Files
test/intern/cycles/device/cuda/kernel.cpp
2024-03-09 23:40:57 +11:00

58 lines
1.5 KiB
C++

/* SPDX-FileCopyrightText: 2011-2022 Blender Foundation
*
* SPDX-License-Identifier: Apache-2.0 */
#ifdef WITH_CUDA
# include "device/cuda/kernel.h"
# include "device/cuda/device_impl.h"
CCL_NAMESPACE_BEGIN
void CUDADeviceKernels::load(CUDADevice *device)
{
CUmodule cuModule = device->cuModule;
for (int i = 0; i < (int)DEVICE_KERNEL_NUM; i++) {
CUDADeviceKernel &kernel = kernels_[i];
/* No mega-kernel used for GPU. */
if (i == DEVICE_KERNEL_INTEGRATOR_MEGAKERNEL) {
continue;
}
const std::string function_name = std::string("kernel_gpu_") +
device_kernel_as_string((DeviceKernel)i);
cuda_device_assert(device,
cuModuleGetFunction(&kernel.function, cuModule, function_name.c_str()));
if (kernel.function) {
cuda_device_assert(device, cuFuncSetCacheConfig(kernel.function, CU_FUNC_CACHE_PREFER_L1));
cuda_device_assert(
device,
cuOccupancyMaxPotentialBlockSize(
&kernel.min_blocks, &kernel.num_threads_per_block, kernel.function, NULL, 0, 0));
}
else {
LOG(ERROR) << "Unable to load kernel " << function_name;
}
}
loaded = true;
}
const CUDADeviceKernel &CUDADeviceKernels::get(DeviceKernel kernel) const
{
return kernels_[(int)kernel];
}
bool CUDADeviceKernels::available(DeviceKernel kernel) const
{
return kernels_[(int)kernel].function != nullptr;
}
CCL_NAMESPACE_END
#endif /* WITH_CUDA */