"
"\tSet whether to detect level or edge transition when entering a state.\n";
PyObject* SCA_ISensor::PySetLevel(PyObject* self, PyObject* args, PyObject* kwds)
{
int pyarg = 0;
if(!PyArg_ParseTuple(args, "i", &pyarg)) { return NULL; }
m_level = PyArgToBool(pyarg);
Py_Return;
}
char SCA_ISensor::GetUseNegPulseMode_doc[] =
"getUseNegPulseMode()\n"
"\tReturns whether negative pulse mode is active.\n";
PyObject* SCA_ISensor::PyGetUseNegPulseMode(PyObject* self)
{
return BoolToPyArg(m_neg_pulsemode);
}
char SCA_ISensor::SetUseNegPulseMode_doc[] =
"setUseNegPulseMode(pulse?)\n"
"\t - pulse? : Pulse when a negative event occurs?\n"
"\t (KX_TRUE, KX_FALSE)\n"
"\tSet whether to do pulsing when negative pulses occur.\n";
PyObject* SCA_ISensor::PySetUseNegPulseMode(PyObject* self, PyObject* args, PyObject* kwds)
{
int pyarg = 0;
if(!PyArg_ParseTuple(args, "i", &pyarg)) { return NULL; }
m_neg_pulsemode = PyArgToBool(pyarg);
Py_Return;
}
char SCA_ISensor::Reset_doc[] =
"reset()\n"
"\tReset sensor internal state, effect depends on the type of sensor and settings.\n"
"\tThe sensor is put in its initial state as if it was just activated.\n";
PyObject* SCA_ISensor::PyReset(PyObject* self)
{
Init();
Py_Return;
}
/* eof */