Files
test/extern/draco/src/encoder.cpp
Jim Eckerlein 3012446f02 glTF: update Draco library to new version
To support decoding and enhanced encoding of Draco compressed glTF files.

Differential Revision: https://developer.blender.org/D9642
2020-12-07 17:09:34 +01:00

248 lines
8.1 KiB
C++

/*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/**
* @author Jim Eckerlein <eckerlein@ux3d.io>
* @date 2019-11-18
*/
#include "encoder.h"
#include <memory>
#include <vector>
#include "draco/mesh/mesh.h"
#include "draco/core/encoder_buffer.h"
#include "draco/compression/encode.h"
#define LOG_PREFIX "DracoEncoder | "
struct Encoder
{
draco::Mesh mesh;
uint32_t encodedVertices;
uint32_t encodedIndices;
std::vector<std::unique_ptr<draco::DataBuffer>> buffers;
draco::EncoderBuffer encoderBuffer;
uint32_t compressionLevel = 7;
size_t rawSize = 0;
struct
{
uint32_t position = 14;
uint32_t normal = 10;
uint32_t uv = 12;
uint32_t color = 10;
uint32_t generic = 12;
} quantization;
};
Encoder *encoderCreate(uint32_t vertexCount)
{
Encoder *encoder = new Encoder;
encoder->mesh.set_num_points(vertexCount);
return encoder;
}
void encoderRelease(Encoder *encoder)
{
delete encoder;
}
void encoderSetCompressionLevel(Encoder *encoder, uint32_t compressionLevel) {
encoder->compressionLevel = compressionLevel;
}
void encoderSetQuantizationBits(Encoder *encoder, uint32_t position, uint32_t normal, uint32_t uv, uint32_t color, uint32_t generic)
{
encoder->quantization.position = position;
encoder->quantization.normal = normal;
encoder->quantization.uv = uv;
encoder->quantization.color = color;
encoder->quantization.generic = generic;
}
bool encoderEncode(Encoder *encoder, uint8_t preserveTriangleOrder)
{
printf(LOG_PREFIX "Preserve triangle order: %s\n", preserveTriangleOrder ? "yes" : "no");
draco::Encoder dracoEncoder;
int speed = 10 - static_cast<int>(encoder->compressionLevel);
dracoEncoder.SetSpeedOptions(speed, speed);
dracoEncoder.SetAttributeQuantization(draco::GeometryAttribute::POSITION, encoder->quantization.position);
dracoEncoder.SetAttributeQuantization(draco::GeometryAttribute::NORMAL, encoder->quantization.normal);
dracoEncoder.SetAttributeQuantization(draco::GeometryAttribute::TEX_COORD, encoder->quantization.uv);
dracoEncoder.SetAttributeQuantization(draco::GeometryAttribute::COLOR, encoder->quantization.color);
dracoEncoder.SetAttributeQuantization(draco::GeometryAttribute::GENERIC, encoder->quantization.generic);
dracoEncoder.SetTrackEncodedProperties(true);
if (preserveTriangleOrder)
{
dracoEncoder.SetEncodingMethod(draco::MESH_SEQUENTIAL_ENCODING);
}
auto encoderStatus = dracoEncoder.EncodeMeshToBuffer(encoder->mesh, &encoder->encoderBuffer);
if (encoderStatus.ok())
{
encoder->encodedVertices = static_cast<uint32_t>(dracoEncoder.num_encoded_points());
encoder->encodedIndices = static_cast<uint32_t>(dracoEncoder.num_encoded_faces() * 3);
size_t encodedSize = encoder->encoderBuffer.size();
float compressionRatio = static_cast<float>(encoder->rawSize) / static_cast<float>(encodedSize);
printf(LOG_PREFIX "Encoded %" PRIu32 " vertices, %" PRIu32 " indices, raw size: %zu, encoded size: %zu, compression ratio: %.2f\n", encoder->encodedVertices, encoder->encodedIndices, encoder->rawSize, encodedSize, compressionRatio);
return true;
}
else
{
printf(LOG_PREFIX "Error during Draco encoding: %s\n", encoderStatus.error_msg());
return false;
}
}
uint32_t encoderGetEncodedVertexCount(Encoder *encoder)
{
return encoder->encodedVertices;
}
uint32_t encoderGetEncodedIndexCount(Encoder *encoder)
{
return encoder->encodedIndices;
}
uint64_t encoderGetByteLength(Encoder *encoder)
{
return encoder->encoderBuffer.size();
}
void encoderCopy(Encoder *encoder, uint8_t *data)
{
memcpy(data, encoder->encoderBuffer.data(), encoder->encoderBuffer.size());
}
template<class T>
void encodeIndices(Encoder *encoder, uint32_t indexCount, T *indices)
{
int face_count = indexCount / 3;
encoder->mesh.SetNumFaces(static_cast<size_t>(face_count));
encoder->rawSize += indexCount * sizeof(T);
for (int i = 0; i < face_count; ++i)
{
draco::Mesh::Face face = {
draco::PointIndex(indices[3 * i + 0]),
draco::PointIndex(indices[3 * i + 1]),
draco::PointIndex(indices[3 * i + 2])
};
encoder->mesh.SetFace(draco::FaceIndex(static_cast<uint32_t>(i)), face);
}
}
void encoderSetIndices(Encoder *encoder, size_t indexComponentType, uint32_t indexCount, void *indices)
{
switch (indexComponentType)
{
case ComponentType::Byte:
encodeIndices(encoder, indexCount, reinterpret_cast<int8_t *>(indices));
break;
case ComponentType::UnsignedByte:
encodeIndices(encoder, indexCount, reinterpret_cast<uint8_t *>(indices));
break;
case ComponentType::Short:
encodeIndices(encoder, indexCount, reinterpret_cast<int16_t *>(indices));
break;
case ComponentType::UnsignedShort:
encodeIndices(encoder, indexCount, reinterpret_cast<uint16_t *>(indices));
break;
case ComponentType::UnsignedInt:
encodeIndices(encoder, indexCount, reinterpret_cast<uint32_t *>(indices));
break;
default:
printf(LOG_PREFIX "Index component type %zu not supported\n", indexComponentType);
}
}
draco::GeometryAttribute::Type getAttributeSemantics(char *attribute)
{
if (!strcmp(attribute, "POSITION"))
{
return draco::GeometryAttribute::POSITION;
}
if (!strcmp(attribute, "NORMAL"))
{
return draco::GeometryAttribute::NORMAL;
}
if (!strncmp(attribute, "TEXCOORD", strlen("TEXCOORD")))
{
return draco::GeometryAttribute::TEX_COORD;
}
if (!strncmp(attribute, "COLOR", strlen("COLOR")))
{
return draco::GeometryAttribute::COLOR;
}
return draco::GeometryAttribute::GENERIC;
}
draco::DataType getDataType(size_t componentType)
{
switch (componentType)
{
case ComponentType::Byte:
return draco::DataType::DT_INT8;
case ComponentType::UnsignedByte:
return draco::DataType::DT_UINT8;
case ComponentType::Short:
return draco::DataType::DT_INT16;
case ComponentType::UnsignedShort:
return draco::DataType::DT_UINT16;
case ComponentType::UnsignedInt:
return draco::DataType::DT_UINT32;
case ComponentType::Float:
return draco::DataType::DT_FLOAT32;
default:
return draco::DataType::DT_INVALID;
}
}
API(uint32_t) encoderSetAttribute(Encoder *encoder, char *attributeName, size_t componentType, char *dataType, void *data)
{
auto buffer = std::make_unique<draco::DataBuffer>();
uint32_t count = encoder->mesh.num_points();
size_t componentCount = getNumberOfComponents(dataType);
size_t stride = getAttributeStride(componentType, dataType);
draco::DataType dracoDataType = getDataType(componentType);
draco::GeometryAttribute::Type semantics = getAttributeSemantics(attributeName);
draco::GeometryAttribute attribute;
attribute.Init(semantics, &*buffer, componentCount, getDataType(componentType), false, stride, 0);
auto id = static_cast<uint32_t>(encoder->mesh.AddAttribute(attribute, true, count));
auto dataBytes = reinterpret_cast<uint8_t *>(data);
for (uint32_t i = 0; i < count; i++)
{
encoder->mesh.attribute(id)->SetAttributeValue(draco::AttributeValueIndex(i), dataBytes + i * stride);
}
encoder->buffers.emplace_back(std::move(buffer));
encoder->rawSize += count * stride;
return id;
}