Files
test2/source/blender/draw/intern/shaders/draw_grease_pencil_lib.glsl

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

433 lines
15 KiB
Plaintext
Raw Normal View History

/* SPDX-FileCopyrightText: 2022-2023 Blender Authors
*
* SPDX-License-Identifier: GPL-2.0-or-later */
#pragma once
#include "draw_object_infos_infos.hh"
SHADER_LIBRARY_CREATE_INFO(draw_gpencil)
#include "draw_model_lib.glsl"
#include "draw_object_infos_lib.glsl"
#include "draw_view_lib.glsl"
#include "gpu_shader_math_constants_lib.glsl"
#include "gpu_shader_math_matrix_transform_lib.glsl"
#include "gpu_shader_math_vector_safe_lib.glsl"
#include "gpu_shader_utildefines_lib.glsl"
#ifndef DRW_GPENCIL_INFO
# error Missing additional info draw_gpencil
#endif
#ifdef GPU_FRAGMENT_SHADER
float gpencil_stroke_round_cap_mask(
float2 p1, float2 p2, float2 aspect, float thickness, float hardfac)
{
/* We create our own uv space to avoid issues with triangulation and linear
* interpolation artifacts. */
float2 line = p2.xy - p1.xy;
float2 pos = gl_FragCoord.xy - p1.xy;
float line_len = length(line);
float half_line_len = line_len * 0.5f;
/* Normalize */
line = (line_len > 0.0f) ? (line / line_len) : float2(1.0f, 0.0f);
/* Create a uv space that englobe the whole segment into a capsule. */
float2 uv_end;
uv_end.x = max(abs(dot(line, pos) - half_line_len) - half_line_len, 0.0f);
uv_end.y = dot(float2(-line.y, line.x), pos);
/* Divide by stroke radius. */
uv_end /= thickness;
uv_end *= aspect;
float dist = clamp(1.0f - length(uv_end) * 2.0f, 0.0f, 1.0f);
if (hardfac > 0.999f) {
return step(1e-8f, dist);
}
else {
/* Modulate the falloff profile */
float hardness = 1.0f - hardfac;
dist = pow(dist, mix(0.01f, 10.0f, hardness));
return smoothstep(0.0f, 1.0f, dist);
}
}
#endif
struct PointData {
bool cyclical;
int mat, stroke_id, point_id, packed_data;
};
PointData decode_ma(int4 ma)
{
PointData data;
data.mat = ma.x;
data.stroke_id = ma.y;
/* Take the absolute because the sign is for cyclical. */
data.point_id = abs(ma.z);
/* Aspect, UV Rotation and Hardness. */
data.packed_data = ma.w;
/* Cyclical is stored in the sign of the point index. */
data.cyclical = ma.z < 0;
return data;
}
float2 gpencil_decode_aspect(int packed_data)
{
float asp = float(uint(packed_data) & 0x1FFu) * (1.0f / 255.0f);
return (asp > 1.0f) ? float2(1.0f, (asp - 1.0f)) : float2(asp, 1.0f);
}
float gpencil_decode_uvrot(int packed_data)
{
uint udata = uint(packed_data);
float uvrot = 1e-8f + float((udata & 0x1FE00u) >> 9u) * (1.0f / 255.0f);
return ((udata & 0x20000u) != 0u) ? -uvrot : uvrot;
}
float gpencil_decode_hardness(int packed_data)
{
return float((uint(packed_data) & 0x3FC0000u) >> 18u) * (1.0f / 255.0f);
}
float2 gpencil_project_to_screenspace(float4 v, float4 viewport_res)
{
return ((v.xy / v.w) * 0.5f + 0.5f) * viewport_res.xy;
}
float gpencil_stroke_thickness_modulate(float thickness, float4 ndc_pos, float4 viewport_res)
{
/* Modify stroke thickness by object scale. */
thickness = length(to_float3x3(drw_modelmat()) * float3(thickness * M_SQRT1_3));
/* World space point size. */
thickness *= drw_view().winmat[1][1] * viewport_res.y;
return thickness;
}
#ifdef GPU_VERTEX_SHADER
int gpencil_stroke_point_id()
{
return (gl_VertexID & ~GP_IS_STROKE_VERTEX_BIT) >> GP_VERTEX_ID_SHIFT;
}
bool gpencil_is_stroke_vertex()
{
return flag_test(gl_VertexID, GP_IS_STROKE_VERTEX_BIT);
}
/**
* Returns value of gl_Position.
*
* To declare in vertex shader.
* in ivec4 ma, ma1, ma2, ma3;
* in float4 pos, pos1, pos2, pos3, uv1, uv2, col1, col2, fcol1;
*
* All of these attributes are quad loaded the same way
* as GL_LINES_ADJACENCY would feed a geometry shader:
* - ma reference the previous adjacency point.
* - ma1 reference the current line first point.
* - ma2 reference the current line second point.
* - ma3 reference the next adjacency point.
* Note that we are rendering quad instances and not using any index buffer
*(except for fills).
*
* Material : x is material index, y is stroke_id, z is point_id,
* w is aspect & rotation & hardness packed.
* Position : contains thickness in 4th component.
* UV : xy is UV for fills, z is U of stroke, w is strength.
*
*
* WARNING: Max attribute count is actually 14 because OSX OpenGL implementation
* considers gl_VertexID and gl_InstanceID as vertex attribute. (see #74536)
*/
float4 gpencil_vertex(float4 viewport_res,
gpMaterialFlag material_flags,
float2 alignment_rot,
/* World Position. */
out float3 out_P,
/* World Normal. */
out float3 out_N,
/* Vertex Color. */
out float4 out_color,
/* Stroke Strength. */
out float out_strength,
/* UV coordinates. */
out float2 out_uv,
/* Screen-Space segment endpoints. */
out float4 out_sspos,
/* Stroke aspect ratio. */
out float2 out_aspect,
/* Stroke thickness (x: clamped, y: unclamped). */
out float2 out_thickness,
/* Stroke hardness. */
out float out_hardness)
{
int stroke_point_id = (gl_VertexID & ~GP_IS_STROKE_VERTEX_BIT) >> GP_VERTEX_ID_SHIFT;
/* Attribute Loading. */
float4 pos = texelFetch(gp_pos_tx, (stroke_point_id - 1) * 3 + 0);
float4 pos1 = texelFetch(gp_pos_tx, (stroke_point_id + 0) * 3 + 0);
float4 pos2 = texelFetch(gp_pos_tx, (stroke_point_id + 1) * 3 + 0);
float4 pos3 = texelFetch(gp_pos_tx, (stroke_point_id + 2) * 3 + 0);
int4 ma = floatBitsToInt(texelFetch(gp_pos_tx, (stroke_point_id - 1) * 3 + 1));
int4 ma1 = floatBitsToInt(texelFetch(gp_pos_tx, (stroke_point_id + 0) * 3 + 1));
int4 ma2 = floatBitsToInt(texelFetch(gp_pos_tx, (stroke_point_id + 1) * 3 + 1));
int4 ma3 = floatBitsToInt(texelFetch(gp_pos_tx, (stroke_point_id + 2) * 3 + 1));
float4 uv1 = texelFetch(gp_pos_tx, (stroke_point_id + 0) * 3 + 2);
float4 uv2 = texelFetch(gp_pos_tx, (stroke_point_id + 1) * 3 + 2);
float4 col1 = texelFetch(gp_col_tx, (stroke_point_id + 0) * 2 + 0);
float4 col2 = texelFetch(gp_col_tx, (stroke_point_id + 1) * 2 + 0);
float4 fcol1 = texelFetch(gp_col_tx, (stroke_point_id + 0) * 2 + 1);
# define thickness1 pos1.w
# define thickness2 pos2.w
# define strength1 uv1.w
# define strength2 uv2.w
float4 out_ndc;
if (gpencil_is_stroke_vertex()) {
bool is_dot = flag_test(material_flags, GP_STROKE_ALIGNMENT);
bool is_squares = !flag_test(material_flags, GP_STROKE_DOTS);
bool is_first = (ma.x == -1);
bool is_last = (ma3.x == -1);
bool is_single = is_first && (ma2.x == -1);
PointData point_data1 = decode_ma(ma1);
PointData point_data2 = decode_ma(ma2);
/* Join the first and last point if the curve is cyclical. */
if (point_data1.cyclical && !is_single) {
if (is_first) {
/* The first point will have the index of the last point. */
PointData point_data = decode_ma(ma);
int last_stroke_id = point_data.stroke_id;
ma = floatBitsToInt(texelFetch(gp_pos_tx, (last_stroke_id - 2) * 3 + 1));
pos = texelFetch(gp_pos_tx, (last_stroke_id - 2) * 3 + 0);
}
if (is_last) {
int first_stroke_id = point_data1.stroke_id;
ma3 = floatBitsToInt(texelFetch(gp_pos_tx, (first_stroke_id + 2) * 3 + 1));
pos3 = texelFetch(gp_pos_tx, (first_stroke_id + 2) * 3 + 0);
}
}
/* Special Case. Stroke with single vert are rendered as dots. Do not discard them. */
if (!is_dot && is_single) {
is_dot = true;
is_squares = false;
}
/* Endpoints, we discard the vertices. */
if (!is_dot && ma2.x == -1) {
/* We set the vertex at the camera origin to generate 0 fragments. */
out_ndc = float4(0.0f, 0.0f, -3e36f, 0.0f);
return out_ndc;
}
/* Avoid using a vertex attribute for quad positioning. */
float x = float(gl_VertexID & 1) * 2.0f - 1.0f; /* [-1..1] */
float y = float(gl_VertexID & 2) - 1.0f; /* [-1..1] */
bool use_curr = is_dot || (x == -1.0f);
float3 wpos_adj = transform_point(drw_modelmat(), (use_curr) ? pos.xyz : pos3.xyz);
float3 wpos1 = transform_point(drw_modelmat(), pos1.xyz);
float3 wpos2 = transform_point(drw_modelmat(), pos2.xyz);
float3 T;
if (is_dot) {
/* Shade as facing billboards. */
T = drw_view().viewinv[0].xyz;
}
else if (use_curr && ma.x != -1) {
T = wpos1 - wpos_adj;
}
else {
T = wpos2 - wpos1;
}
T = safe_normalize(T);
float3 B = cross(T, drw_view().viewinv[2].xyz);
out_N = normalize(cross(B, T));
float4 ndc_adj = drw_point_world_to_homogenous(wpos_adj);
float4 ndc1 = drw_point_world_to_homogenous(wpos1);
float4 ndc2 = drw_point_world_to_homogenous(wpos2);
out_ndc = (use_curr) ? ndc1 : ndc2;
out_P = (use_curr) ? wpos1 : wpos2;
out_strength = abs((use_curr) ? strength1 : strength2);
float2 ss_adj = gpencil_project_to_screenspace(ndc_adj, viewport_res);
float2 ss1 = gpencil_project_to_screenspace(ndc1, viewport_res);
float2 ss2 = gpencil_project_to_screenspace(ndc2, viewport_res);
/* Screen-space Lines tangents. */
float line_len;
float2 line = safe_normalize_and_get_length(ss2 - ss1, line_len);
float2 line_adj = safe_normalize((use_curr) ? (ss1 - ss_adj) : (ss_adj - ss2));
float thickness = abs((use_curr) ? thickness1 : thickness2);
thickness = gpencil_stroke_thickness_modulate(thickness, out_ndc, viewport_res);
2025-04-29 13:49:24 +02:00
/* The radius attribute can have negative values. Make sure that it's not negative by clamping
* to 0. */
float clamped_thickness = max(0.0f, thickness);
out_uv = float2(x, y) * 0.5f + 0.5f;
out_hardness = gpencil_decode_hardness(use_curr ? point_data1.packed_data :
point_data2.packed_data);
if (is_dot) {
uint alignment_mode = material_flags & GP_STROKE_ALIGNMENT;
/* For one point strokes use object alignment. */
if (alignment_mode == GP_STROKE_ALIGNMENT_STROKE && is_single) {
alignment_mode = GP_STROKE_ALIGNMENT_OBJECT;
}
float2 x_axis;
if (alignment_mode == GP_STROKE_ALIGNMENT_STROKE) {
x_axis = (ma2.x == -1) ? line_adj : line;
}
else if (alignment_mode == GP_STROKE_ALIGNMENT_FIXED) {
/* Default for no-material drawing. */
x_axis = float2(1.0f, 0.0f);
}
else { /* GP_STROKE_ALIGNMENT_OBJECT */
float4 ndc_x = drw_point_world_to_homogenous(wpos1 + drw_modelmat()[0].xyz);
float2 ss_x = gpencil_project_to_screenspace(ndc_x, viewport_res);
x_axis = safe_normalize(ss_x - ss1);
}
/* Rotation: Encoded as Cos + Sin sign. */
float uv_rot = gpencil_decode_uvrot(point_data1.packed_data);
float rot_sin = sqrt(max(0.0f, 1.0f - uv_rot * uv_rot)) * sign(uv_rot);
float rot_cos = abs(uv_rot);
/* TODO(@fclem): Optimize these 2 matrix multiply into one by only having one rotation angle
* and using a cosine approximation. */
x_axis = float2x2(rot_cos, -rot_sin, rot_sin, rot_cos) * x_axis;
x_axis = float2x2(alignment_rot.x, -alignment_rot.y, alignment_rot.y, alignment_rot.x) *
x_axis;
/* Rotate 90 degrees counter-clockwise. */
float2 y_axis = float2(-x_axis.y, x_axis.x);
out_aspect = gpencil_decode_aspect(point_data1.packed_data);
x *= out_aspect.x;
y *= out_aspect.y;
/* Invert for vertex shader. */
out_aspect = 1.0f / out_aspect;
out_ndc.xy += (x * x_axis + y * y_axis) * viewport_res.zw * clamped_thickness;
out_sspos.xy = ss1;
out_sspos.zw = ss1 + x_axis * 0.5f;
out_thickness.x = (is_squares) ? 1e18f : (clamped_thickness / out_ndc.w);
out_thickness.y = (is_squares) ? 1e18f : (thickness / out_ndc.w);
}
else {
bool is_stroke_start = (ma.x == -1 && x == -1);
bool is_stroke_end = (ma3.x == -1 && x == 1);
/* Mitter tangent vector. */
float2 miter_tan = safe_normalize(line_adj + line);
float miter_dot = dot(miter_tan, line_adj);
/* Break corners after a certain angle to avoid really thick corners. */
const float miter_limit = 0.5f; /* cos(60 degrees) */
bool miter_break = (miter_dot < miter_limit);
miter_tan = (miter_break || is_stroke_start || is_stroke_end) ? line :
(miter_tan / miter_dot);
/* Rotate 90 degrees counter-clockwise. */
float2 miter = float2(-miter_tan.y, miter_tan.x);
out_sspos.xy = ss1;
out_sspos.zw = ss2;
out_thickness.x = clamped_thickness / out_ndc.w;
out_thickness.y = thickness / out_ndc.w;
out_aspect = float2(1.0f);
float2 screen_ofs = miter * y;
/* Reminder: we packed the cap flag into the sign of strength and thickness sign. */
if ((is_stroke_start && strength1 > 0.0f) || (is_stroke_end && thickness1 > 0.0f) ||
(miter_break && !is_stroke_start && !is_stroke_end))
{
screen_ofs += line * x;
}
out_ndc.xy += screen_ofs * viewport_res.zw * clamped_thickness;
out_uv.x = (use_curr) ? uv1.z : uv2.z;
}
out_color = (use_curr) ? col1 : col2;
}
else {
out_P = transform_point(drw_modelmat(), pos1.xyz);
out_ndc = drw_point_world_to_homogenous(out_P);
out_uv = uv1.xy;
out_thickness.x = 1e18f;
out_thickness.y = 1e20f;
out_hardness = 1.0f;
out_aspect = float2(1.0f);
out_sspos = float4(0.0f);
/* Flat normal following camera and object bounds. */
float3 V = drw_world_incident_vector(drw_modelmat()[3].xyz);
float3 N = drw_normal_world_to_object(V);
N *= drw_object_infos().orco_mul;
N = drw_normal_world_to_object(N);
out_N = safe_normalize(N);
/* Decode fill opacity. */
out_color = float4(fcol1.rgb, floor(fcol1.a / 10.0f) / 10000.0f);
/* We still offset the fills a little to avoid overlaps */
out_ndc.z += 0.000002f;
}
# undef thickness1
# undef thickness2
# undef strength1
# undef strength2
return out_ndc;
}
float4 gpencil_vertex(float4 viewport_res,
out float3 out_P,
out float3 out_N,
out float4 out_color,
out float out_strength,
out float2 out_uv,
out float4 out_sspos,
out float2 out_aspect,
out float2 out_thickness,
out float out_hardness)
{
return gpencil_vertex(viewport_res,
gpMaterialFlag(0u),
float2(1.0f, 0.0f),
out_P,
out_N,
out_color,
out_strength,
out_uv,
out_sspos,
out_aspect,
out_thickness,
out_hardness);
}
#endif