removed unnecessary files

This commit is contained in:
Maxime Curioni
2009-10-05 00:28:29 +00:00
parent ef6f7bbedb
commit 6a9fcfd6fa
57 changed files with 0 additions and 5377 deletions

View File

@@ -1,6 +0,0 @@
Authors
-------
Fr<EFBFBD>do Durand <fredo@mit.edu>
St<EFBFBD>phane Grabli <stephane.grabli@imag.fr>
Fran<EFBFBD>ois Sillion <francois.sillion@imag.fr>
Emmanuel Turquin <emmanuel.turquin@imag.fr>

View File

@@ -1,11 +0,0 @@
* Application doesn't exit properly (eg style window still hangs out)
* macosx: Window bar is unaccessible.
* macosx: Build leds to an application that is half-bundle (for the executable) half UNIX-style (for libraries).
* Strokes Strips are sometimes incorrect
* TVertex sometimes points towards NULL ViewEdges
* Some points are found to be outside of the grid. (for big models and mostly in release mode). Probably due to precision problems.
* Operators::recursiveChains() and ViewEdgeIterator change ViewEdgeIterator so that it supports the copy of specialized types in a transparent way. It works here only because we're never copying it and because it is passed as a reference.
* Functions0D takes a Interface0DIterator& insted of a const Interface0DIterator& as argument. dangerous.
* crashes on big models

View File

@@ -1,9 +0,0 @@
Freestyle
Copyright (c) 2001-2007 by the following:
Fr<EFBFBD>do Durand <fredo@mit.edu>
St<EFBFBD>phane Grabli <stephane.grabli@gmail.com>
Fran<EFBFBD>ois Sillion <francois.sillion@imag.fr>
Emmanuel Turquin <emmanuel.turquin@imag.fr>

View File

@@ -1,79 +0,0 @@
Install
-------
* UNIX/LINUX
(for a more detailed description, see doc/linuxinstall.html)
This is quite straightforward, provided that you have all the
needed libraries properly installed (see Requirements section in
the README.TXT file).
First, set the FREESTYLE-DIR environment variable to your
freestyle directory and then, simply type:
$> cd "$FREESTYLE_DIR"/src
$> qmake
$> make
Note: The SWIG wrapper hasn't been included in the qmake build
cycle yet and thus has to be compiled separately, by hand:
$> cd "$FREESTYLE_DIR"/src/swig
$> make
And to run the app:
$> export LD_LIBRARY_PATH="$LD_LIBRARY_PATH:./lib"
$> cd "$FREESTYLE_DIR"/build/linux-g++/release/
$> ./Freestyle
* WINDOWS
- If you downloaded the binary version:
1) unzip the package
2) run vcredist_x86.exe
3) run Freestyle.exe
- Compilation Instructions:
(for a more detailed description, including the cygwin
compilation instructions, see doc/wininstall.html)
1) launch 'makedsp.vcnet.debug.bat' in the 'src' subdir of your FREESTYLE_DIR to generate
a .vcproj file for each sub-project
2) open 'src/Freestyle-vc8-debug.sln' with Visual Studio (tested with VC++ 8 express edition)
3) compile the whole project using 'build solution' in the 'build' menu
4) run the app and enjoy ;)
* MAC OS X
(for a more detailed description, see doc/macosxinstall.html)
This is quite straightforward, provided that you have all the
needed libraries properly installed (see Requirements section in
the README.TXT file).
First, set the FREESTYLE-DIR environment variable to your
freestyle directory and then, simply type:
$> cd "$FREESTYLE_DIR"/src
$> qmake
$> make
Note: The SWIG wrapper hasn't been included in the qmake build
cycle yet and thus has to be compiled separately, by hand:
$> cd "$FREESTYLE_DIR"/src/swig
$> make
And to run the app:
$> build_bundle.macosx.py
$> cd "$FREESTYLE_DIR"/
$> open Freestyle.App
* IRIX
Not tested yet...

View File

@@ -1,340 +0,0 @@
GNU GENERAL PUBLIC LICENSE
Version 2, June 1991
Copyright (C) 1989, 1991 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
Preamble
The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
License is intended to guarantee your freedom to share and change free
software--to make sure the software is free for all its users. This
General Public License applies to most of the Free Software
Foundation's software and to any other program whose authors commit to
using it. (Some other Free Software Foundation software is covered by
the GNU Library General Public License instead.) You can apply it to
your programs, too.
When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it
if you want it, that you can change the software or use pieces of it
in new free programs; and that you know you can do these things.
To protect your rights, we need to make restrictions that forbid
anyone to deny you these rights or to ask you to surrender the rights.
These restrictions translate to certain responsibilities for you if you
distribute copies of the software, or if you modify it.
For example, if you distribute copies of such a program, whether
gratis or for a fee, you must give the recipients all the rights that
you have. You must make sure that they, too, receive or can get the
source code. And you must show them these terms so they know their
rights.
We protect your rights with two steps: (1) copyright the software, and
(2) offer you this license which gives you legal permission to copy,
distribute and/or modify the software.
Also, for each author's protection and ours, we want to make certain
that everyone understands that there is no warranty for this free
software. If the software is modified by someone else and passed on, we
want its recipients to know that what they have is not the original, so
that any problems introduced by others will not reflect on the original
authors' reputations.
Finally, any free program is threatened constantly by software
patents. We wish to avoid the danger that redistributors of a free
program will individually obtain patent licenses, in effect making the
program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone's free use or not licensed at all.
The precise terms and conditions for copying, distribution and
modification follow.
GNU GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
0. This License applies to any program or other work which contains
a notice placed by the copyright holder saying it may be distributed
under the terms of this General Public License. The "Program", below,
refers to any such program or work, and a "work based on the Program"
means either the Program or any derivative work under copyright law:
that is to say, a work containing the Program or a portion of it,
either verbatim or with modifications and/or translated into another
language. (Hereinafter, translation is included without limitation in
the term "modification".) Each licensee is addressed as "you".
Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running the Program is not restricted, and the output from the Program
is covered only if its contents constitute a work based on the
Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.
1. You may copy and distribute verbatim copies of the Program's
source code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the
notices that refer to this License and to the absence of any warranty;
and give any other recipients of the Program a copy of this License
along with the Program.
You may charge a fee for the physical act of transferring a copy, and
you may at your option offer warranty protection in exchange for a fee.
2. You may modify your copy or copies of the Program or any portion
of it, thus forming a work based on the Program, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:
a) You must cause the modified files to carry prominent notices
stating that you changed the files and the date of any change.
b) You must cause any work that you distribute or publish, that in
whole or in part contains or is derived from the Program or any
part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.
c) If the modified program normally reads commands interactively
when run, you must cause it, when started running for such
interactive use in the most ordinary way, to print or display an
announcement including an appropriate copyright notice and a
notice that there is no warranty (or else, saying that you provide
a warranty) and that users may redistribute the program under
these conditions, and telling the user how to view a copy of this
License. (Exception: if the Program itself is interactive but
does not normally print such an announcement, your work based on
the Program is not required to print an announcement.)
These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Program,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Program, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote it.
Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Program.
In addition, mere aggregation of another work not based on the Program
with the Program (or with a work based on the Program) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.
3. You may copy and distribute the Program (or a work based on it,
under Section 2) in object code or executable form under the terms of
Sections 1 and 2 above provided that you also do one of the following:
a) Accompany it with the complete corresponding machine-readable
source code, which must be distributed under the terms of Sections
1 and 2 above on a medium customarily used for software interchange; or,
b) Accompany it with a written offer, valid for at least three
years, to give any third party, for a charge no more than your
cost of physically performing source distribution, a complete
machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,
c) Accompany it with the information you received as to the offer
to distribute corresponding source code. (This alternative is
allowed only for noncommercial distribution and only if you
received the program in object code or executable form with such
an offer, in accord with Subsection b above.)
The source code for a work means the preferred form of the work for
making modifications to it. For an executable work, complete source
code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to
control compilation and installation of the executable. However, as a
special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component
itself accompanies the executable.
If distribution of executable or object code is made by offering
access to copy from a designated place, then offering equivalent
access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.
4. You may not copy, modify, sublicense, or distribute the Program
except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense or distribute the Program is
void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such
parties remain in full compliance.
5. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Program or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Program (or any work based on the
Program), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Program or works based on it.
6. Each time you redistribute the Program (or any work based on the
Program), the recipient automatically receives a license from the
original licensor to copy, distribute or modify the Program subject to
these terms and conditions. You may not impose any further
restrictions on the recipients' exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties to
this License.
7. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Program at all. For example, if a patent
license would not permit royalty-free redistribution of the Program by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.
If any portion of this section is held invalid or unenforceable under
any particular circumstance, the balance of the section is intended to
apply and the section as a whole is intended to apply in other
circumstances.
It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.
This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.
8. If the distribution and/or use of the Program is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Program under this License
may add an explicit geographical distribution limitation excluding
those countries, so that distribution is permitted only in or among
countries not thus excluded. In such case, this License incorporates
the limitation as if written in the body of this License.
9. The Free Software Foundation may publish revised and/or new versions
of the General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.
Each version is given a distinguishing version number. If the Program
specifies a version number of this License which applies to it and "any
later version", you have the option of following the terms and conditions
either of that version or of any later version published by the Free
Software Foundation. If the Program does not specify a version number of
this License, you may choose any version ever published by the Free Software
Foundation.
10. If you wish to incorporate parts of the Program into other free
programs whose distribution conditions are different, write to the author
to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes
make exceptions for this. Our decision will be guided by the two goals
of preserving the free status of all derivatives of our free software and
of promoting the sharing and reuse of software generally.
NO WARRANTY
11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS
TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.
12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.
END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs
If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.
To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
convey the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.
<one line to give the program's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Also add information on how to contact you by electronic and paper mail.
If the program is interactive, make it output a short notice like this
when it starts in an interactive mode:
Gnomovision version 69, Copyright (C) year name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
This is free software, and you are welcome to redistribute it
under certain conditions; type `show c' for details.
The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, the commands you use may
be called something other than `show w' and `show c'; they could even be
mouse-clicks or menu items--whatever suits your program.
You should also get your employer (if you work as a programmer) or your
school, if any, to sign a "copyright disclaimer" for the program, if
necessary. Here is a sample; alter the names:
Yoyodyne, Inc., hereby disclaims all copyright interest in the program
`Gnomovision' (which makes passes at compilers) written by James Hacker.
<signature of Ty Coon>, 1 April 1989
Ty Coon, President of Vice
This General Public License does not permit incorporating your program into
proprietary programs. If your program is a subroutine library, you may
consider it more useful to permit linking proprietary applications with the
library. If this is what you want to do, use the GNU Library General
Public License instead of this License.

View File

@@ -1,51 +0,0 @@
Freestyle, a procedural line drawing system
http://freestyle.sourceforge.net
INTRODUCTION
------------
Freestyle is a software for Non-Photorealistic Line Drawing rendering
from 3D scenes. It is designed as a programmable interface to allow
maximum control over the style of the final drawing: the user
"programs" how the silhouettes and other feature lines from the 3D
model should be turned into stylized strokes using a set of
programmable operators dedicated to style description. This
programmable approach, inspired by the shading languages available in
photorealistic renderers such as Pixar's RenderMan, overcomes the
limitations of integrated software with access to a limited number of
parameters and permits the design of an infinite variety of rich and
complex styles. The system currently focuses on pure line drawing as a
first step. The style description language is Python augmented with
our set of operators. Freestyle was developed in the framework of a
research project dedicated to the study of stylized line drawing
rendering from 3D scenes. Details about this research can be found at:
http://artis.imag.fr/Projects/Style
This software is distributed under
the terms of the GPL License.
INSTALL
-------
Please see the file INSTALL.TXT for instructions on installation.
REQUIREMENTS
------------
- OpenGL >= 1.2
- libQGLViewer = 2.2.5-1
- lib3ds = 1.2
- Qt = 4.2.3
- SWIG = 1.3.31
- Python = 2.5
For Linux and MacOSX:
- g++ = 4.0 or 4.1
For Windows:
- Visual Studio = 2003 or 2005
CONTACTING THE AUTHORS
----------------------
See the AUTHORS.TXT file for contact information.
Thank you for your interest in this project, we hope you enjoy using it.
---

View File

@@ -1,6 +0,0 @@
The following is an incomplete list of people that have contributed to this
project in some way or another, in no particular order...
* Thomas Netter (lib3ds fix)
* Gilles Debunne, creator and maintainer of the great libQGLViewer.
* Mark Rose, for his work on the SWIG director feature, and his help.

View File

@@ -1,9 +0,0 @@
sgrabli:
--------
* Update help and make it display correctly
* Recode the ViewMap building - the Y junctions are not detected for smooth objects right now.
* Check the strokes strippification code. It seems some parts are inverted.
* Fix the pbuffer so that ATI cards are supported
* Merge Chain and Stroke classes (to Stroke) and improve the base of operators (select, chain, split, shade) consquently (also think about a way to easily specify the pipeline synchronization mode).

View File

@@ -1,731 +0,0 @@
#
# Filename : ChainingIterators.py
# Author : Stephane Grabli
# Date : 04/08/2005
# Purpose : Chaining Iterators to be used with chaining operators
#
#############################################################################
#
# Copyright (C) : Please refer to the COPYRIGHT file distributed
# with this source distribution.
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#
#############################################################################
from Freestyle import *
## the natural chaining iterator
## It follows the edges of same nature following the topology of
## objects with preseance on silhouettes, then borders,
## then suggestive contours, then everything else. It doesn't chain the same ViewEdge twice
## You can specify whether to stay in the selection or not.
class pyChainSilhouetteIterator(ChainingIterator):
def __init__(self, stayInSelection=1):
ChainingIterator.__init__(self, stayInSelection, 1,None,1)
def getExactTypeName(self):
return "pyChainSilhouetteIterator"
def traverse(self, iter):
winner = None
it = AdjacencyIterator(iter)
nextVertex = self.getVertex()
if(nextVertex.getNature() & T_VERTEX != 0):
tvertex = nextVertex.castToTVertex()
mateVE = tvertex.mate(self.getCurrentEdge())
while(it.isEnd() == 0):
ve = it.getObject()
if(ve.getId() == mateVE.getId() ):
winner = ve
break
it.increment()
else:
## case of NonTVertex
natures = [SILHOUETTE,BORDER,CREASE,SUGGESTIVE_CONTOUR,VALLEY,RIDGE]
for i in range(len(natures)):
currentNature = self.getCurrentEdge().getNature()
if(natures[i] & currentNature):
count=0
while(it.isEnd() == 0):
visitNext = 0
oNature = it.getObject().getNature()
if(oNature & natures[i] != 0):
if(natures[i] != oNature):
for j in range(i):
if(natures[j] & oNature != 0):
visitNext = 1
break
if(visitNext != 0):
break
count = count+1
winner = it.getObject()
it.increment()
if(count != 1):
winner = None
break
return winner
## the natural chaining iterator
## It follows the edges of same nature on the same
## objects with preseance on silhouettes, then borders,
## then suggestive contours, then everything else. It doesn't chain the same ViewEdge twice
## You can specify whether to stay in the selection or not.
## You can specify whether to chain iterate over edges that were
## already visited or not.
class pyChainSilhouetteGenericIterator(ChainingIterator):
def __init__(self, stayInSelection=1, stayInUnvisited=1):
ChainingIterator.__init__(self, stayInSelection, stayInUnvisited,None,1)
def getExactTypeName(self):
return "pyChainSilhouetteGenericIterator"
def traverse(self, iter):
winner = None
it = AdjacencyIterator(iter)
nextVertex = self.getVertex()
if(nextVertex.getNature() & T_VERTEX != 0):
tvertex = nextVertex.castToTVertex()
mateVE = tvertex.mate(self.getCurrentEdge())
while(it.isEnd() == 0):
ve = it.getObject()
if(ve.getId() == mateVE.getId() ):
winner = ve
break
it.increment()
else:
## case of NonTVertex
natures = [SILHOUETTE,BORDER,CREASE,SUGGESTIVE_CONTOUR,VALLEY,RIDGE]
for i in range(len(natures)):
currentNature = self.getCurrentEdge().getNature()
if(natures[i] & currentNature):
count=0
while(it.isEnd() == 0):
visitNext = 0
oNature = it.getObject().getNature()
ve = it.getObject()
if(ve.getId() == self.getCurrentEdge().getId()):
it.increment()
continue
if(oNature & natures[i] != 0):
if(natures[i] != oNature):
for j in range(i):
if(natures[j] & oNature != 0):
visitNext = 1
break
if(visitNext != 0):
break
count = count+1
winner = ve
it.increment()
if(count != 1):
winner = None
break
return winner
class pyExternalContourChainingIterator(ChainingIterator):
def __init__(self):
ChainingIterator.__init__(self, 0, 1,None,1)
self._isExternalContour = ExternalContourUP1D()
def getExactTypeName(self):
return "pyExternalContourIterator"
def init(self):
self._nEdges = 0
self._isInSelection = 1
def checkViewEdge(self, ve, orientation):
if(orientation != 0):
vertex = ve.B()
else:
vertex = ve.A()
it = AdjacencyIterator(vertex,1,1)
while(it.isEnd() == 0):
ave = it.getObject()
if(self._isExternalContour(ave)):
return 1
it.increment()
print "pyExternlContourChainingIterator : didn't find next edge"
return 0
def traverse(self, iter):
winner = None
it = AdjacencyIterator(iter)
while(it.isEnd() == 0):
ve = it.getObject()
if(self._isExternalContour(ve)):
if (ve.getTimeStamp() == GetTimeStampCF()):
winner = ve
it.increment()
self._nEdges = self._nEdges+1
if(winner == None):
orient = 1
it = AdjacencyIterator(iter)
while(it.isEnd() == 0):
ve = it.getObject()
if(it.isIncoming() != 0):
orient = 0
good = self.checkViewEdge(ve,orient)
if(good != 0):
winner = ve
it.increment()
return winner
## the natural chaining iterator
## with a sketchy multiple touch
class pySketchyChainSilhouetteIterator(ChainingIterator):
def __init__(self, nRounds=3,stayInSelection=1):
ChainingIterator.__init__(self, stayInSelection, 0,None,1)
self._timeStamp = GetTimeStampCF()+nRounds
self._nRounds = nRounds
def getExactTypeName(self):
return "pySketchyChainSilhouetteIterator"
def init(self):
self._timeStamp = GetTimeStampCF()+self._nRounds
def traverse(self, iter):
winner = None
it = AdjacencyIterator(iter)
nextVertex = self.getVertex()
if(nextVertex.getNature() & T_VERTEX != 0):
tvertex = nextVertex.castToTVertex()
mateVE = tvertex.mate(self.getCurrentEdge())
while(it.isEnd() == 0):
ve = it.getObject()
if(ve.getId() == mateVE.getId() ):
winner = ve
break
it.increment()
else:
## case of NonTVertex
natures = [SILHOUETTE,BORDER,CREASE,SUGGESTIVE_CONTOUR,VALLEY,RIDGE]
for i in range(len(natures)):
currentNature = self.getCurrentEdge().getNature()
if(natures[i] & currentNature):
count=0
while(it.isEnd() == 0):
visitNext = 0
oNature = it.getObject().getNature()
ve = it.getObject()
if(ve.getId() == self.getCurrentEdge().getId()):
it.increment()
continue
if(oNature & natures[i] != 0):
if(natures[i] != oNature):
for j in range(i):
if(natures[j] & oNature != 0):
visitNext = 1
break
if(visitNext != 0):
break
count = count+1
winner = ve
it.increment()
if(count != 1):
winner = None
break
if(winner == None):
winner = self.getCurrentEdge()
if(winner.getChainingTimeStamp() == self._timeStamp):
winner = None
return winner
# Chaining iterator designed for sketchy style.
# can chain several times the same ViewEdge
# in order to produce multiple strokes per ViewEdge.
class pySketchyChainingIterator(ChainingIterator):
def __init__(self, nRounds=3, stayInSelection=1):
ChainingIterator.__init__(self, stayInSelection, 0,None,1)
self._timeStamp = GetTimeStampCF()+nRounds
self._nRounds = nRounds
def getExactTypeName(self):
return "pySketchyChainingIterator"
def init(self):
self._timeStamp = GetTimeStampCF()+self._nRounds
def traverse(self, iter):
winner = None
it = AdjacencyIterator(iter)
while(it.isEnd() == 0):
ve = it.getObject()
if(ve.getId() == self.getCurrentEdge().getId()):
it.increment()
continue
winner = ve
it.increment()
if(winner == None):
winner = self.getCurrentEdge()
if(winner.getChainingTimeStamp() == self._timeStamp):
return None
return winner
## Chaining iterator that fills small occlusions
## percent
## The max length of the occluded part
## expressed in % of the total chain length
class pyFillOcclusionsRelativeChainingIterator(ChainingIterator):
def __init__(self, percent):
ChainingIterator.__init__(self, 0, 1,None,1)
self._length = 0
self._percent = float(percent)
def getExactTypeName(self):
return "pyFillOcclusionsChainingIterator"
def init(self):
# each time we're evaluating a chain length
# we try to do it once. Thus we reinit
# the chain length here:
self._length = 0
def traverse(self, iter):
winner = None
winnerOrientation = 0
print self.getCurrentEdge().getId().getFirst(), self.getCurrentEdge().getId().getSecond()
it = AdjacencyIterator(iter)
nextVertex = self.getVertex()
if(nextVertex.getNature() & T_VERTEX != 0):
tvertex = nextVertex.castToTVertex()
mateVE = tvertex.mate(self.getCurrentEdge())
while(it.isEnd() == 0):
ve = it.getObject()
if(ve.getId() == mateVE.getId() ):
winner = ve
if(it.isIncoming() == 0):
winnerOrientation = 1
else:
winnerOrientation = 0
break
it.increment()
else:
## case of NonTVertex
natures = [SILHOUETTE,BORDER,CREASE,SUGGESTIVE_CONTOUR,VALLEY,RIDGE]
for nat in natures:
if(self.getCurrentEdge().getNature() & nat != 0):
count=0
while(it.isEnd() == 0):
ve = it.getObject()
if(ve.getNature() & nat != 0):
count = count+1
winner = ve
if(it.isIncoming() == 0):
winnerOrientation = 1
else:
winnerOrientation = 0
it.increment()
if(count != 1):
winner = None
break
if(winner != None):
# check whether this edge was part of the selection
if(winner.getTimeStamp() != GetTimeStampCF()):
#print "---", winner.getId().getFirst(), winner.getId().getSecond()
# if not, let's check whether it's short enough with
# respect to the chain made without staying in the selection
#------------------------------------------------------------
# Did we compute the prospective chain length already ?
if(self._length == 0):
#if not, let's do it
_it = pyChainSilhouetteGenericIterator(0,0)
_it.setBegin(winner)
_it.setCurrentEdge(winner)
_it.setOrientation(winnerOrientation)
_it.init()
while(_it.isEnd() == 0):
ve = _it.getObject()
#print "--------", ve.getId().getFirst(), ve.getId().getSecond()
self._length = self._length + ve.getLength2D()
_it.increment()
if(_it.isBegin() != 0):
break;
_it.setBegin(winner)
_it.setCurrentEdge(winner)
_it.setOrientation(winnerOrientation)
if(_it.isBegin() == 0):
_it.decrement()
while ((_it.isEnd() == 0) and (_it.isBegin() == 0)):
ve = _it.getObject()
#print "--------", ve.getId().getFirst(), ve.getId().getSecond()
self._length = self._length + ve.getLength2D()
_it.decrement()
# let's do the comparison:
# nw let's compute the length of this connex non selected part:
connexl = 0
_cit = pyChainSilhouetteGenericIterator(0,0)
_cit.setBegin(winner)
_cit.setCurrentEdge(winner)
_cit.setOrientation(winnerOrientation)
_cit.init()
while((_cit.isEnd() == 0) and (_cit.getObject().getTimeStamp() != GetTimeStampCF())):
ve = _cit.getObject()
#print "-------- --------", ve.getId().getFirst(), ve.getId().getSecond()
connexl = connexl + ve.getLength2D()
_cit.increment()
if(connexl > self._percent * self._length):
winner = None
return winner
## Chaining iterator that fills small occlusions
## size
## The max length of the occluded part
## expressed in pixels
class pyFillOcclusionsAbsoluteChainingIterator(ChainingIterator):
def __init__(self, length):
ChainingIterator.__init__(self, 0, 1,None,1)
self._length = float(length)
def getExactTypeName(self):
return "pySmallFillOcclusionsChainingIterator"
def traverse(self, iter):
winner = None
winnerOrientation = 0
#print self.getCurrentEdge().getId().getFirst(), self.getCurrentEdge().getId().getSecond()
it = AdjacencyIterator(iter)
nextVertex = self.getVertex()
if(nextVertex.getNature() & T_VERTEX != 0):
tvertex = nextVertex.castToTVertex()
mateVE = tvertex.mate(self.getCurrentEdge())
while(it.isEnd() == 0):
ve = it.getObject()
if(ve.getId() == mateVE.getId() ):
winner = ve
if(it.isIncoming() == 0):
winnerOrientation = 1
else:
winnerOrientation = 0
break
it.increment()
else:
## case of NonTVertex
natures = [SILHOUETTE,BORDER,CREASE,SUGGESTIVE_CONTOUR,VALLEY,RIDGE]
for nat in natures:
if(self.getCurrentEdge().getNature() & nat != 0):
count=0
while(it.isEnd() == 0):
ve = it.getObject()
if(ve.getNature() & nat != 0):
count = count+1
winner = ve
if(it.isIncoming() == 0):
winnerOrientation = 1
else:
winnerOrientation = 0
it.increment()
if(count != 1):
winner = None
break
if(winner != None):
# check whether this edge was part of the selection
if(winner.getTimeStamp() != GetTimeStampCF()):
#print "---", winner.getId().getFirst(), winner.getId().getSecond()
# nw let's compute the length of this connex non selected part:
connexl = 0
_cit = pyChainSilhouetteGenericIterator(0,0)
_cit.setBegin(winner)
_cit.setCurrentEdge(winner)
_cit.setOrientation(winnerOrientation)
_cit.init()
while((_cit.isEnd() == 0) and (_cit.getObject().getTimeStamp() != GetTimeStampCF())):
ve = _cit.getObject()
#print "-------- --------", ve.getId().getFirst(), ve.getId().getSecond()
connexl = connexl + ve.getLength2D()
_cit.increment()
if(connexl > self._length):
winner = None
return winner
## Chaining iterator that fills small occlusions
## percent
## The max length of the occluded part
## expressed in % of the total chain length
class pyFillOcclusionsAbsoluteAndRelativeChainingIterator(ChainingIterator):
def __init__(self, percent, l):
ChainingIterator.__init__(self, 0, 1,None,1)
self._length = 0
self._absLength = l
self._percent = float(percent)
def getExactTypeName(self):
return "pyFillOcclusionsChainingIterator"
def init(self):
# each time we're evaluating a chain length
# we try to do it once. Thus we reinit
# the chain length here:
self._length = 0
def traverse(self, iter):
winner = None
winnerOrientation = 0
print self.getCurrentEdge().getId().getFirst(), self.getCurrentEdge().getId().getSecond()
it = AdjacencyIterator(iter)
nextVertex = self.getVertex()
if(nextVertex.getNature() & T_VERTEX != 0):
tvertex = nextVertex.castToTVertex()
mateVE = tvertex.mate(self.getCurrentEdge())
while(it.isEnd() == 0):
ve = it.getObject()
if(ve.getId() == mateVE.getId() ):
winner = ve
if(it.isIncoming() == 0):
winnerOrientation = 1
else:
winnerOrientation = 0
break
it.increment()
else:
## case of NonTVertex
natures = [SILHOUETTE,BORDER,CREASE,SUGGESTIVE_CONTOUR,VALLEY,RIDGE]
for nat in natures:
if(self.getCurrentEdge().getNature() & nat != 0):
count=0
while(it.isEnd() == 0):
ve = it.getObject()
if(ve.getNature() & nat != 0):
count = count+1
winner = ve
if(it.isIncoming() == 0):
winnerOrientation = 1
else:
winnerOrientation = 0
it.increment()
if(count != 1):
winner = None
break
if(winner != None):
# check whether this edge was part of the selection
if(winner.getTimeStamp() != GetTimeStampCF()):
#print "---", winner.getId().getFirst(), winner.getId().getSecond()
# if not, let's check whether it's short enough with
# respect to the chain made without staying in the selection
#------------------------------------------------------------
# Did we compute the prospective chain length already ?
if(self._length == 0):
#if not, let's do it
_it = pyChainSilhouetteGenericIterator(0,0)
_it.setBegin(winner)
_it.setCurrentEdge(winner)
_it.setOrientation(winnerOrientation)
_it.init()
while(_it.isEnd() == 0):
ve = _it.getObject()
#print "--------", ve.getId().getFirst(), ve.getId().getSecond()
self._length = self._length + ve.getLength2D()
_it.increment()
if(_it.isBegin() != 0):
break;
_it.setBegin(winner)
_it.setCurrentEdge(winner)
_it.setOrientation(winnerOrientation)
if(_it.isBegin() == 0):
_it.decrement()
while ((_it.isEnd() == 0) and (_it.isBegin() == 0)):
ve = _it.getObject()
#print "--------", ve.getId().getFirst(), ve.getId().getSecond()
self._length = self._length + ve.getLength2D()
_it.decrement()
# let's do the comparison:
# nw let's compute the length of this connex non selected part:
connexl = 0
_cit = pyChainSilhouetteGenericIterator(0,0)
_cit.setBegin(winner)
_cit.setCurrentEdge(winner)
_cit.setOrientation(winnerOrientation)
_cit.init()
while((_cit.isEnd() == 0) and (_cit.getObject().getTimeStamp() != GetTimeStampCF())):
ve = _cit.getObject()
#print "-------- --------", ve.getId().getFirst(), ve.getId().getSecond()
connexl = connexl + ve.getLength2D()
_cit.increment()
if((connexl > self._percent * self._length) or (connexl > self._absLength)):
winner = None
return winner
## Chaining iterator that fills small occlusions without caring about the
## actual selection
## percent
## The max length of the occluded part
## expressed in % of the total chain length
class pyFillQi0AbsoluteAndRelativeChainingIterator(ChainingIterator):
def __init__(self, percent, l):
ChainingIterator.__init__(self, 0, 1,None,1)
self._length = 0
self._absLength = l
self._percent = float(percent)
def getExactTypeName(self):
return "pyFillOcclusionsChainingIterator"
def init(self):
# each time we're evaluating a chain length
# we try to do it once. Thus we reinit
# the chain length here:
self._length = 0
def traverse(self, iter):
winner = None
winnerOrientation = 0
print self.getCurrentEdge().getId().getFirst(), self.getCurrentEdge().getId().getSecond()
it = AdjacencyIterator(iter)
nextVertex = self.getVertex()
if(nextVertex.getNature() & T_VERTEX != 0):
tvertex = nextVertex.castToTVertex()
mateVE = tvertex.mate(self.getCurrentEdge())
while(it.isEnd() == 0):
ve = it.getObject()
if(ve.getId() == mateVE.getId() ):
winner = ve
if(it.isIncoming() == 0):
winnerOrientation = 1
else:
winnerOrientation = 0
break
it.increment()
else:
## case of NonTVertex
natures = [SILHOUETTE,BORDER,CREASE,SUGGESTIVE_CONTOUR,VALLEY,RIDGE]
for nat in natures:
if(self.getCurrentEdge().getNature() & nat != 0):
count=0
while(it.isEnd() == 0):
ve = it.getObject()
if(ve.getNature() & nat != 0):
count = count+1
winner = ve
if(it.isIncoming() == 0):
winnerOrientation = 1
else:
winnerOrientation = 0
it.increment()
if(count != 1):
winner = None
break
if(winner != None):
# check whether this edge was part of the selection
if(winner.qi() != 0):
#print "---", winner.getId().getFirst(), winner.getId().getSecond()
# if not, let's check whether it's short enough with
# respect to the chain made without staying in the selection
#------------------------------------------------------------
# Did we compute the prospective chain length already ?
if(self._length == 0):
#if not, let's do it
_it = pyChainSilhouetteGenericIterator(0,0)
_it.setBegin(winner)
_it.setCurrentEdge(winner)
_it.setOrientation(winnerOrientation)
_it.init()
while(_it.isEnd() == 0):
ve = _it.getObject()
#print "--------", ve.getId().getFirst(), ve.getId().getSecond()
self._length = self._length + ve.getLength2D()
_it.increment()
if(_it.isBegin() != 0):
break;
_it.setBegin(winner)
_it.setCurrentEdge(winner)
_it.setOrientation(winnerOrientation)
if(_it.isBegin() == 0):
_it.decrement()
while ((_it.isEnd() == 0) and (_it.isBegin() == 0)):
ve = _it.getObject()
#print "--------", ve.getId().getFirst(), ve.getId().getSecond()
self._length = self._length + ve.getLength2D()
_it.decrement()
# let's do the comparison:
# nw let's compute the length of this connex non selected part:
connexl = 0
_cit = pyChainSilhouetteGenericIterator(0,0)
_cit.setBegin(winner)
_cit.setCurrentEdge(winner)
_cit.setOrientation(winnerOrientation)
_cit.init()
while((_cit.isEnd() == 0) and (_cit.getObject().qi() != 0)):
ve = _cit.getObject()
#print "-------- --------", ve.getId().getFirst(), ve.getId().getSecond()
connexl = connexl + ve.getLength2D()
_cit.increment()
if((connexl > self._percent * self._length) or (connexl > self._absLength)):
winner = None
return winner
## the natural chaining iterator
## It follows the edges of same nature on the same
## objects with preseance on silhouettes, then borders,
## then suggestive contours, then everything else. It doesn't chain the same ViewEdge twice
## You can specify whether to stay in the selection or not.
class pyNoIdChainSilhouetteIterator(ChainingIterator):
def __init__(self, stayInSelection=1):
ChainingIterator.__init__(self, stayInSelection, 1,None,1)
def getExactTypeName(self):
return "pyChainSilhouetteIterator"
def traverse(self, iter):
winner = None
it = AdjacencyIterator(iter)
nextVertex = self.getVertex()
if(nextVertex.getNature() & T_VERTEX != 0):
tvertex = nextVertex.castToTVertex()
mateVE = tvertex.mate(self.getCurrentEdge())
while(it.isEnd() == 0):
ve = it.getObject()
feB = self.getCurrentEdge().fedgeB()
feA = ve.fedgeA()
vB = feB.vertexB()
vA = feA.vertexA()
if vA.getId().getFirst() == vB.getId().getFirst():
winner = ve
break
feA = self.getCurrentEdge().fedgeA()
feB = ve.fedgeB()
vB = feB.vertexB()
vA = feA.vertexA()
if vA.getId().getFirst() == vB.getId().getFirst():
winner = ve
break
feA = self.getCurrentEdge().fedgeB()
feB = ve.fedgeB()
vB = feB.vertexB()
vA = feA.vertexB()
if vA.getId().getFirst() == vB.getId().getFirst():
winner = ve
break
feA = self.getCurrentEdge().fedgeA()
feB = ve.fedgeA()
vB = feB.vertexA()
vA = feA.vertexA()
if vA.getId().getFirst() == vB.getId().getFirst():
winner = ve
break
it.increment()
else:
## case of NonTVertex
natures = [SILHOUETTE,BORDER,CREASE,SUGGESTIVE_CONTOUR,VALLEY,RIDGE]
for i in range(len(natures)):
currentNature = self.getCurrentEdge().getNature()
if(natures[i] & currentNature):
count=0
while(it.isEnd() == 0):
visitNext = 0
oNature = it.getObject().getNature()
if(oNature & natures[i] != 0):
if(natures[i] != oNature):
for j in range(i):
if(natures[j] & oNature != 0):
visitNext = 1
break
if(visitNext != 0):
break
count = count+1
winner = it.getObject()
it.increment()
if(count != 1):
winner = None
break
return winner

View File

@@ -1,81 +0,0 @@
from Freestyle import *
class pyInverseCurvature2DAngleF0D(UnaryFunction0DDouble):
def getName(self):
return "InverseCurvature2DAngleF0D"
def __call__(self, inter):
func = Curvature2DAngleF0D()
c = func(inter)
return (3.1415 - c)
class pyCurvilinearLengthF0D(UnaryFunction0DDouble):
def getName(self):
return "CurvilinearLengthF0D"
def __call__(self, inter):
i0d = inter.getObject()
s = i0d.getExactTypeName()
if (string.find(s, "CurvePoint") == -1):
print "CurvilinearLengthF0D: not implemented yet for %s" % (s)
return -1
cp = castToCurvePoint(i0d)
return cp.t2d()
## estimate anisotropy of density
class pyDensityAnisotropyF0D(UnaryFunction0DDouble):
def __init__(self,level):
UnaryFunction0DDouble.__init__(self)
self.IsoDensity = ReadCompleteViewMapPixelF0D(level)
self.d0Density = ReadSteerableViewMapPixelF0D(0, level)
self.d1Density = ReadSteerableViewMapPixelF0D(1, level)
self.d2Density = ReadSteerableViewMapPixelF0D(2, level)
self.d3Density = ReadSteerableViewMapPixelF0D(3, level)
def getName(self):
return "pyDensityAnisotropyF0D"
def __call__(self, inter):
c_iso = self.IsoDensity(inter)
c_0 = self.d0Density(inter)
c_1 = self.d1Density(inter)
c_2 = self.d2Density(inter)
c_3 = self.d3Density(inter)
cMax = max( max(c_0,c_1), max(c_2,c_3))
cMin = min( min(c_0,c_1), min(c_2,c_3))
if ( c_iso == 0 ):
v = 0
else:
v = (cMax-cMin)/c_iso
return (v)
## Returns the gradient vector for a pixel
## l
## the level at which one wants to compute the gradient
class pyViewMapGradientVectorF0D(UnaryFunction0DVec2f):
def __init__(self, l):
UnaryFunction0DVec2f.__init__(self)
self._l = l
self._step = pow(2,self._l)
def getName(self):
return "pyViewMapGradientVectorF0D"
def __call__(self, iter):
p = iter.getObject().getPoint2D()
gx = ReadCompleteViewMapPixelCF(self._l, int(p.x()+self._step), int(p.y()))- ReadCompleteViewMapPixelCF(self._l, int(p.x()), int(p.y()))
gy = ReadCompleteViewMapPixelCF(self._l, int(p.x()), int(p.y()+self._step))- ReadCompleteViewMapPixelCF(self._l, int(p.x()), int(p.y()))
return Vec2f(gx, gy)
class pyViewMapGradientNormF0D(UnaryFunction0DDouble):
def __init__(self, l):
UnaryFunction0DDouble.__init__(self)
self._l = l
self._step = pow(2,self._l)
def getName(self):
return "pyViewMapGradientNormF0D"
def __call__(self, iter):
p = iter.getObject().getPoint2D()
gx = ReadCompleteViewMapPixelCF(self._l, int(p.x()+self._step), int(p.y()))- ReadCompleteViewMapPixelCF(self._l, int(p.x()), int(p.y()))
gy = ReadCompleteViewMapPixelCF(self._l, int(p.x()), int(p.y()+self._step))- ReadCompleteViewMapPixelCF(self._l, int(p.x()), int(p.y()))
grad = Vec2f(gx, gy)
return grad.norm()

View File

@@ -1,45 +0,0 @@
from Freestyle import *
from Functions0D import *
import string
class pyGetInverseProjectedZF1D(UnaryFunction1DDouble):
def getName(self):
return "pyGetInverseProjectedZF1D"
def __call__(self, inter):
func = GetProjectedZF1D()
z = func(inter)
return (1.0 - z)
class pyGetSquareInverseProjectedZF1D(UnaryFunction1DDouble):
def getName(self):
return "pyGetInverseProjectedZF1D"
def __call__(self, inter):
func = GetProjectedZF1D()
z = func(inter)
return (1.0 - z*z)
class pyDensityAnisotropyF1D(UnaryFunction1DDouble):
def __init__(self,level, integrationType=MEAN, sampling=2.0):
UnaryFunction1DDouble.__init__(self, integrationType)
self._func = pyDensityAnisotropyF0D(level)
self._integration = integrationType
self._sampling = sampling
def getName(self):
return "pyDensityAnisotropyF1D"
def __call__(self, inter):
v = integrateDouble(self._func, inter.pointsBegin(self._sampling), inter.pointsEnd(self._sampling), self._integration)
return v
class pyViewMapGradientNormF1D(UnaryFunction1DDouble):
def __init__(self,l, integrationType, sampling=2.0):
UnaryFunction1DDouble.__init__(self, integrationType)
self._func = pyViewMapGradientNormF0D(l)
self._integration = integrationType
self._sampling = sampling
def getName(self):
return "pyViewMapGradientNormF1D"
def __call__(self, inter):
v = integrateDouble(self._func, inter.pointsBegin(self._sampling), inter.pointsEnd(self._sampling), self._integration)
return v

View File

@@ -1,70 +0,0 @@
from Freestyle import *
from Functions1D import *
from random import *
class pyZBP1D(BinaryPredicate1D):
def getName(self):
return "pyZBP1D"
def __call__(self, i1, i2):
func = GetZF1D()
return (func(i1) > func(i2))
class pyZDiscontinuityBP1D(BinaryPredicate1D):
def __init__(self, iType = MEAN):
BinaryPredicate1D.__init__(self)
self._GetZDiscontinuity = ZDiscontinuityF1D(iType)
def getName(self):
return "pyZDiscontinuityBP1D"
def __call__(self, i1, i2):
return (self._GetZDiscontinuity(i1) > self._GetZDiscontinuity(i2))
class pyLengthBP1D(BinaryPredicate1D):
def getName(self):
return "LengthBP1D"
def __call__(self, i1, i2):
return (i1.getLength2D() > i2.getLength2D())
class pySilhouetteFirstBP1D(BinaryPredicate1D):
def getName(self):
return "SilhouetteFirstBP1D"
def __call__(self, inter1, inter2):
bpred = SameShapeIdBP1D()
if (bpred(inter1, inter2) != 1):
return 0
if (inter1.getNature() & SILHOUETTE):
return (inter2.getNature() & SILHOUETTE)
return (inter1.getNature() == inter2.getNature())
class pyNatureBP1D(BinaryPredicate1D):
def getName(self):
return "NatureBP1D"
def __call__(self, inter1, inter2):
return (inter1.getNature() & inter2.getNature())
class pyViewMapGradientNormBP1D(BinaryPredicate1D):
def __init__(self,l, sampling=2.0):
BinaryPredicate1D.__init__(self)
self._GetGradient = pyViewMapGradientNormF1D(l, MEAN)
def getName(self):
return "pyViewMapGradientNormBP1D"
def __call__(self, i1,i2):
print "compare gradient"
return (self._GetGradient(i1) > self._GetGradient(i2))
class pyShuffleBP1D(BinaryPredicate1D):
def __init__(self):
BinaryPredicate1D.__init__(self)
seed(1)
def getName(self):
return "pyNearAndContourFirstBP1D"
def __call__(self, inter1, inter2):
r1 = uniform(0,1)
r2 = uniform(0,1)
return (r1<r2)

View File

@@ -1,103 +0,0 @@
from Freestyle import *
from Functions0D import *
class pyHigherCurvature2DAngleUP0D(UnaryPredicate0D):
def __init__(self,a):
UnaryPredicate0D.__init__(self)
self._a = a
def getName(self):
return "HigherCurvature2DAngleUP0D"
def __call__(self, inter):
func = Curvature2DAngleF0D()
a = func(inter)
return ( a > self._a)
class pyUEqualsUP0D(UnaryPredicate0D):
def __init__(self,u, w):
UnaryPredicate0D.__init__(self)
self._u = u
self._w = w
def getName(self):
return "UEqualsUP0D"
def __call__(self, inter):
func = pyCurvilinearLengthF0D()
u = func(inter)
return ( ( u > (self._u-self._w) ) and ( u < (self._u+self._w) ) )
class pyVertexNatureUP0D(UnaryPredicate0D):
def __init__(self,nature):
UnaryPredicate0D.__init__(self)
self._nature = nature
def getName(self):
return "pyVertexNatureUP0D"
def __call__(self, inter):
v = inter.getObject()
nat = v.getNature()
if(nat & self._nature):
return 1;
return 0
## check whether an Interface0DIterator
## is a TVertex and is the one that is
## hidden (inferred from the context)
class pyBackTVertexUP0D(UnaryPredicate0D):
def __init__(self):
UnaryPredicate0D.__init__(self)
self._getQI = QuantitativeInvisibilityF0D()
def getName(self):
return "pyBackTVertexUP0D"
def __call__(self, iter):
v = iter.getObject()
nat = v.getNature()
if(nat & T_VERTEX == 0):
return 0
next = iter
if(next.isEnd()):
return 0
if(self._getQI(next) != 0):
return 1
return 0
class pyParameterUP0DGoodOne(UnaryPredicate0D):
def __init__(self,pmin,pmax):
UnaryPredicate0D.__init__(self)
self._m = pmin
self._M = pmax
#self.getCurvilinearAbscissa = GetCurvilinearAbscissaF0D()
def getName(self):
return "pyCurvilinearAbscissaHigherThanUP0D"
def __call__(self, inter):
#s = self.getCurvilinearAbscissa(inter)
u = inter.u()
#print u
return ((u>=self._m) and (u<=self._M))
class pyParameterUP0D(UnaryPredicate0D):
def __init__(self,pmin,pmax):
UnaryPredicate0D.__init__(self)
self._m = pmin
self._M = pmax
#self.getCurvilinearAbscissa = GetCurvilinearAbscissaF0D()
def getName(self):
return "pyCurvilinearAbscissaHigherThanUP0D"
def __call__(self, inter):
func = Curvature2DAngleF0D()
c = func(inter)
b1 = (c>0.1)
#s = self.getCurvilinearAbscissa(inter)
u = inter.u()
#print u
b = ((u>=self._m) and (u<=self._M))
return b and b1

View File

@@ -1,381 +0,0 @@
from Freestyle import *
from Functions1D import *
count = 0
class pyNFirstUP1D(UnaryPredicate1D):
def __init__(self, n):
UnaryPredicate1D.__init__(self)
self.__n = n
def __call__(self, inter):
global count
count = count + 1
if count <= self.__n:
return 1
return 0
class pyHigherLengthUP1D(UnaryPredicate1D):
def __init__(self,l):
UnaryPredicate1D.__init__(self)
self._l = l
def getName(self):
return "HigherLengthUP1D"
def __call__(self, inter):
return (inter.getLength2D() > self._l)
class pyNatureUP1D(UnaryPredicate1D):
def __init__(self,nature):
UnaryPredicate1D.__init__(self)
self._nature = nature
self._getNature = CurveNatureF1D()
def getName(self):
return "pyNatureUP1D"
def __call__(self, inter):
if(self._getNature(inter) & self._nature):
return 1
return 0
class pyHigherNumberOfTurnsUP1D(UnaryPredicate1D):
def __init__(self,n,a):
UnaryPredicate1D.__init__(self)
self._n = n
self._a = a
def getName(self):
return "HigherNumberOfTurnsUP1D"
def __call__(self, inter):
count = 0
func = Curvature2DAngleF0D()
it = inter.verticesBegin()
while(it.isEnd() == 0):
if(func(it) > self._a):
count = count+1
if(count > self._n):
return 1
it.increment()
return 0
class pyDensityUP1D(UnaryPredicate1D):
def __init__(self,wsize,threshold, integration = MEAN, sampling=2.0):
UnaryPredicate1D.__init__(self)
self._wsize = wsize
self._threshold = threshold
self._integration = integration
self._func = DensityF1D(self._wsize, self._integration, sampling)
def getName(self):
return "pyDensityUP1D"
def __call__(self, inter):
if(self._func(inter) < self._threshold):
return 1
return 0
class pyLowSteerableViewMapDensityUP1D(UnaryPredicate1D):
def __init__(self,threshold, level,integration = MEAN):
UnaryPredicate1D.__init__(self)
self._threshold = threshold
self._level = level
self._integration = integration
def getName(self):
return "pyLowSteerableViewMapDensityUP1D"
def __call__(self, inter):
func = GetSteerableViewMapDensityF1D(self._level, self._integration)
v = func(inter)
print v
if(v < self._threshold):
return 1
return 0
class pyLowDirectionalViewMapDensityUP1D(UnaryPredicate1D):
def __init__(self,threshold, orientation, level,integration = MEAN):
UnaryPredicate1D.__init__(self)
self._threshold = threshold
self._orientation = orientation
self._level = level
self._integration = integration
def getName(self):
return "pyLowDirectionalViewMapDensityUP1D"
def __call__(self, inter):
func = GetDirectionalViewMapDensityF1D(self._orientation, self._level, self._integration)
v = func(inter)
#print v
if(v < self._threshold):
return 1
return 0
class pyHighSteerableViewMapDensityUP1D(UnaryPredicate1D):
def __init__(self,threshold, level,integration = MEAN):
UnaryPredicate1D.__init__(self)
self._threshold = threshold
self._level = level
self._integration = integration
self._func = GetSteerableViewMapDensityF1D(self._level, self._integration)
def getName(self):
return "pyHighSteerableViewMapDensityUP1D"
def __call__(self, inter):
v = self._func(inter)
if(v > self._threshold):
return 1
return 0
class pyHighDirectionalViewMapDensityUP1D(UnaryPredicate1D):
def __init__(self,threshold, orientation, level,integration = MEAN, sampling=2.0):
UnaryPredicate1D.__init__(self)
self._threshold = threshold
self._orientation = orientation
self._level = level
self._integration = integration
self._sampling = sampling
def getName(self):
return "pyLowDirectionalViewMapDensityUP1D"
def __call__(self, inter):
func = GetDirectionalViewMapDensityF1D(self._orientation, self._level, self._integration, self._sampling)
v = func(inter)
if(v > self._threshold):
return 1
return 0
class pyHighViewMapDensityUP1D(UnaryPredicate1D):
def __init__(self,threshold, level,integration = MEAN, sampling=2.0):
UnaryPredicate1D.__init__(self)
self._threshold = threshold
self._level = level
self._integration = integration
self._sampling = sampling
self._func = GetCompleteViewMapDensityF1D(self._level, self._integration, self._sampling) # 2.0 is the smpling
def getName(self):
return "pyHighViewMapDensityUP1D"
def __call__(self, inter):
#print "toto"
#print func.getName()
#print inter.getExactTypeName()
v= self._func(inter)
if(v > self._threshold):
return 1
return 0
class pyDensityFunctorUP1D(UnaryPredicate1D):
def __init__(self,wsize,threshold, functor, funcmin=0.0, funcmax=1.0, integration = MEAN):
UnaryPredicate1D.__init__(self)
self._wsize = wsize
self._threshold = float(threshold)
self._functor = functor
self._funcmin = float(funcmin)
self._funcmax = float(funcmax)
self._integration = integration
def getName(self):
return "pyDensityFunctorUP1D"
def __call__(self, inter):
func = DensityF1D(self._wsize, self._integration)
res = self._functor(inter)
k = (res-self._funcmin)/(self._funcmax-self._funcmin)
if(func(inter) < self._threshold*k):
return 1
return 0
class pyZSmallerUP1D(UnaryPredicate1D):
def __init__(self,z, integration=MEAN):
UnaryPredicate1D.__init__(self)
self._z = z
self._integration = integration
def getName(self):
return "pyZSmallerUP1D"
def __call__(self, inter):
func = GetProjectedZF1D(self._integration)
if(func(inter) < self._z):
return 1
return 0
class pyIsOccludedByUP1D(UnaryPredicate1D):
def __init__(self,id):
UnaryPredicate1D.__init__(self)
self._id = id
def getName(self):
return "pyIsOccludedByUP1D"
def __call__(self, inter):
func = GetShapeF1D()
shapes = func(inter)
for s in shapes:
if(s.getId() == self._id):
return 0
it = inter.verticesBegin()
itlast = inter.verticesEnd()
itlast.decrement()
v = it.getObject()
vlast = itlast.getObject()
tvertex = v.castToTVertex()
if(tvertex != None):
#print "TVertex: [ ", tvertex.getId().getFirst(), ",", tvertex.getId().getSecond()," ]"
eit = tvertex.edgesBegin()
while(eit.isEnd() == 0):
ve = eit.getObject().first
if(ve.shape_id() == self._id):
return 1
#print "-------", ve.getId().getFirst(), "-", ve.getId().getSecond()
eit.increment()
tvertex = vlast.castToTVertex()
if(tvertex != None):
#print "TVertex: [ ", tvertex.getId().getFirst(), ",", tvertex.getId().getSecond()," ]"
eit = tvertex.edgesBegin()
while(eit.isEnd() == 0):
ve = eit.getObject().first
if(ve.shape_id() == self._id):
return 1
#print "-------", ve.getId().getFirst(), "-", ve.getId().getSecond()
eit.increment()
return 0
class pyIsInOccludersListUP1D(UnaryPredicate1D):
def __init__(self,id):
UnaryPredicate1D.__init__(self)
self._id = id
def getName(self):
return "pyIsInOccludersListUP1D"
def __call__(self, inter):
func = GetOccludersF1D()
occluders = func(inter)
for a in occluders:
if(a.getId() == self._id):
return 1
return 0
class pyIsOccludedByItselfUP1D(UnaryPredicate1D):
def __init__(self):
UnaryPredicate1D.__init__(self)
self.__func1 = GetOccludersF1D()
self.__func2 = GetShapeF1D()
def getName(self):
return "pyIsOccludedByItselfUP1D"
def __call__(self, inter):
lst1 = self.__func1(inter)
lst2 = self.__func2(inter)
for vs1 in lst1:
for vs2 in lst2:
if vs1.getId() == vs2.getId():
return 1
return 0
class pyIsOccludedByIdListUP1D(UnaryPredicate1D):
def __init__(self, idlist):
UnaryPredicate1D.__init__(self)
self._idlist = idlist
self.__func1 = GetOccludersF1D()
def getName(self):
return "pyIsOccludedByIdListUP1D"
def __call__(self, inter):
lst1 = self.__func1(inter)
for vs1 in lst1:
for id in self._idlist:
if vs1.getId() == id:
return 1
return 0
class pyShapeIdListUP1D(UnaryPredicate1D):
def __init__(self,idlist):
UnaryPredicate1D.__init__(self)
self._idlist = idlist
self._funcs = []
for id in idlist :
self._funcs.append(ShapeUP1D(id.getFirst(), id.getSecond()))
def getName(self):
return "pyShapeIdUP1D"
def __call__(self, inter):
for func in self._funcs :
if(func(inter) == 1) :
return 1
return 0
## deprecated
class pyShapeIdUP1D(UnaryPredicate1D):
def __init__(self,id):
UnaryPredicate1D.__init__(self)
self._id = id
def getName(self):
return "pyShapeIdUP1D"
def __call__(self, inter):
func = GetShapeF1D()
shapes = func(inter)
for a in shapes:
if(a.getId() == self._id):
return 1
return 0
class pyHighDensityAnisotropyUP1D(UnaryPredicate1D):
def __init__(self,threshold, level, sampling=2.0):
UnaryPredicate1D.__init__(self)
self._l = threshold
self.func = pyDensityAnisotropyF1D(level, MEAN, sampling)
def getName(self):
return "pyHighDensityAnisotropyUP1D"
def __call__(self, inter):
return (self.func(inter) > self._l)
class pyHighViewMapGradientNormUP1D(UnaryPredicate1D):
def __init__(self,threshold, l, sampling=2.0):
UnaryPredicate1D.__init__(self)
self._threshold = threshold
self._GetGradient = pyViewMapGradientNormF1D(l, MEAN)
def getName(self):
return "pyHighViewMapGradientNormUP1D"
def __call__(self, inter):
gn = self._GetGradient(inter)
#print gn
return (gn > self._threshold)
class pyDensityVariableSigmaUP1D(UnaryPredicate1D):
def __init__(self,functor, sigmaMin,sigmaMax, lmin, lmax, tmin, tmax, integration = MEAN, sampling=2.0):
UnaryPredicate1D.__init__(self)
self._functor = functor
self._sigmaMin = float(sigmaMin)
self._sigmaMax = float(sigmaMax)
self._lmin = float(lmin)
self._lmax = float(lmax)
self._tmin = tmin
self._tmax = tmax
self._integration = integration
self._sampling = sampling
def getName(self):
return "pyDensityUP1D"
def __call__(self, inter):
sigma = (self._sigmaMax-self._sigmaMin)/(self._lmax-self._lmin)*(self._functor(inter)-self._lmin) + self._sigmaMin
t = (self._tmax-self._tmin)/(self._lmax-self._lmin)*(self._functor(inter)-self._lmin) + self._tmin
if(sigma<self._sigmaMin):
sigma = self._sigmaMin
self._func = DensityF1D(sigma, self._integration, self._sampling)
d = self._func(inter)
if(d<t):
return 1
return 0
class pyClosedCurveUP1D(UnaryPredicate1D):
def __call__(self, inter):
it = inter.verticesBegin()
itlast = inter.verticesEnd()
itlast.decrement()
vlast = itlast.getObject()
v = it.getObject()
print v.getId().getFirst(), v.getId().getSecond()
print vlast.getId().getFirst(), vlast.getId().getSecond()
if(v.getId() == vlast.getId()):
return 1
return 0

View File

@@ -1,75 +0,0 @@
#
# Filename : anisotropic_diffusion.py
# Author : Fredo Durand
# Date : 12/08/2004
# Purpose : Smoothes lines using an anisotropic diffusion scheme
#
#############################################################################
#
# Copyright (C) : Please refer to the COPYRIGHT file distributed
# with this source distribution.
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#
#############################################################################
from Freestyle import *
from logical_operators import *
from PredicatesB1D import *
from shaders import *
from vector import *
from PredicatesU0D import *
from math import *
## thickness modifiers
normalInfo=Normal2DF0D()
curvatureInfo=Curvature2DAngleF0D()
def edgestopping(x, sigma):
return exp(- x*x/(2*sigma*sigma))
class pyDiffusion2Shader(StrokeShader):
def __init__(self, lambda1, nbIter):
StrokeShader.__init__(self)
self._lambda = lambda1
self._nbIter = nbIter
def getName(self):
return "pyDiffusionShader"
def shade(self, stroke):
for i in range (1, self._nbIter):
it = stroke.strokeVerticesBegin()
while it.isEnd() == 0:
v=it.getObject()
p1 = v.getPoint()
p2 = normalInfo(it.castToInterface0DIterator())*self._lambda*curvatureInfo(it.castToInterface0DIterator())
v.setPoint(p1+p2)
it.increment()
upred = AndUP1D(QuantitativeInvisibilityUP1D(0), ExternalContourUP1D())
Operators.select( upred )
bpred = TrueBP1D();
Operators.bidirectionalChain(ChainPredicateIterator(upred, bpred), NotUP1D(upred) )
shaders_list = [
ConstantThicknessShader(4),
StrokeTextureShader("smoothAlpha.bmp", Stroke.OPAQUE_MEDIUM, 0),
SamplingShader(2),
pyDiffusion2Shader(-0.03, 30),
IncreasingColorShader(1.0,0.0,0.0,1, 0, 1, 0, 1)
]
Operators.create(TrueUP1D(), shaders_list)

View File

@@ -1,45 +0,0 @@
#
# Filename : apriori_and_causal_density.py
# Author : Stephane Grabli
# Date : 04/08/2005
# Purpose : Selects the lines with high a priori density and
# subjects them to the causal density so as to avoid
# cluttering
#
#############################################################################
#
# Copyright (C) : Please refer to the COPYRIGHT file distributed
# with this source distribution.
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#
#############################################################################
from Freestyle import *
from logical_operators import *
from PredicatesB1D import *
from PredicatesU1D import *
from shaders import *
Operators.select(AndUP1D(QuantitativeInvisibilityUP1D(0), pyHighViewMapDensityUP1D(0.3,4) ) )
bpred = TrueBP1D()
upred = AndUP1D(QuantitativeInvisibilityUP1D(0), pyHighViewMapDensityUP1D(0.3,4))
Operators.bidirectionalChain(ChainPredicateIterator(upred, bpred), NotUP1D(QuantitativeInvisibilityUP1D(0)))
shaders_list = [
ConstantThicknessShader(2),
ConstantColorShader(0.0, 0.0, 0.0,1)
]
Operators.create(pyDensityUP1D(1,0.1, MEAN), shaders_list)

View File

@@ -1,43 +0,0 @@
#
# Filename : apriori_density.py
# Author : Stephane Grabli
# Date : 04/08/2005
# Purpose : Draws lines having a high a priori density
#
#############################################################################
#
# Copyright (C) : Please refer to the COPYRIGHT file distributed
# with this source distribution.
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#
#############################################################################
from Freestyle import *
from logical_operators import *
from PredicatesB1D import *
from PredicatesU1D import *
from shaders import *
Operators.select(AndUP1D(QuantitativeInvisibilityUP1D(0), pyHighViewMapDensityUP1D(0.1,5)))
bpred = TrueBP1D()
upred = AndUP1D(QuantitativeInvisibilityUP1D(0), pyHighViewMapDensityUP1D(0.0007,5))
Operators.bidirectionalChain(ChainPredicateIterator(upred, bpred), NotUP1D(QuantitativeInvisibilityUP1D(0)))
shaders_list = [
ConstantThicknessShader(2),
ConstantColorShader(0.0, 0.0, 0.0,1)
]
Operators.create(TrueUP1D(), shaders_list)

View File

@@ -1,36 +0,0 @@
#
# Filename : backbone_stretcher.py
# Author : Stephane Grabli
# Date : 04/08/2005
# Purpose : Stretches the geometry of visible lines
#
#############################################################################
#
# Copyright (C) : Please refer to the COPYRIGHT file distributed
# with this source distribution.
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#
#############################################################################
from Freestyle import *
from logical_operators import *
from PredicatesB1D import *
from shaders import *
Operators.select(QuantitativeInvisibilityUP1D(0))
Operators.bidirectionalChain(ChainSilhouetteIterator(), NotUP1D(QuantitativeInvisibilityUP1D(0)))
shaders_list = [TextureAssignerShader(4), ConstantColorShader(0.5, 0.5, 0.5), BackboneStretcherShader(20)]
Operators.create(TrueUP1D(), shaders_list)

View File

@@ -1,46 +0,0 @@
#
# Filename : blueprint_circles.py
# Author : Emmanuel Turquin
# Date : 04/08/2005
# Purpose : Produces a blueprint using circular contour strokes
#
#############################################################################
#
# Copyright (C) : Please refer to the COPYRIGHT file distributed
# with this source distribution.
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#
#############################################################################
from Freestyle import *
from logical_operators import *
from PredicatesB1D import *
from PredicatesU1D import *
from shaders import *
upred = AndUP1D(QuantitativeInvisibilityUP1D(0), ContourUP1D())
bpred = SameShapeIdBP1D()
Operators.select(upred)
Operators.bidirectionalChain(ChainPredicateIterator(upred,bpred), NotUP1D(upred))
Operators.select(pyHigherLengthUP1D(200))
shaders_list = [
ConstantThicknessShader(5),
pyBluePrintCirclesShader(3),
pyPerlinNoise1DShader(0.1, 15, 8),
TextureAssignerShader(4),
IncreasingColorShader(0.8, 0.8, 0.3, 0.4, 0.3, 0.3, 0.3, 0.1)
]
Operators.create(TrueUP1D(), shaders_list)

View File

@@ -1,46 +0,0 @@
#
# Filename : blueprint_ellipses.py
# Author : Emmanuel Turquin
# Date : 04/08/2005
# Purpose : Produces a blueprint using elliptic contour strokes
#
#############################################################################
#
# Copyright (C) : Please refer to the COPYRIGHT file distributed
# with this source distribution.
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#
#############################################################################
from Freestyle import *
from logical_operators import *
from PredicatesB1D import *
from PredicatesU1D import *
from shaders import *
upred = AndUP1D(QuantitativeInvisibilityUP1D(0), ContourUP1D())
bpred = SameShapeIdBP1D()
Operators.select(upred)
Operators.bidirectionalChain(ChainPredicateIterator(upred,bpred), NotUP1D(upred))
Operators.select(pyHigherLengthUP1D(200))
shaders_list = [
ConstantThicknessShader(5),
pyBluePrintEllipsesShader(3),
pyPerlinNoise1DShader(0.1, 10, 8),
TextureAssignerShader(4),
IncreasingColorShader(0.6, 0.3, 0.3, 0.7, 0.3, 0.3, 0.3, 0.1)
]
Operators.create(TrueUP1D(), shaders_list)

View File

@@ -1,45 +0,0 @@
# Filename : blueprint_squares.py
# Author : Emmanuel Turquin
# Date : 04/08/2005
# Purpose : Produces a blueprint using square contour strokes
#
#############################################################################
#
# Copyright (C) : Please refer to the COPYRIGHT file distributed
# with this source distribution.
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#
#############################################################################
from Freestyle import *
from logical_operators import *
from PredicatesB1D import *
from PredicatesU1D import *
from shaders import *
upred = AndUP1D(QuantitativeInvisibilityUP1D(0), ContourUP1D())
bpred = SameShapeIdBP1D()
Operators.select(upred)
Operators.bidirectionalChain(ChainPredicateIterator(upred,bpred), NotUP1D(upred))
Operators.select(pyHigherLengthUP1D(200))
shaders_list = [
ConstantThicknessShader(8),
pyBluePrintSquaresShader(2, 20),
pyPerlinNoise1DShader(0.07, 10, 8),
TextureAssignerShader(4),
IncreasingColorShader(0.6, 0.3, 0.3, 0.7, 0.6, 0.3, 0.3, 0.3),
ConstantThicknessShader(4)
]
Operators.create(TrueUP1D(), shaders_list)

View File

@@ -1,42 +0,0 @@
#
# Filename : cartoon.py
# Author : Stephane Grabli
# Date : 04/08/2005
# Purpose : Draws colored lines. The color is automatically
# infered from each object's material in a cartoon-like
# fashion.
#
#############################################################################
#
# Copyright (C) : Please refer to the COPYRIGHT file distributed
# with this source distribution.
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#
#############################################################################
from Freestyle import *
from logical_operators import *
from PredicatesB1D import *
from shaders import *
Operators.select(QuantitativeInvisibilityUP1D(0))
Operators.bidirectionalChain(ChainSilhouetteIterator(), NotUP1D(QuantitativeInvisibilityUP1D(0)))
shaders_list = [
BezierCurveShader(3),
ConstantThicknessShader(4),
pyMaterialColorShader(0.8)
]
Operators.create(TrueUP1D(), shaders_list)

View File

@@ -1,42 +0,0 @@
#
# Filename : contour.py
# Author : Stephane Grabli
# Date : 04/08/2005
# Purpose : Draws each object's visible contour
#
#############################################################################
#
# Copyright (C) : Please refer to the COPYRIGHT file distributed
# with this source distribution.
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#
#############################################################################
from Freestyle import *
from logical_operators import *
from PredicatesB1D import *
from PredicatesU1D import *
from shaders import *
Operators.select(AndUP1D(QuantitativeInvisibilityUP1D(0), ContourUP1D() ) )
bpred = SameShapeIdBP1D();
upred = AndUP1D(QuantitativeInvisibilityUP1D(0), ContourUP1D())
Operators.bidirectionalChain(ChainPredicateIterator(upred, bpred), NotUP1D(QuantitativeInvisibilityUP1D(0)))
shaders_list = [
ConstantThicknessShader(5.0),
IncreasingColorShader(0.8,0,0,1,0.1,0,0,1)
]
Operators.create(TrueUP1D(), shaders_list)

View File

@@ -1,60 +0,0 @@
#
# Filename : curvature2d.py
# Author : Stephane Grabli
# Date : 04/08/2005
# Purpose : The stroke points are colored in gray levels and depending
# on the 2d curvature value
#
#############################################################################
#
# Copyright (C) : Please refer to the COPYRIGHT file distributed
# with this source distribution.
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#
#############################################################################
from Freestyle import *
from logical_operators import *
from PredicatesB1D import *
from shaders import *
class py2DCurvatureColorShader(StrokeShader):
def getName(self):
return "py2DCurvatureColorShader"
def shade(self, stroke):
it = stroke.strokeVerticesBegin()
it_end = stroke.strokeVerticesEnd()
func = Curvature2DAngleF0D()
while it.isEnd() == 0:
it0D = it.castToInterface0DIterator()
sv = it.getObject()
att = sv.attribute()
c = func(it0D)
if (c<0):
print "negative 2D curvature"
color = 10.0 * c/3.1415
att.setColor(color,color,color);
it.increment()
Operators.select(QuantitativeInvisibilityUP1D(0))
Operators.bidirectionalChain(ChainSilhouetteIterator(), NotUP1D(QuantitativeInvisibilityUP1D(0)))
shaders_list = [
StrokeTextureShader("smoothAlpha.bmp", Stroke.OPAQUE_MEDIUM, 0),
ConstantThicknessShader(5),
py2DCurvatureColorShader()
]
Operators.create(TrueUP1D(), shaders_list)

View File

@@ -1,43 +0,0 @@
#
# Filename : external_contour.py
# Author : Stephane Grabli
# Date : 04/08/2005
# Purpose : Draws the external contour of the scene
#
#############################################################################
#
# Copyright (C) : Please refer to the COPYRIGHT file distributed
# with this source distribution.
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#
#############################################################################
from Freestyle import *
from logical_operators import *
from PredicatesB1D import *
from PredicatesU1D import *
from ChainingIterators import *
from shaders import *
upred = AndUP1D(QuantitativeInvisibilityUP1D(0), ExternalContourUP1D())
Operators.select(upred )
bpred = TrueBP1D();
Operators.bidirectionalChain(ChainPredicateIterator(upred, bpred), NotUP1D(upred))
shaders_list = [
ConstantThicknessShader(3),
ConstantColorShader(0.0, 0.0, 0.0,1)
]
Operators.create(TrueUP1D(), shaders_list)

View File

@@ -1,48 +0,0 @@
#
# Filename : external_contour_sketchy.py
# Author : Stephane Grabli
# Date : 04/08/2005
# Purpose : Draws the external contour of the scene using a sketchy
# chaining iterator (in particular each ViewEdge can be drawn
# several times
#
#############################################################################
#
# Copyright (C) : Please refer to the COPYRIGHT file distributed
# with this source distribution.
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#
#############################################################################
from Freestyle import *
from logical_operators import *
from ChainingIterators import *
from shaders import *
upred = AndUP1D(QuantitativeInvisibilityUP1D(0), ExternalContourUP1D())
Operators.select(upred)
Operators.bidirectionalChain(pySketchyChainingIterator(), NotUP1D(upred))
shaders_list = [
SamplingShader(4),
SpatialNoiseShader(10, 150, 2, 1, 1),
IncreasingThicknessShader(4, 10),
SmoothingShader(400, 0.1, 0, 0.2, 0, 0, 0, 1),
IncreasingColorShader(1,0,0,1,0,1,0,1),
TextureAssignerShader(4)
]
Operators.create(TrueUP1D(), shaders_list)

View File

@@ -1,44 +0,0 @@
#
# Filename : external_contour_smooth.py
# Author : Stephane Grabli
# Date : 04/08/2005
# Purpose : Draws a smooth external contour
#
#############################################################################
#
# Copyright (C) : Please refer to the COPYRIGHT file distributed
# with this source distribution.
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#
#############################################################################
from Freestyle import *
from logical_operators import *
from PredicatesB1D import *
from PredicatesU1D import *
from shaders import *
from ChainingIterators import *
upred = AndUP1D(QuantitativeInvisibilityUP1D(0), ExternalContourUP1D())
Operators.select(upred)
bpred = TrueBP1D();
Operators.bidirectionalChain(ChainPredicateIterator(upred, bpred), NotUP1D(upred))
shaders_list = [
SamplingShader(2),
IncreasingThicknessShader(4,20),
IncreasingColorShader(1.0, 0.0, 0.5,1, 0.5,1, 0.3, 1),
SmoothingShader(100, 0.05, 0, 0.2, 0, 0, 0, 1)
]
Operators.create(TrueUP1D(), shaders_list)

View File

@@ -1,3 +0,0 @@
1suggestive.py
1ridges.py
1nor_suggestive_or_ridges.py

View File

@@ -1,50 +0,0 @@
#
# Filename : haloing.py
# Author : Stephane Grabli
# Date : 04/08/2005
# Purpose : This style module selects the lines that
# are connected (in the image) to a specific
# object and trims them in order to produce
# a haloing effect around the target shape
#
#############################################################################
#
# Copyright (C) : Please refer to the COPYRIGHT file distributed
# with this source distribution.
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#
#############################################################################
from Freestyle import *
from logical_operators import *
from PredicatesU1D import *
from PredicatesB1D import *
from shaders import *
# id corresponds to the id of the target object
# (accessed by SHIFT+click)
id = Id(3,0)
upred = AndUP1D(QuantitativeInvisibilityUP1D(0) , pyIsOccludedByUP1D(id))
Operators.select(upred)
Operators.bidirectionalChain(ChainSilhouetteIterator(), NotUP1D(upred))
shaders_list = [
IncreasingThicknessShader(3, 5),
IncreasingColorShader(1,0,0, 1,0,1,0,1),
SamplingShader(1.0),
pyTVertexRemoverShader(),
TipRemoverShader(3.0)
]
Operators.create(TrueUP1D(), shaders_list)

View File

@@ -1,41 +0,0 @@
#
# Filename : ignore_small_oclusions.py
# Author : Stephane Grabli
# Date : 04/08/2005
# Purpose : The strokes are drawn through small occlusions
#
#############################################################################
#
# Copyright (C) : Please refer to the COPYRIGHT file distributed
# with this source distribution.
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#
#############################################################################
from Freestyle import *
from logical_operators import *
from ChainingIterators import *
from shaders import *
Operators.select(QuantitativeInvisibilityUP1D(0))
#Operators.bidirectionalChain(pyFillOcclusionsChainingIterator(0.1))
Operators.bidirectionalChain(pyFillOcclusionsAbsoluteChainingIterator(12))
shaders_list = [
SamplingShader(5.0),
ConstantThicknessShader(3),
ConstantColorShader(0.0,0.0,0.0),
]
Operators.create(TrueUP1D(), shaders_list)

View File

@@ -1,42 +0,0 @@
#
# Filename : invisible_lines.py
# Author : Stephane Grabli
# Date : 04/08/2005
# Purpose : Draws all lines whose Quantitative Invisibility
# is different from 0
#
#############################################################################
#
# Copyright (C) : Please refer to the COPYRIGHT file distributed
# with this source distribution.
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#
#############################################################################
from Freestyle import *
from logical_operators import *
from ChainingIterators import *
from shaders import *
upred = NotUP1D(QuantitativeInvisibilityUP1D(0))
Operators.select(upred)
Operators.bidirectionalChain(ChainSilhouetteIterator(), NotUP1D(upred))
shaders_list = [
SamplingShader(5.0),
ConstantThicknessShader(3.0),
ConstantColorShader(0.7,0.7,0.7)
]
Operators.create(TrueUP1D(), shaders_list)

View File

@@ -1,59 +0,0 @@
#
# Filename : japanese_bigbrush.py
# Author : Stephane Grabli
# Date : 04/08/2005
# Purpose : Simulates a big brush fr oriental painting
#
#############################################################################
#
# Copyright (C) : Please refer to the COPYRIGHT file distributed
# with this source distribution.
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#
#############################################################################
from Freestyle import *
from logical_operators import *
from PredicatesU1D import *
from PredicatesB1D import *
from Functions0D import *
from shaders import *
Operators.select(QuantitativeInvisibilityUP1D(0))
Operators.bidirectionalChain(ChainSilhouetteIterator(),NotUP1D(QuantitativeInvisibilityUP1D(0)))
## Splits strokes at points of highest 2D curavture
## when there are too many abrupt turns in it
func = pyInverseCurvature2DAngleF0D()
Operators.recursiveSplit(func, pyParameterUP0D(0.2,0.8), NotUP1D(pyHigherNumberOfTurnsUP1D(3, 0.5)), 2)
## Keeps only long enough strokes
Operators.select(pyHigherLengthUP1D(100))
## Sorts so as to draw the longest strokes first
## (this will be done using the causal density)
Operators.sort(pyLengthBP1D())
shaders_list = [
pySamplingShader(10),
BezierCurveShader(30),
SamplingShader(50),
pyNonLinearVaryingThicknessShader(4,25, 0.6),
TextureAssignerShader(6),
ConstantColorShader(0.2, 0.2, 0.2,1.0),
TipRemoverShader(10)
]
## Use the causal density to avoid cluttering
Operators.create(pyDensityUP1D(8,0.4, MEAN), shaders_list)

View File

@@ -1,36 +0,0 @@
from Freestyle import *
class AndUP1D(UnaryPredicate1D):
def __init__(self, pred1, pred2):
UnaryPredicate1D.__init__(self)
self.__pred1 = pred1
self.__pred2 = pred2
def getName(self):
return "AndUP1D"
def __call__(self, inter):
return self.__pred1(inter) and self.__pred2(inter)
class OrUP1D(UnaryPredicate1D):
def __init__(self, pred1, pred2):
UnaryPredicate1D.__init__(self)
self.__pred1 = pred1
self.__pred2 = pred2
def getName(self):
return "OrUP1D"
def __call__(self, inter):
return self.__pred1(inter) or self.__pred2(inter)
class NotUP1D(UnaryPredicate1D):
def __init__(self, pred):
UnaryPredicate1D.__init__(self)
self.__pred = pred
def getName(self):
return "NotUP1D"
def __call__(self, inter):
return self.__pred(inter) == 0

View File

@@ -1,81 +0,0 @@
#
# Filename : long_anisotropically_dense.py
# Author : Stephane Grabli
# Date : 04/08/2005
# Purpose : Selects the lines that are long and have a high anisotropic
# a priori density and uses causal density
# to draw without cluttering. Ideally, half of the
# selected lines are culled using the causal density.
#
# ********************* WARNING *************************************
# ******** The Directional a priori density maps must ******
# ******** have been computed prior to using this style module ******
#
#############################################################################
#
# Copyright (C) : Please refer to the COPYRIGHT file distributed
# with this source distribution.
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#
#############################################################################
from Freestyle import *
from logical_operators import *
from PredicatesU1D import *
from PredicatesU0D import *
from PredicatesB1D import *
from Functions0D import *
from Functions1D import *
from shaders import *
## custom density predicate
class pyDensityUP1D(UnaryPredicate1D):
def __init__(self,wsize,threshold, integration = MEAN, sampling=2.0):
UnaryPredicate1D.__init__(self)
self._wsize = wsize
self._threshold = threshold
self._integration = integration
self._func = DensityF1D(self._wsize, self._integration, sampling)
self._func2 = DensityF1D(self._wsize, MAX, sampling)
def getName(self):
return "pyDensityUP1D"
def __call__(self, inter):
c = self._func(inter)
m = self._func2(inter)
if(c < self._threshold):
return 1
if( m > 4* c ):
if ( c < 1.5*self._threshold ):
return 1
return 0
Operators.select(QuantitativeInvisibilityUP1D(0))
Operators.bidirectionalChain(ChainSilhouetteIterator(),NotUP1D(QuantitativeInvisibilityUP1D(0)))
Operators.select(pyHigherLengthUP1D(40))
## selects lines having a high anisotropic a priori density
Operators.select(pyHighDensityAnisotropyUP1D(0.3,4))
Operators.sort(pyLengthBP1D())
shaders_list = [
SamplingShader(2.0),
ConstantThicknessShader(2),
ConstantColorShader(0.2,0.2,0.25,1),
]
## uniform culling
Operators.create(pyDensityUP1D(3.0,2.0e-2, MEAN, 0.1), shaders_list)

View File

@@ -1,51 +0,0 @@
#
# Filename : multiple_parameterization.py
# Author : Stephane Grabli
# Date : 04/08/2005
# Purpose : The thickness and the color of the strokes vary continuously
# independently from occlusions although only
# visible lines are actually drawn. This is equivalent
# to assigning the thickness using a parameterization covering
# the complete silhouette (visible+invisible) and drawing
# the strokes using a second parameterization that only
# covers the visible portions.
#
#############################################################################
#
# Copyright (C) : Please refer to the COPYRIGHT file distributed
# with this source distribution.
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#
#############################################################################
from Freestyle import *
from logical_operators import *
from ChainingIterators import *
from shaders import *
Operators.select(QuantitativeInvisibilityUP1D(0))
## Chain following the same nature, but without the restriction
## of staying inside the selection (0).
Operators.bidirectionalChain(ChainSilhouetteIterator(0))
shaders_list = [
SamplingShader(20),
IncreasingThicknessShader(1.5, 30),
ConstantColorShader(0.0,0.0,0.0),
IncreasingColorShader(1,0,0,1,0,1,0,1),
TextureAssignerShader(-1),
pyHLRShader() ## this shader draws only visible portions
]
Operators.create(TrueUP1D(), shaders_list)

View File

@@ -1,43 +0,0 @@
#
# Filename : nature.py
# Author : Stephane Grabli
# Date : 04/08/2005
# Purpose : Uses the NatureUP1D predicate to select the lines
# of a given type (among SILHOUETTE, CREASE, SUGGESTIVE_CONTOURS,
# BORDERS).
# The suggestive contours must have been enabled in the
# options dialog to appear in the View Map.
#
#############################################################################
#
# Copyright (C) : Please refer to the COPYRIGHT file distributed
# with this source distribution.
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#
#############################################################################
from Freestyle import *
from logical_operators import *
from PredicatesB1D import *
from shaders import *
Operators.select(pyNatureUP1D(SILHOUETTE))
Operators.bidirectionalChain(ChainSilhouetteIterator(),NotUP1D( pyNatureUP1D( SILHOUETTE) ) )
shaders_list = [
IncreasingThicknessShader(3, 10),
IncreasingColorShader(0.0,0.0,0.0, 1, 0.8,0,0,1)
]
Operators.create(TrueUP1D(), shaders_list)

View File

@@ -1,44 +0,0 @@
#
# Filename : near_lines.py
# Author : Stephane Grabli
# Date : 04/08/2005
# Purpose : Draws the lines that are "closer" than a threshold
# (between 0 and 1)
#
#############################################################################
#
# Copyright (C) : Please refer to the COPYRIGHT file distributed
# with this source distribution.
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#
#############################################################################
from Freestyle import *
from logical_operators import *
from PredicatesB1D import *
from PredicatesU1D import *
from shaders import *
upred = AndUP1D(QuantitativeInvisibilityUP1D(0), pyZSmallerUP1D(0.5, MEAN))
Operators.select(upred)
Operators.bidirectionalChain(ChainSilhouetteIterator(), NotUP1D(upred))
shaders_list = [
TextureAssignerShader(-1),
ConstantThicknessShader(5),
ConstantColorShader(0.0, 0.0, 0.0)
]
Operators.create(TrueUP1D(), shaders_list)

View File

@@ -1,45 +0,0 @@
#
# Filename : occluded_by_specific_object.py
# Author : Stephane Grabli
# Date : 04/08/2005
# Purpose : Draws only the lines that are occluded by a given object
#
#############################################################################
#
# Copyright (C) : Please refer to the COPYRIGHT file distributed
# with this source distribution.
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#
#############################################################################
from Freestyle import *
from logical_operators import *
from PredicatesU1D import *
from shaders import *
## the id of the occluder (use SHIFT+click on the ViewMap to
## retrieve ids)
id = Id(3,0)
upred = AndUP1D(NotUP1D(QuantitativeInvisibilityUP1D(0)),
pyIsInOccludersListUP1D(id))
Operators.select(upred)
Operators.bidirectionalChain(ChainSilhouetteIterator(), NotUP1D(upred))
shaders_list = [
SamplingShader(5),
ConstantThicknessShader(3),
ConstantColorShader(0.3,0.3,0.3,1)
]
Operators.create(TrueUP1D(), shaders_list)

View File

@@ -1,40 +0,0 @@
#
# Filename : polygonalize.py
# Author : Stephane Grabli
# Date : 04/08/2005
# Purpose : Make the strokes more "polygonal"
#
#############################################################################
#
# Copyright (C) : Please refer to the COPYRIGHT file distributed
# with this source distribution.
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#
#############################################################################
from Freestyle import *
from logical_operators import *
from ChainingIterators import *
from shaders import *
Operators.select(QuantitativeInvisibilityUP1D(0))
Operators.bidirectionalChain(ChainSilhouetteIterator(),NotUP1D(QuantitativeInvisibilityUP1D(0)))
shaders_list = [
SamplingShader(2.0),
ConstantThicknessShader(3),
ConstantColorShader(0.0,0.0,0.0),
PolygonalizationShader(8)
]
Operators.create(TrueUP1D(), shaders_list)

View File

@@ -1,41 +0,0 @@
#
# Filename : qi0.py
# Author : Stephane Grabli
# Date : 04/08/2005
# Purpose : Draws the visible lines (chaining follows same nature lines)
# (most basic style module)
#
#############################################################################
#
# Copyright (C) : Please refer to the COPYRIGHT file distributed
# with this source distribution.
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#
#############################################################################
from Freestyle import *
from logical_operators import *
from ChainingIterators import *
from shaders import *
Operators.select(QuantitativeInvisibilityUP1D(0))
Operators.bidirectionalChain(ChainSilhouetteIterator(), NotUP1D(QuantitativeInvisibilityUP1D(0)))
shaders_list = [
SamplingShader(5.0),
ConstantThicknessShader(4.0),
ConstantColorShader(0.0,0.0,0.0)
]
Operators.create(TrueUP1D(), shaders_list)

View File

@@ -1,43 +0,0 @@
#
# Filename : qi0_not_external_contour.py
# Author : Stephane Grabli
# Date : 04/08/2005
# Purpose : Draws the visible lines (chaining follows same nature lines)
# that do not belong to the external contour of the scene
#
#############################################################################
#
# Copyright (C) : Please refer to the COPYRIGHT file distributed
# with this source distribution.
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#
#############################################################################
from Freestyle import *
from logical_operators import *
upred = AndUP1D(QuantitativeInvisibilityUP1D(0), ExternalContourUP1D())
Operators.select(upred)
Operators.bidirectionalChain(ChainSilhouetteIterator(), NotUP1D(upred))
shaders_list = [
SamplingShader(4),
SpatialNoiseShader(4, 150, 2, 1, 1),
IncreasingThicknessShader(2, 5),
BackboneStretcherShader(20),
IncreasingColorShader(1,0,0,1,0,1,0,1),
TextureAssignerShader(4)
]
Operators.create(TrueUP1D(), shaders_list)

View File

@@ -1,42 +0,0 @@
#
# Filename : qi1.py
# Author : Stephane Grabli
# Date : 04/08/2005
# Purpose : Draws lines hidden by one surface.
# *** Quantitative Invisibility must have been
# enabled in the options dialog to use this style module ****
#
#############################################################################
#
# Copyright (C) : Please refer to the COPYRIGHT file distributed
# with this source distribution.
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#
#############################################################################
from Freestyle import *
from logical_operators import *
from PredicatesB1D import *
from shaders import *
Operators.select(QuantitativeInvisibilityUP1D(1))
Operators.bidirectionalChain(ChainSilhouetteIterator(), NotUP1D(QuantitativeInvisibilityUP1D(1)))
shaders_list = [
SamplingShader(5.0),
ConstantThicknessShader(3),
ConstantColorShader(0.5,0.5,0.5, 1)
]
Operators.create(TrueUP1D(), shaders_list)

View File

@@ -1,42 +0,0 @@
#
# Filename : qi2.py
# Author : Stephane Grabli
# Date : 04/08/2005
# Purpose : Draws lines hidden by two surfaces.
# *** Quantitative Invisibility must have been
# enabled in the options dialog to use this style module ****
#
#############################################################################
#
# Copyright (C) : Please refer to the COPYRIGHT file distributed
# with this source distribution.
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#
#############################################################################
from Freestyle import *
from logical_operators import *
from PredicatesB1D import *
from shaders import *
Operators.select(QuantitativeInvisibilityUP1D(2))
Operators.bidirectionalChain(ChainSilhouetteIterator(), NotUP1D(QuantitativeInvisibilityUP1D(2)))
shaders_list = [
SamplingShader(10),
ConstantThicknessShader(1.5),
ConstantColorShader(0.7,0.7,0.7, 1)
]
Operators.create(TrueUP1D(), shaders_list)

View File

@@ -1,68 +0,0 @@
#
# Filename : sequentialsplit_sketchy.py
# Author : Stephane Grabli
# Date : 04/08/2005
# Purpose : Use the sequential split with two different
# predicates to specify respectively the starting and
# the stopping extremities for strokes
#
#############################################################################
#
# Copyright (C) : Please refer to the COPYRIGHT file distributed
# with this source distribution.
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#
#############################################################################
from Freestyle import *
from logical_operators import *
from PredicatesU1D import *
from PredicatesU0D import *
from Functions0D import *
## Predicate to tell whether a TVertex
## corresponds to a change from 0 to 1 or not.
class pyBackTVertexUP0D(UnaryPredicate0D):
def __init__(self):
UnaryPredicate0D.__init__(self)
self._getQI = QuantitativeInvisibilityF0D()
def getName(self):
return "pyBackTVertexUP0D"
def __call__(self, iter):
v = iter.getObject()
nat = v.getNature()
if(nat & T_VERTEX == 0):
return 0
if(self._getQI(iter) != 0):
return 1
return 0
upred = QuantitativeInvisibilityUP1D(0)
Operators.select(upred)
Operators.bidirectionalChain(ChainSilhouetteIterator(), NotUP1D(upred))
## starting and stopping predicates:
start = pyVertexNatureUP0D(NON_T_VERTEX)
stop = pyBackTVertexUP0D()
Operators.sequentialSplit(start, stop, 10)
shaders_list = [
SpatialNoiseShader(7, 120, 2, 1, 1),
IncreasingThicknessShader(5, 8),
ConstantColorShader(0.2, 0.2, 0.2, 1),
TextureAssignerShader(4)
]
Operators.create(TrueUP1D(), shaders_list)

View File

@@ -1,1288 +0,0 @@
from Freestyle import *
from PredicatesU0D import *
from PredicatesB1D import *
from PredicatesU1D import *
from logical_operators import *
from ChainingIterators import *
from random import *
from math import *
from vector import *
## thickness modifiers
######################
class pyDepthDiscontinuityThicknessShader(StrokeShader):
def __init__(self, min, max):
StrokeShader.__init__(self)
self.__min = float(min)
self.__max = float(max)
self.__func = ZDiscontinuityF0D()
def getName(self):
return "pyDepthDiscontinuityThicknessShader"
def shade(self, stroke):
it = stroke.strokeVerticesBegin()
z_min=0.0
z_max=1.0
a = (self.__max - self.__min)/(z_max-z_min)
b = (self.__min*z_max-self.__max*z_min)/(z_max-z_min)
it = stroke.strokeVerticesBegin()
while it.isEnd() == 0:
z = self.__func(it.castToInterface0DIterator())
thickness = a*z+b
it.getObject().attribute().setThickness(thickness, thickness)
it.increment()
class pyConstantThicknessShader(StrokeShader):
def __init__(self, thickness):
StrokeShader.__init__(self)
self._thickness = thickness
def getName(self):
return "pyConstantThicknessShader"
def shade(self, stroke):
it = stroke.strokeVerticesBegin()
it_end = stroke.strokeVerticesEnd()
while it.isEnd() == 0:
att = it.getObject().attribute()
t = self._thickness/2.0
att.setThickness(t, t)
it.increment()
class pyFXSThicknessShader(StrokeShader):
def __init__(self, thickness):
StrokeShader.__init__(self)
self._thickness = thickness
def getName(self):
return "pyFXSThicknessShader"
def shade(self, stroke):
it = stroke.strokeVerticesBegin()
it_end = stroke.strokeVerticesEnd()
while it.isEnd() == 0:
att = it.getObject().attribute()
t = self._thickness/2.0
att.setThickness(t, t)
it.increment()
class pyFXSVaryingThicknessWithDensityShader(StrokeShader):
def __init__(self, wsize, threshold_min, threshold_max, thicknessMin, thicknessMax):
StrokeShader.__init__(self)
self.wsize= wsize
self.threshold_min= threshold_min
self.threshold_max= threshold_max
self._thicknessMin = thicknessMin
self._thicknessMax = thicknessMax
def getName(self):
return "pyVaryingThicknessWithDensityShader"
def shade(self, stroke):
n = stroke.strokeVerticesSize()
i = 0
it = stroke.strokeVerticesBegin()
it_end = stroke.strokeVerticesEnd()
func = DensityF0D(self.wsize)
while it.isEnd() == 0:
att = it.getObject().attribute()
toto = it.castToInterface0DIterator()
c= func(toto)
if (c < self.threshold_min ):
c = self.threshold_min
if (c > self.threshold_max ):
c = self.threshold_max
## t = (c - self.threshold_min)/(self.threshold_max - self.threshold_min)*(self._thicknessMax-self._thicknessMin) + self._thicknessMin
t = (self.threshold_max - c )/(self.threshold_max - self.threshold_min)*(self._thicknessMax-self._thicknessMin) + self._thicknessMin
att.setThickness(t/2.0, t/2.0)
i = i+1
it.increment()
class pyIncreasingThicknessShader(StrokeShader):
def __init__(self, thicknessMin, thicknessMax):
StrokeShader.__init__(self)
self._thicknessMin = thicknessMin
self._thicknessMax = thicknessMax
def getName(self):
return "pyIncreasingThicknessShader"
def shade(self, stroke):
n = stroke.strokeVerticesSize()
i = 0
it = stroke.strokeVerticesBegin()
it_end = stroke.strokeVerticesEnd()
while it.isEnd() == 0:
att = it.getObject().attribute()
c = float(i)/float(n)
if(i < float(n)/2.0):
t = (1.0 - c)*self._thicknessMin + c * self._thicknessMax
else:
t = (1.0 - c)*self._thicknessMax + c * self._thicknessMin
att.setThickness(t/2.0, t/2.0)
i = i+1
it.increment()
class pyConstrainedIncreasingThicknessShader(StrokeShader):
def __init__(self, thicknessMin, thicknessMax, ratio):
StrokeShader.__init__(self)
self._thicknessMin = thicknessMin
self._thicknessMax = thicknessMax
self._ratio = ratio
def getName(self):
return "pyConstrainedIncreasingThicknessShader"
def shade(self, stroke):
slength = stroke.getLength2D()
tmp = self._ratio*slength
maxT = 0.0
if(tmp < self._thicknessMax):
maxT = tmp
else:
maxT = self._thicknessMax
n = stroke.strokeVerticesSize()
i = 0
it = stroke.strokeVerticesBegin()
it_end = stroke.strokeVerticesEnd()
while it.isEnd() == 0:
att = it.getObject().attribute()
c = float(i)/float(n)
if(i < float(n)/2.0):
t = (1.0 - c)*self._thicknessMin + c * maxT
else:
t = (1.0 - c)*maxT + c * self._thicknessMin
att.setThickness(t/2.0, t/2.0)
if(i == n-1):
att.setThickness(self._thicknessMin/2.0, self._thicknessMin/2.0)
i = i+1
it.increment()
class pyDecreasingThicknessShader(StrokeShader):
def __init__(self, thicknessMax, thicknessMin):
StrokeShader.__init__(self)
self._thicknessMin = thicknessMin
self._thicknessMax = thicknessMax
def getName(self):
return "pyDecreasingThicknessShader"
def shade(self, stroke):
l = stroke.getLength2D()
tMax = self._thicknessMax
if(self._thicknessMax > 0.33*l):
tMax = 0.33*l
tMin = self._thicknessMin
if(self._thicknessMin > 0.1*l):
tMin = 0.1*l
n = stroke.strokeVerticesSize()
i = 0
it = stroke.strokeVerticesBegin()
it_end = stroke.strokeVerticesEnd()
while it.isEnd() == 0:
att = it.getObject().attribute()
c = float(i)/float(n)
t = (1.0 - c)*tMax +c*tMin
att.setThickness(t/2.0, t/2.0)
i = i+1
it.increment()
def smoothC( a, exp ):
c = pow(float(a),exp)*pow(2.0,exp)
return c
class pyNonLinearVaryingThicknessShader(StrokeShader):
def __init__(self, thicknessExtremity, thicknessMiddle, exponent):
StrokeShader.__init__(self)
self._thicknessMin = thicknessMiddle
self._thicknessMax = thicknessExtremity
self._exponent = exponent
def getName(self):
return "pyNonLinearVaryingThicknessShader"
def shade(self, stroke):
n = stroke.strokeVerticesSize()
i = 0
it = stroke.strokeVerticesBegin()
it_end = stroke.strokeVerticesEnd()
while it.isEnd() == 0:
att = it.getObject().attribute()
if(i < float(n)/2.0):
c = float(i)/float(n)
else:
c = float(n-i)/float(n)
c = smoothC(c, self._exponent)
t = (1.0 - c)*self._thicknessMax + c * self._thicknessMin
att.setThickness(t/2.0, t/2.0)
i = i+1
it.increment()
## Spherical linear interpolation (cos)
class pySLERPThicknessShader(StrokeShader):
def __init__(self, thicknessMin, thicknessMax, omega=1.2):
StrokeShader.__init__(self)
self._thicknessMin = thicknessMin
self._thicknessMax = thicknessMax
self._omega = omega
def getName(self):
return "pySLERPThicknessShader"
def shade(self, stroke):
slength = stroke.getLength2D()
tmp = 0.33*slength
maxT = self._thicknessMax
if(tmp < self._thicknessMax):
maxT = tmp
n = stroke.strokeVerticesSize()
i = 0
it = stroke.strokeVerticesBegin()
it_end = stroke.strokeVerticesEnd()
while it.isEnd() == 0:
att = it.getObject().attribute()
c = float(i)/float(n)
if(i < float(n)/2.0):
t = sin((1-c)*self._omega)/sinh(self._omega)*self._thicknessMin + sin(c*self._omega)/sinh(self._omega) * maxT
else:
t = sin((1-c)*self._omega)/sinh(self._omega)*maxT + sin(c*self._omega)/sinh(self._omega) * self._thicknessMin
att.setThickness(t/2.0, t/2.0)
i = i+1
it.increment()
class pyTVertexThickenerShader(StrokeShader): ## FIXME
def __init__(self, a=1.5, n=3):
StrokeShader.__init__(self)
self._a = a
self._n = n
def getName(self):
return "pyTVertexThickenerShader"
def shade(self, stroke):
it = stroke.strokeVerticesBegin()
predTVertex = pyVertexNatureUP0D(T_VERTEX)
while it.isEnd() == 0:
if(predTVertex(it) == 1):
it2 = StrokeVertexIterator(it)
it2.increment()
if not(it.isBegin() or it2.isEnd()):
it.increment()
continue
n = self._n
a = self._a
if(it.isBegin()):
it3 = StrokeVertexIterator(it)
count = 0
while (it3.isEnd() == 0 and count < n):
att = it3.getObject().attribute()
tr = att.getThicknessR();
tl = att.getThicknessL();
r = (a-1.0)/float(n-1)*(float(n)/float(count+1) - 1) + 1
#r = (1.0-a)/float(n-1)*count + a
att.setThickness(r*tr, r*tl)
it3.increment()
count = count + 1
if(it2.isEnd()):
it4 = StrokeVertexIterator(it)
count = 0
while (it4.isBegin() == 0 and count < n):
att = it4.getObject().attribute()
tr = att.getThicknessR();
tl = att.getThicknessL();
r = (a-1.0)/float(n-1)*(float(n)/float(count+1) - 1) + 1
#r = (1.0-a)/float(n-1)*count + a
att.setThickness(r*tr, r*tl)
it4.decrement()
count = count + 1
if ((it4.isBegin() == 1)):
att = it4.getObject().attribute()
tr = att.getThicknessR();
tl = att.getThicknessL();
r = (a-1.0)/float(n-1)*(float(n)/float(count+1) - 1) + 1
#r = (1.0-a)/float(n-1)*count + a
att.setThickness(r*tr, r*tl)
it.increment()
class pyImportance2DThicknessShader(StrokeShader):
def __init__(self, x, y, w, kmin, kmax):
StrokeShader.__init__(self)
self._x = x
self._y = y
self._w = float(w)
self._kmin = float(kmin)
self._kmax = float(kmax)
def getName(self):
return "pyImportanceThicknessShader"
def shade(self, stroke):
origin = Vec2(self._x, self._y)
it = stroke.strokeVerticesBegin()
while it.isEnd() == 0:
v = it.getObject()
p = Vec2(v.getProjectedX(), v.getProjectedY())
d = (p-origin).length()
if(d>self._w):
k = self._kmin
else:
k = (self._kmax*(self._w-d) + self._kmin*d)/self._w
att = v.attribute()
tr = att.getThicknessR()
tl = att.getThicknessL()
att.setThickness(k*tr/2.0, k*tl/2.0)
it.increment()
class pyImportance3DThicknessShader(StrokeShader):
def __init__(self, x, y, z, w, kmin, kmax):
StrokeShader.__init__(self)
self._x = x
self._y = y
self._z = z
self._w = float(w)
self._kmin = float(kmin)
self._kmax = float(kmax)
def getName(self):
return "pyImportance3DThicknessShader"
def shade(self, stroke):
origin = Vec3(self._x, self._y, self._z)
it = stroke.strokeVerticesBegin()
while it.isEnd() == 0:
v = it.getObject()
p = Vec3(v.getX(), v.getY(), v.getZ())
d = (p-origin).length()
if(d>self._w):
k = self._kmin
else:
k = (self._kmax*(self._w-d) + self._kmin*d)/self._w
att = v.attribute()
tr = att.getThicknessR()
tl = att.getThicknessL()
att.setThickness(k*tr/2.0, k*tl/2.0)
it.increment()
class pyZDependingThicknessShader(StrokeShader):
def __init__(self, min, max):
StrokeShader.__init__(self)
self.__min = min
self.__max = max
self.__func = GetProjectedZF0D()
def getName(self):
return "pyZDependingThicknessShader"
def shade(self, stroke):
it = stroke.strokeVerticesBegin()
z_min = 1
z_max = 0
while it.isEnd() == 0:
z = self.__func(it.castToInterface0DIterator())
if z < z_min:
z_min = z
elif z > z_max:
z_max = z
it.increment()
z_diff = 1 / (z_max - z_min)
it = stroke.strokeVerticesBegin()
while it.isEnd() == 0:
z = (self.__func(it.castToInterface0DIterator()) - z_min) * z_diff
thickness = (1 - z) * self.__max + z * self.__min
it.getObject().attribute().setThickness(thickness, thickness)
it.increment()
## color modifiers
##################
class pyConstantColorShader(StrokeShader):
def __init__(self,r,g,b, a = 1):
StrokeShader.__init__(self)
self._r = r
self._g = g
self._b = b
self._a = a
def getName(self):
return "pyConstantColorShader"
def shade(self, stroke):
it = stroke.strokeVerticesBegin()
it_end = stroke.strokeVerticesEnd()
while it.isEnd() == 0:
att = it.getObject().attribute()
att.setColor(self._r, self._g, self._b)
att.setAlpha(self._a)
it.increment()
#c1->c2
class pyIncreasingColorShader(StrokeShader):
def __init__(self,r1,g1,b1,a1, r2,g2,b2,a2):
StrokeShader.__init__(self)
self._c1 = [r1,g1,b1,a1]
self._c2 = [r2,g2,b2,a2]
def getName(self):
return "pyIncreasingColorShader"
def shade(self, stroke):
n = stroke.strokeVerticesSize() - 1
inc = 0
it = stroke.strokeVerticesBegin()
it_end = stroke.strokeVerticesEnd()
while it.isEnd() == 0:
att = it.getObject().attribute()
c = float(inc)/float(n)
att.setColor( (1-c)*self._c1[0] + c*self._c2[0],
(1-c)*self._c1[1] + c*self._c2[1],
(1-c)*self._c1[2] + c*self._c2[2],)
att.setAlpha((1-c)*self._c1[3] + c*self._c2[3],)
inc = inc+1
it.increment()
# c1->c2->c1
class pyInterpolateColorShader(StrokeShader):
def __init__(self,r1,g1,b1,a1, r2,g2,b2,a2):
StrokeShader.__init__(self)
self._c1 = [r1,g1,b1,a1]
self._c2 = [r2,g2,b2,a2]
def getName(self):
return "pyInterpolateColorShader"
def shade(self, stroke):
n = stroke.strokeVerticesSize() - 1
inc = 0
it = stroke.strokeVerticesBegin()
it_end = stroke.strokeVerticesEnd()
while it.isEnd() == 0:
att = it.getObject().attribute()
u = float(inc)/float(n)
c = 1-2*(fabs(u-0.5))
att.setColor( (1-c)*self._c1[0] + c*self._c2[0],
(1-c)*self._c1[1] + c*self._c2[1],
(1-c)*self._c1[2] + c*self._c2[2],)
att.setAlpha((1-c)*self._c1[3] + c*self._c2[3],)
inc = inc+1
it.increment()
class pyMaterialColorShader(StrokeShader):
def __init__(self, threshold=50):
StrokeShader.__init__(self)
self._threshold = threshold
def getName(self):
return "pyMaterialColorShader"
def shade(self, stroke):
it = stroke.strokeVerticesBegin()
it_end = stroke.strokeVerticesEnd()
func = MaterialF0D()
xn = 0.312713
yn = 0.329016
Yn = 1.0
un = 4.* xn/ ( -2.*xn + 12.*yn + 3. )
vn= 9.* yn/ ( -2.*xn + 12.*yn +3. )
while it.isEnd() == 0:
toto = it.castToInterface0DIterator()
mat = func(toto)
r = mat.diffuseR()
g = mat.diffuseG()
b = mat.diffuseB()
X = 0.412453*r + 0.35758 *g + 0.180423*b
Y = 0.212671*r + 0.71516 *g + 0.072169*b
Z = 0.019334*r + 0.119193*g + 0.950227*b
if((X == 0) and (Y == 0) and (Z == 0)):
X = 0.01
Y = 0.01
Z = 0.01
u = 4.*X / (X + 15.*Y + 3.*Z)
v = 9.*Y / (X + 15.*Y + 3.*Z)
L= 116. * math.pow((Y/Yn),(1./3.)) -16
U = 13. * L * (u - un)
V = 13. * L * (v - vn)
if (L > self._threshold):
L = L/1.3
U = U+10
else:
L = L +2.5*(100-L)/5.
U = U/3.0
V = V/3.0
u = U / (13. * L) + un
v = V / (13. * L) + vn
Y = Yn * math.pow( ((L+16.)/116.), 3.)
X = -9. * Y * u / ((u - 4.)* v - u * v)
Z = (9. * Y - 15*v*Y - v*X) /( 3. * v)
r = 3.240479 * X - 1.53715 * Y - 0.498535 * Z
g = -0.969256 * X + 1.875991 * Y + 0.041556 * Z
b = 0.055648 * X - 0.204043 * Y + 1.057311 * Z
att = it.getObject().attribute()
att.setColor(r, g, b)
it.increment()
class pyRandomColorShader(StrokeShader):
def getName(self):
return "pyRandomColorShader"
def __init__(self, s=1):
StrokeShader.__init__(self)
seed(s)
def shade(self, stroke):
## pick a random color
c0 = float(uniform(15,75))/100.0
c1 = float(uniform(15,75))/100.0
c2 = float(uniform(15,75))/100.0
print c0, c1, c2
it = stroke.strokeVerticesBegin()
while(it.isEnd() == 0):
it.getObject().attribute().setColor(c0,c1,c2)
it.increment()
class py2DCurvatureColorShader(StrokeShader):
def getName(self):
return "py2DCurvatureColorShader"
def shade(self, stroke):
it = stroke.strokeVerticesBegin()
it_end = stroke.strokeVerticesEnd()
func = Curvature2DAngleF0D()
while it.isEnd() == 0:
toto = it.castToInterface0DIterator()
sv = it.getObject()
att = sv.attribute()
c = func(toto)
if (c<0):
print "negative 2D curvature"
color = 10.0 * c/3.1415
print color
att.setColor(color,color,color);
it.increment()
class pyTimeColorShader(StrokeShader):
def __init__(self, step=0.01):
StrokeShader.__init__(self)
self._t = 0
self._step = step
def shade(self, stroke):
c = self._t*1.0
it = stroke.strokeVerticesBegin()
it_end = stroke.strokeVerticesEnd()
while it.isEnd() == 0:
att = it.getObject().attribute()
att.setColor(c,c,c)
it.increment()
self._t = self._t+self._step
## geometry modifiers
class pySamplingShader(StrokeShader):
def __init__(self, sampling):
StrokeShader.__init__(self)
self._sampling = sampling
def getName(self):
return "pySamplingShader"
def shade(self, stroke):
stroke.Resample(float(self._sampling))
class pyBackboneStretcherShader(StrokeShader):
def __init__(self, l):
StrokeShader.__init__(self)
self._l = l
def getName(self):
return "pyBackboneStretcherShader"
def shade(self, stroke):
it0 = stroke.strokeVerticesBegin()
it1 = StrokeVertexIterator(it0)
it1.increment()
itn = stroke.strokeVerticesEnd()
itn.decrement()
itn_1 = StrokeVertexIterator(itn)
itn_1.decrement()
v0 = it0.getObject()
v1 = it1.getObject()
vn_1 = itn_1.getObject()
vn = itn.getObject()
p0 = Vec2f(v0.getProjectedX(), v0.getProjectedY())
pn = Vec2f(vn.getProjectedX(), vn.getProjectedY())
p1 = Vec2f(v1.getProjectedX(), v1.getProjectedY())
pn_1 = Vec2f(vn_1.getProjectedX(), vn_1.getProjectedY())
d1 = p0-p1
d1 = d1/d1.norm()
dn = pn-pn_1
dn = dn/dn.norm()
newFirst = p0+d1*float(self._l)
newLast = pn+dn*float(self._l)
v0.setPoint(newFirst)
vn.setPoint(newLast)
class pyLengthDependingBackboneStretcherShader(StrokeShader):
def __init__(self, l):
StrokeShader.__init__(self)
self._l = l
def getName(self):
return "pyBackboneStretcherShader"
def shade(self, stroke):
l = stroke.getLength2D()
stretch = self._l*l
it0 = stroke.strokeVerticesBegin()
it1 = StrokeVertexIterator(it0)
it1.increment()
itn = stroke.strokeVerticesEnd()
itn.decrement()
itn_1 = StrokeVertexIterator(itn)
itn_1.decrement()
v0 = it0.getObject()
v1 = it1.getObject()
vn_1 = itn_1.getObject()
vn = itn.getObject()
p0 = Vec2f(v0.getProjectedX(), v0.getProjectedY())
pn = Vec2f(vn.getProjectedX(), vn.getProjectedY())
p1 = Vec2f(v1.getProjectedX(), v1.getProjectedY())
pn_1 = Vec2f(vn_1.getProjectedX(), vn_1.getProjectedY())
d1 = p0-p1
d1 = d1/d1.norm()
dn = pn-pn_1
dn = dn/dn.norm()
newFirst = p0+d1*float(stretch)
newLast = pn+dn*float(stretch)
v0.setPoint(newFirst)
vn.setPoint(newLast)
## Shader to replace a stroke by its corresponding tangent
class pyGuidingLineShader(StrokeShader):
def getName(self):
return "pyGuidingLineShader"
## shading method
def shade(self, stroke):
it = stroke.strokeVerticesBegin() ## get the first vertex
itlast = stroke.strokeVerticesEnd() ##
itlast.decrement() ## get the last one
t = itlast.getObject().getPoint() - it.getObject().getPoint() ## tangent direction
itmiddle = StrokeVertexIterator(it) ##
while(itmiddle.getObject().u()<0.5): ## look for the stroke middle vertex
itmiddle.increment() ##
it = StrokeVertexIterator(itmiddle)
it.increment()
while(it.isEnd() == 0): ## position all the vertices along the tangent for the right part
it.getObject().setPoint(itmiddle.getObject().getPoint() \
+t*(it.getObject().u()-itmiddle.getObject().u()))
it.increment()
it = StrokeVertexIterator(itmiddle)
it.decrement()
while(it.isBegin() == 0): ## position all the vertices along the tangent for the left part
it.getObject().setPoint(itmiddle.getObject().getPoint() \
-t*(itmiddle.getObject().u()-it.getObject().u()))
it.decrement()
it.getObject().setPoint(itmiddle.getObject().getPoint()-t*(itmiddle.getObject().u())) ## first vertex
class pyBackboneStretcherNoCuspShader(StrokeShader):
def __init__(self, l):
StrokeShader.__init__(self)
self._l = l
def getName(self):
return "pyBackboneStretcherNoCuspShader"
def shade(self, stroke):
it0 = stroke.strokeVerticesBegin()
it1 = StrokeVertexIterator(it0)
it1.increment()
itn = stroke.strokeVerticesEnd()
itn.decrement()
itn_1 = StrokeVertexIterator(itn)
itn_1.decrement()
v0 = it0.getObject()
v1 = it1.getObject()
if((v0.getNature() & CUSP == 0) and (v1.getNature() & CUSP == 0)):
p0 = v0.getPoint()
p1 = v1.getPoint()
d1 = p0-p1
d1 = d1/d1.norm()
newFirst = p0+d1*float(self._l)
v0.setPoint(newFirst)
vn_1 = itn_1.getObject()
vn = itn.getObject()
if((vn.getNature() & CUSP == 0) and (vn_1.getNature() & CUSP == 0)):
pn = vn.getPoint()
pn_1 = vn_1.getPoint()
dn = pn-pn_1
dn = dn/dn.norm()
newLast = pn+dn*float(self._l)
vn.setPoint(newLast)
normalInfo=Normal2DF0D()
curvatureInfo=Curvature2DAngleF0D()
def edgestopping(x, sigma):
return exp(- x*x/(2*sigma*sigma))
class pyDiffusion2Shader(StrokeShader):
def __init__(self, lambda1, nbIter):
StrokeShader.__init__(self)
self._lambda = lambda1
self._nbIter = nbIter
self._normalInfo = Normal2DF0D()
self._curvatureInfo = Curvature2DAngleF0D()
def getName(self):
return "pyDiffusionShader"
def shade(self, stroke):
for i in range (1, self._nbIter):
it = stroke.strokeVerticesBegin()
while it.isEnd() == 0:
v=it.getObject()
p1 = v.getPoint()
p2 = self._normalInfo(it.castToInterface0DIterator())*self._lambda*self._curvatureInfo(it.castToInterface0DIterator())
v.setPoint(p1+p2)
it.increment()
class pyTipRemoverShader(StrokeShader):
def __init__(self, l):
StrokeShader.__init__(self)
self._l = l
def getName(self):
return "pyTipRemoverShader"
def shade(self, stroke):
originalSize = stroke.strokeVerticesSize()
if(originalSize<4):
return
verticesToRemove = []
oldAttributes = []
it = stroke.strokeVerticesBegin()
while(it.isEnd() == 0):
v = it.getObject()
if((v.curvilinearAbscissa() < self._l) or (v.strokeLength()-v.curvilinearAbscissa() < self._l)):
verticesToRemove.append(v)
oldAttributes.append(StrokeAttribute(v.attribute()))
it.increment()
if(originalSize-len(verticesToRemove) < 2):
return
for sv in verticesToRemove:
stroke.RemoveVertex(sv)
stroke.Resample(originalSize)
if(stroke.strokeVerticesSize() != originalSize):
print "pyTipRemover: Warning: resampling problem"
it = stroke.strokeVerticesBegin()
for a in oldAttributes:
if(it.isEnd() == 1):
break
v = it.getObject()
v.setAttribute(a)
it.increment()
class pyTVertexRemoverShader(StrokeShader):
def getName(self):
return "pyTVertexRemoverShader"
def shade(self, stroke):
if(stroke.strokeVerticesSize() <= 3 ):
return
predTVertex = pyVertexNatureUP0D(T_VERTEX)
it = stroke.strokeVerticesBegin()
itlast = stroke.strokeVerticesEnd()
itlast.decrement()
if(predTVertex(it) == 1):
stroke.RemoveVertex(it.getObject())
if(predTVertex(itlast) == 1):
stroke.RemoveVertex(itlast.getObject())
class pyExtremitiesOrientationShader(StrokeShader):
def __init__(self, x1,y1,x2=0,y2=0):
StrokeShader.__init__(self)
self._v1 = Vec2(x1,y1)
self._v2 = Vec2(x2,y2)
def getName(self):
return "pyExtremitiesOrientationShader"
def shade(self, stroke):
print self._v1.x(),self._v1.y()
stroke.setBeginningOrientation(self._v1.x(),self._v1.y())
stroke.setEndingOrientation(self._v2.x(),self._v2.y())
class pyHLRShader(StrokeShader):
def getName(self):
return "pyHLRShader"
def shade(self, stroke):
originalSize = stroke.strokeVerticesSize()
if(originalSize<4):
return
it = stroke.strokeVerticesBegin()
invisible = 0
it2 = StrokeVertexIterator(it)
it2.increment()
fe = getFEdge(it.getObject(), it2.getObject())
if(fe.qi() != 0):
invisible = 1
while(it2.isEnd() == 0):
v = it.getObject()
vnext = it2.getObject()
if(v.getNature() & VIEW_VERTEX):
#if(v.getNature() & T_VERTEX):
fe = getFEdge(v,vnext)
qi = fe.qi()
if(qi != 0):
invisible = 1
else:
invisible = 0
if(invisible == 1):
v.attribute().setVisible(0)
it.increment()
it2.increment()
class pyTVertexOrientationShader(StrokeShader):
def __init__(self):
StrokeShader.__init__(self)
self._Get2dDirection = Orientation2DF1D()
def getName(self):
return "pyTVertexOrientationShader"
## finds the TVertex orientation from the TVertex and
## the previous or next edge
def findOrientation(self, tv, ve):
mateVE = tv.mate(ve)
if((ve.qi() != 0) or (mateVE.qi() != 0)):
ait = AdjacencyIterator(tv,1,0)
winner = None
incoming = 1
while(ait.isEnd() == 0):
ave = ait.getObject()
if((ave.getId() != ve.getId()) and (ave.getId() != mateVE.getId())):
winner = ait.getObject()
if(ait.isIncoming() == 0):
incoming = 0
break
ait.increment()
if(winner != None):
if(incoming != 0):
direction = self._Get2dDirection(winner.fedgeB())
else:
direction = self._Get2dDirection(winner.fedgeA())
return direction
def shade(self, stroke):
it = stroke.strokeVerticesBegin()
it2 = StrokeVertexIterator(it)
it2.increment()
## case where the first vertex is a TVertex
v = it.getObject()
if(v.getNature() & T_VERTEX):
tv = v.castToTVertex()
ve = getFEdge(v, it2.getObject()).viewedge()
if(tv != None):
dir = self.findOrientation(tv, ve)
#print dir.x(), dir.y()
v.attribute().setAttributeVec2f("orientation", dir)
while(it2.isEnd() == 0):
vprevious = it.getObject()
v = it2.getObject()
if(v.getNature() & T_VERTEX):
tv = v.castToTVertex()
ve = getFEdge(vprevious, v).viewedge()
if(tv != None):
dir = self.findOrientation(tv, ve)
#print dir.x(), dir.y()
v.attribute().setAttributeVec2f("orientation", dir)
it.increment()
it2.increment()
## case where the last vertex is a TVertex
v = it.getObject()
if(v.getNature() & T_VERTEX):
itPrevious = StrokeVertexIterator(it)
itPrevious.decrement()
tv = v.castToTVertex()
ve = getFEdge(itPrevious.getObject(), v).viewedge()
if(tv != None):
dir = self.findOrientation(tv, ve)
#print dir.x(), dir.y()
v.attribute().setAttributeVec2f("orientation", dir)
class pySinusDisplacementShader(StrokeShader):
def __init__(self, f, a):
StrokeShader.__init__(self)
self._f = f
self._a = a
self._getNormal = Normal2DF0D()
def getName(self):
return "pySinusDisplacementShader"
def shade(self, stroke):
it = stroke.strokeVerticesBegin()
while it.isEnd() == 0:
v = it.getObject()
#print self._getNormal.getName()
n = self._getNormal(it.castToInterface0DIterator())
p = v.getPoint()
u = v.u()
a = self._a*(1-2*(fabs(u-0.5)))
n = n*a*cos(self._f*u*6.28)
#print n.x(), n.y()
v.setPoint(p+n)
#v.setPoint(v.getPoint()+n*a*cos(f*v.u()))
it.increment()
class pyPerlinNoise1DShader(StrokeShader):
def __init__(self, freq = 10, amp = 10, oct = 4):
StrokeShader.__init__(self)
self.__noise = Noise()
self.__freq = freq
self.__amp = amp
self.__oct = oct
def getName(self):
return "pyPerlinNoise1DShader"
def shade(self, stroke):
i = randint(0, 50)
it = stroke.strokeVerticesBegin()
while it.isEnd() == 0:
v = it.getObject()
nres = self.__noise.turbulence1(i, self.__freq, self.__amp, self.__oct)
v.setPoint(v.getProjectedX() + nres, v.getProjectedY() + nres)
i = i+1
it.increment()
class pyPerlinNoise2DShader(StrokeShader):
def __init__(self, freq = 10, amp = 10, oct = 4):
StrokeShader.__init__(self)
self.__noise = Noise()
self.__freq = freq
self.__amp = amp
self.__oct = oct
def getName(self):
return "pyPerlinNoise2DShader"
def shade(self, stroke):
it = stroke.strokeVerticesBegin()
while it.isEnd() == 0:
v = it.getObject()
vec = Vec2f(v.getProjectedX(), v.getProjectedY())
nres = self.__noise.turbulence2(vec, self.__freq, self.__amp, self.__oct)
v.setPoint(v.getProjectedX() + nres, v.getProjectedY() + nres)
it.increment()
class pyBluePrintCirclesShader(StrokeShader):
def __init__(self, turns = 1):
StrokeShader.__init__(self)
self.__turns = turns
def getName(self):
return "pyBluePrintCirclesShader"
def shade(self, stroke):
p_min = Vec2f(10000, 10000)
p_max = Vec2f(0, 0)
it = stroke.strokeVerticesBegin()
while it.isEnd() == 0:
p = it.getObject().getPoint()
if (p.x() < p_min.x()):
p_min.setX(p.x())
if (p.x() > p_max.x()):
p_max.setX(p.x())
if (p.y() < p_min.y()):
p_min.setY(p.y())
if (p.y() > p_max.y()):
p_max.setY(p.y())
it.increment()
stroke.Resample(32 * self.__turns)
sv_nb = stroke.strokeVerticesSize()
# print "min :", p_min.x(), p_min.y() # DEBUG
# print "mean :", p_sum.x(), p_sum.y() # DEBUG
# print "max :", p_max.x(), p_max.y() # DEBUG
# print "----------------------" # DEBUG
#######################################################
sv_nb = sv_nb / self.__turns
center = (p_min + p_max) / 2
radius = (center.x() - p_min.x() + center.y() - p_min.y()) / 2
p_new = Vec2f()
#######################################################
it = stroke.strokeVerticesBegin()
for j in range(self.__turns):
radius = radius + randint(-3, 3)
center_x = center.x() + randint(-5, 5)
center_y = center.y() + randint(-5, 5)
center.setX(center_x)
center.setY(center_y)
i = 0
while i < sv_nb:
p_new.setX(center.x() + radius * cos(2 * pi * float(i) / float(sv_nb - 1)))
p_new.setY(center.y() + radius * sin(2 * pi * float(i) / float(sv_nb - 1)))
it.getObject().setPoint(p_new.x(), p_new.y())
i = i + 1
it.increment()
while it.isEnd() == 0:
stroke.RemoveVertex(it.getObject())
it.increment()
class pyBluePrintEllipsesShader(StrokeShader):
def __init__(self, turns = 1):
StrokeShader.__init__(self)
self.__turns = turns
def getName(self):
return "pyBluePrintEllipsesShader"
def shade(self, stroke):
p_min = Vec2f(10000, 10000)
p_max = Vec2f(0, 0)
it = stroke.strokeVerticesBegin()
while it.isEnd() == 0:
p = it.getObject().getPoint()
if (p.x() < p_min.x()):
p_min.setX(p.x())
if (p.x() > p_max.x()):
p_max.setX(p.x())
if (p.y() < p_min.y()):
p_min.setY(p.y())
if (p.y() > p_max.y()):
p_max.setY(p.y())
it.increment()
stroke.Resample(32 * self.__turns)
sv_nb = stroke.strokeVerticesSize()
# print "min :", p_min.x(), p_min.y() # DEBUG
# print "mean :", p_sum.x(), p_sum.y() # DEBUG
# print "max :", p_max.x(), p_max.y() # DEBUG
# print "----------------------" # DEBUG
#######################################################
sv_nb = sv_nb / self.__turns
center = (p_min + p_max) / 2
radius_x = center.x() - p_min.x()
radius_y = center.y() - p_min.y()
p_new = Vec2f()
#######################################################
it = stroke.strokeVerticesBegin()
for j in range(self.__turns):
radius_x = radius_x + randint(-3, 3)
radius_y = radius_y + randint(-3, 3)
center_x = center.x() + randint(-5, 5)
center_y = center.y() + randint(-5, 5)
center.setX(center_x)
center.setY(center_y)
i = 0
while i < sv_nb:
p_new.setX(center.x() + radius_x * cos(2 * pi * float(i) / float(sv_nb - 1)))
p_new.setY(center.y() + radius_y * sin(2 * pi * float(i) / float(sv_nb - 1)))
it.getObject().setPoint(p_new.x(), p_new.y())
i = i + 1
it.increment()
while it.isEnd() == 0:
stroke.RemoveVertex(it.getObject())
it.increment()
class pyBluePrintSquaresShader(StrokeShader):
def __init__(self, turns = 1, bb_len = 10):
StrokeShader.__init__(self)
self.__turns = turns
self.__bb_len = bb_len
def getName(self):
return "pyBluePrintSquaresShader"
def shade(self, stroke):
p_min = Vec2f(10000, 10000)
p_max = Vec2f(0, 0)
it = stroke.strokeVerticesBegin()
while it.isEnd() == 0:
p = it.getObject().getPoint()
if (p.x() < p_min.x()):
p_min.setX(p.x())
if (p.x() > p_max.x()):
p_max.setX(p.x())
if (p.y() < p_min.y()):
p_min.setY(p.y())
if (p.y() > p_max.y()):
p_max.setY(p.y())
it.increment()
stroke.Resample(32 * self.__turns)
sv_nb = stroke.strokeVerticesSize()
#######################################################
sv_nb = sv_nb / self.__turns
first = sv_nb / 4
second = 2 * first
third = 3 * first
fourth = sv_nb
vec_first = Vec2f(p_max.x() - p_min.x() + 2 * self.__bb_len, 0)
vec_second = Vec2f(0, p_max.y() - p_min.y() + 2 * self.__bb_len)
vec_third = vec_first * -1
vec_fourth = vec_second * -1
p_first = Vec2f(p_min.x() - self.__bb_len, p_min.y())
p_second = Vec2f(p_max.x(), p_min.y() - self.__bb_len)
p_third = Vec2f(p_max.x() + self.__bb_len, p_max.y())
p_fourth = Vec2f(p_min.x(), p_max.y() + self.__bb_len)
#######################################################
it = stroke.strokeVerticesBegin()
visible = 1
for j in range(self.__turns):
i = 0
while i < sv_nb:
if i < first:
p_new = p_first + vec_first * float(i)/float(first - 1)
if i == first - 1:
visible = 0
elif i < second:
p_new = p_second + vec_second * float(i - first)/float(second - first - 1)
if i == second - 1:
visible = 0
elif i < third:
p_new = p_third + vec_third * float(i - second)/float(third - second - 1)
if i == third - 1:
visible = 0
else:
p_new = p_fourth + vec_fourth * float(i - third)/float(fourth - third - 1)
if i == fourth - 1:
visible = 0
it.getObject().setPoint(p_new.x(), p_new.y())
it.getObject().attribute().setVisible(visible)
if visible == 0:
visible = 1
i = i + 1
it.increment()
while it.isEnd() == 0:
stroke.RemoveVertex(it.getObject())
it.increment()
class pyBluePrintDirectedSquaresShader(StrokeShader):
def __init__(self, turns = 1, bb_len = 10, mult = 1):
StrokeShader.__init__(self)
self.__mult = mult
self.__turns = turns
self.__bb_len = 1 + float(bb_len) / 100
def getName(self):
return "pyBluePrintDirectedSquaresShader"
def shade(self, stroke):
stroke.Resample(32 * self.__turns)
p_mean = Vec2f(0, 0)
p_min = Vec2f(10000, 10000)
p_max = Vec2f(0, 0)
it = stroke.strokeVerticesBegin()
while it.isEnd() == 0:
p = it.getObject().getPoint()
p_mean = p_mean + p
## if (p.x() < p_min.x()):
## p_min.setX(p.x())
## if (p.x() > p_max.x()):
## p_max.setX(p.x())
## if (p.y() < p_min.y()):
## p_min.setY(p.y())
## if (p.y() > p_max.y()):
## p_max.setY(p.y())
it.increment()
sv_nb = stroke.strokeVerticesSize()
p_mean = p_mean / sv_nb
p_var_xx = 0
p_var_yy = 0
p_var_xy = 0
it = stroke.strokeVerticesBegin()
while it.isEnd() == 0:
p = it.getObject().getPoint()
p_var_xx = p_var_xx + pow(p.x() - p_mean.x(), 2)
p_var_yy = p_var_yy + pow(p.y() - p_mean.y(), 2)
p_var_xy = p_var_xy + (p.x() - p_mean.x()) * (p.y() - p_mean.y())
it.increment()
p_var_xx = p_var_xx / sv_nb
p_var_yy = p_var_yy / sv_nb
p_var_xy = p_var_xy / sv_nb
## print p_var_xx, p_var_yy, p_var_xy
trace = p_var_xx + p_var_yy
det = p_var_xx * p_var_yy - p_var_xy * p_var_xy
sqrt_coeff = sqrt(trace * trace - 4 * det)
lambda1 = (trace + sqrt_coeff) / 2
lambda2 = (trace - sqrt_coeff) / 2
## print lambda1, lambda2
theta = atan(2 * p_var_xy / (p_var_xx - p_var_yy)) / 2
## print theta
if p_var_yy > p_var_xx:
e1 = Vec2f(cos(theta + pi / 2), sin(theta + pi / 2)) * sqrt(lambda1) * self.__mult
e2 = Vec2f(cos(theta + pi), sin(theta + pi)) * sqrt(lambda2) * self.__mult
else:
e1 = Vec2f(cos(theta), sin(theta)) * sqrt(lambda1) * self.__mult
e2 = Vec2f(cos(theta + pi / 2), sin(theta + pi / 2)) * sqrt(lambda2) * self.__mult
#######################################################
sv_nb = sv_nb / self.__turns
first = sv_nb / 4
second = 2 * first
third = 3 * first
fourth = sv_nb
bb_len1 = self.__bb_len
bb_len2 = 1 + (bb_len1 - 1) * sqrt(lambda1 / lambda2)
p_first = p_mean - e1 - e2 * bb_len2
p_second = p_mean - e1 * bb_len1 + e2
p_third = p_mean + e1 + e2 * bb_len2
p_fourth = p_mean + e1 * bb_len1 - e2
vec_first = e2 * bb_len2 * 2
vec_second = e1 * bb_len1 * 2
vec_third = vec_first * -1
vec_fourth = vec_second * -1
#######################################################
it = stroke.strokeVerticesBegin()
visible = 1
for j in range(self.__turns):
i = 0
while i < sv_nb:
if i < first:
p_new = p_first + vec_first * float(i)/float(first - 1)
if i == first - 1:
visible = 0
elif i < second:
p_new = p_second + vec_second * float(i - first)/float(second - first - 1)
if i == second - 1:
visible = 0
elif i < third:
p_new = p_third + vec_third * float(i - second)/float(third - second - 1)
if i == third - 1:
visible = 0
else:
p_new = p_fourth + vec_fourth * float(i - third)/float(fourth - third - 1)
if i == fourth - 1:
visible = 0
it.getObject().setPoint(p_new.x(), p_new.y())
it.getObject().attribute().setVisible(visible)
if visible == 0:
visible = 1
i = i + 1
it.increment()
while it.isEnd() == 0:
stroke.RemoveVertex(it.getObject())
it.increment()
class pyModulateAlphaShader(StrokeShader):
def __init__(self, min = 0, max = 1):
StrokeShader.__init__(self)
self.__min = min
self.__max = max
def getName(self):
return "pyModulateAlphaShader"
def shade(self, stroke):
it = stroke.strokeVerticesBegin()
while it.isEnd() == 0:
alpha = it.getObject().attribute().getAlpha()
p = it.getObject().getPoint()
alpha = alpha * p.y() / 400
if alpha < self.__min:
alpha = self.__min
elif alpha > self.__max:
alpha = self.__max
it.getObject().attribute().setAlpha(alpha)
it.increment()
## various
class pyDummyShader(StrokeShader):
def getName(self):
return "pyDummyShader"
def shade(self, stroke):
it = stroke.strokeVerticesBegin()
it_end = stroke.strokeVerticesEnd()
while it.isEnd() == 0:
toto = it.castToInterface0DIterator()
att = it.getObject().attribute()
att.setColor(0.3, 0.4, 0.4)
att.setThickness(0, 5)
it.increment()
class pyDebugShader(StrokeShader):
def getName(self):
return "pyDebugShader"
def shade(self, stroke):
fe = GetSelectedFEdgeCF()
id1=fe.vertexA().getId()
id2=fe.vertexB().getId()
#print id1.getFirst(), id1.getSecond()
#print id2.getFirst(), id2.getSecond()
it = stroke.strokeVerticesBegin()
found = 0
foundfirst = 0
foundsecond = 0
while it.isEnd() == 0:
cp = it.getObject()
if((cp.A().getId() == id1) or (cp.B().getId() == id1)):
foundfirst = 1
if((cp.A().getId() == id2) or (cp.B().getId() == id2)):
foundsecond = 1
if((foundfirst != 0) and (foundsecond != 0)):
found = 1
break
it.increment()
if(found != 0):
print "The selected Stroke id is: ", stroke.getId().getFirst(), stroke.getId().getSecond()

View File

@@ -1,48 +0,0 @@
#
# Filename : sketchy_multiple_parameterization.py
# Author : Stephane Grabli
# Date : 04/08/2005
# Purpose : Builds sketchy strokes whose topology relies on a
# parameterization that covers the complete lines (visible+invisible)
# whereas only the visible portions are actually drawn
#
#############################################################################
#
# Copyright (C) : Please refer to the COPYRIGHT file distributed
# with this source distribution.
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#
#############################################################################
from Freestyle import *
from logical_operators import *
from ChainingIterators import *
from shaders import *
Operators.select(QuantitativeInvisibilityUP1D(0))
## 0: don't restrict to selection
Operators.bidirectionalChain(pySketchyChainSilhouetteIterator(3,0))
shaders_list = [
SamplingShader(2),
SpatialNoiseShader(15, 120, 2, 1, 1),
IncreasingThicknessShader(5, 30),
SmoothingShader(100, 0.05, 0, 0.2, 0, 0, 0, 1),
IncreasingColorShader(0,0.2,0,1,0.2,0.7,0.2,1),
TextureAssignerShader(6),
pyHLRShader()
]
Operators.create(TrueUP1D(), shaders_list)

View File

@@ -1,89 +0,0 @@
#
# Filename : sketchy_topology_broken.py
# Author : Stephane Grabli
# Date : 04/08/2005
# Purpose : The topology of the strokes is, first, built
# independantly from the 3D topology of objects,
# and, second, so as to chain several times the same ViewEdge.
#
#############################################################################
#
# Copyright (C) : Please refer to the COPYRIGHT file distributed
# with this source distribution.
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#
#############################################################################
from Freestyle import *
from logical_operators import *
from ChainingIterators import *
from shaders import *
## Backbone stretcher that leaves cusps intact to avoid cracks
class pyBackboneStretcherNoCuspShader(StrokeShader):
def __init__(self, l):
StrokeShader.__init__(self)
self._l = l
def getName(self):
return "pyBackboneStretcherNoCuspShader"
def shade(self, stroke):
it0 = stroke.strokeVerticesBegin()
it1 = StrokeVertexIterator(it0)
it1.increment()
itn = stroke.strokeVerticesEnd()
itn.decrement()
itn_1 = StrokeVertexIterator(itn)
itn_1.decrement()
v0 = it0.getObject()
v1 = it1.getObject()
if((v0.getNature() & CUSP == 0) and (v1.getNature() & CUSP == 0)):
p0 = v0.getPoint()
p1 = v1.getPoint()
d1 = p0-p1
d1 = d1/d1.norm()
newFirst = p0+d1*float(self._l)
v0.setPoint(newFirst)
else:
print "got a v0 cusp"
vn_1 = itn_1.getObject()
vn = itn.getObject()
if((vn.getNature() & CUSP == 0) and (vn_1.getNature() & CUSP == 0)):
pn = vn.getPoint()
pn_1 = vn_1.getPoint()
dn = pn-pn_1
dn = dn/dn.norm()
newLast = pn+dn*float(self._l)
vn.setPoint(newLast)
else:
print "got a vn cusp"
Operators.select(QuantitativeInvisibilityUP1D(0))
## Chain 3 times each ViewEdge indpendantly from the
## initial objects topology
Operators.bidirectionalChain(pySketchyChainingIterator(3))
shaders_list = [
SamplingShader(4),
SpatialNoiseShader(6, 120, 2, 1, 1),
IncreasingThicknessShader(4, 10),
SmoothingShader(100, 0.1, 0, 0.2, 0, 0, 0, 1),
pyBackboneStretcherNoCuspShader(20),
#ConstantColorShader(0.0,0.0,0.0)
IncreasingColorShader(0.2,0.2,0.2,1,0.5,0.5,0.5,1),
#IncreasingColorShader(1,0,0,1,0,1,0,1),
TextureAssignerShader(4)
]
Operators.create(TrueUP1D(), shaders_list)

View File

@@ -1,49 +0,0 @@
#
# Filename : sketchy_topology_preserved.py
# Author : Stephane Grabli
# Date : 04/08/2005
# Purpose : The topology of the strokes is built
# so as to chain several times the same ViewEdge.
# The topology of the objects is preserved
#
#############################################################################
#
# Copyright (C) : Please refer to the COPYRIGHT file distributed
# with this source distribution.
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#
#############################################################################
from Freestyle import *
from logical_operators import *
from ChainingIterators import *
from PredicatesU1D import *
from shaders import *
upred = QuantitativeInvisibilityUP1D(0)
Operators.select(upred)
Operators.bidirectionalChain(pySketchyChainSilhouetteIterator(3,1))
shaders_list = [
SamplingShader(4),
SpatialNoiseShader(20, 220, 2, 1, 1),
IncreasingThicknessShader(4, 8),
SmoothingShader(300, 0.05, 0, 0.2, 0, 0, 0, 0.5),
ConstantColorShader(0.6,0.2,0.0),
TextureAssignerShader(4),
]
Operators.create(TrueUP1D(), shaders_list)

View File

@@ -1,40 +0,0 @@
#
# Filename : split_at_highest_2d_curvature.py
# Author : Stephane Grabli
# Date : 04/08/2005
# Purpose : Draws the visible lines (chaining follows same nature lines)
# (most basic style module)
#
#############################################################################
#
# Copyright (C) : Please refer to the COPYRIGHT file distributed
# with this source distribution.
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#
#############################################################################
from Freestyle import *
from logical_operators import *
from PredicatesU1D import *
from Functions0D import *
Operators.select(QuantitativeInvisibilityUP1D(0))
Operators.bidirectionalChain(ChainSilhouetteIterator(), NotUP1D(QuantitativeInvisibilityUP1D(0)))
func = pyInverseCurvature2DAngleF0D()
Operators.recursiveSplit(func, pyParameterUP0D(0.4,0.6), NotUP1D(pyHigherLengthUP1D(100)), 2)
shaders_list = [ConstantThicknessShader(10), IncreasingColorShader(1,0,0,1,0,1,0,1), TextureAssignerShader(3)]
Operators.create(TrueUP1D(), shaders_list)

View File

@@ -1,42 +0,0 @@
#
# Filename : split_at_tvertices.py
# Author : Stephane Grabli
# Date : 04/08/2005
# Purpose : Draws strokes that starts and stops at Tvertices (visible or not)
#
#############################################################################
#
# Copyright (C) : Please refer to the COPYRIGHT file distributed
# with this source distribution.
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#
#############################################################################
from Freestyle import *
from logical_operators import *
from PredicatesU1D import *
from PredicatesU0D import *
from Functions0D import *
Operators.select(QuantitativeInvisibilityUP1D(0))
Operators.bidirectionalChain(ChainSilhouetteIterator(), NotUP1D(QuantitativeInvisibilityUP1D(0)))
start = pyVertexNatureUP0D(T_VERTEX)
## use the same predicate to decide where to start and where to stop
## the strokes:
Operators.sequentialSplit(start, start, 10)
shaders_list = [ConstantThicknessShader(5), IncreasingColorShader(1,0,0,1,0,1,0,1), TextureAssignerShader(3)]
Operators.create(TrueUP1D(), shaders_list)

View File

@@ -1,43 +0,0 @@
#
# Filename : stroke_texture.py
# Author : Stephane Grabli
# Date : 04/08/2005
# Purpose : Draws textured strokes (illustrate the StrokeTextureShader shader)
#
#############################################################################
#
# Copyright (C) : Please refer to the COPYRIGHT file distributed
# with this source distribution.
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#
#############################################################################
from Freestyle import *
from logical_operators import *
from PredicatesB1D import *
from shaders import *
from ChainingIterators import *
Operators.select(QuantitativeInvisibilityUP1D(0))
Operators.bidirectionalChain(ChainSilhouetteIterator(), NotUP1D(QuantitativeInvisibilityUP1D(0)))
shaders_list = [
SamplingShader(3),
BezierCurveShader(4),
StrokeTextureShader("washbrushAlpha.bmp", Stroke.DRY_MEDIUM, 1),
ConstantThicknessShader(40),
ConstantColorShader(0,0,0,1),
]
Operators.create(TrueUP1D(), shaders_list)

View File

@@ -1,43 +0,0 @@
#
# Filename : suggestive.py
# Author : Stephane Grabli
# Date : 04/08/2005
# Purpose : Draws the suggestive contours.
# ***** The suggestive contours must be enabled
# in the options dialog *****
#
#############################################################################
#
# Copyright (C) : Please refer to the COPYRIGHT file distributed
# with this source distribution.
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#
#############################################################################
from Freestyle import *
from logical_operators import *
from PredicatesB1D import *
from PredicatesU1D import *
from shaders import *
upred = AndUP1D(pyNatureUP1D(SUGGESTIVE_CONTOUR), QuantitativeInvisibilityUP1D(0))
Operators.select(upred)
Operators.bidirectionalChain(ChainSilhouetteIterator(), NotUP1D(upred))
shaders_list = [
IncreasingThicknessShader(1, 3),
ConstantColorShader(0.2,0.2,0.2, 1)
]
Operators.create(TrueUP1D(), shaders_list)

View File

@@ -1,62 +0,0 @@
#
# Filename : thickness_fof_depth_discontinuity.py
# Author : Stephane Grabli
# Date : 04/08/2005
# Purpose : Assigns to strokes a thickness that depends on the depth discontinuity
#
#############################################################################
#
# Copyright (C) : Please refer to the COPYRIGHT file distributed
# with this source distribution.
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#
#############################################################################
from Freestyle import *
from logical_operators import *
from ChainingIterators import *
from shaders import *
class pyDepthDiscontinuityThicknessShader(StrokeShader):
def __init__(self, min, max):
StrokeShader.__init__(self)
self.__min = float(min)
self.__max = float(max)
self.__func = ZDiscontinuityF0D()
def getName(self):
return "pyDepthDiscontinuityThicknessShader"
def shade(self, stroke):
it = stroke.strokeVerticesBegin()
z_min=0.0
z_max=1.0
a = (self.__max - self.__min)/(z_max-z_min)
b = (self.__min*z_max-self.__max*z_min)/(z_max-z_min)
it = stroke.strokeVerticesBegin()
while it.isEnd() == 0:
z = self.__func(it.castToInterface0DIterator())
thickness = a*z+b
it.getObject().attribute().setThickness(thickness, thickness)
it.increment()
Operators.select(QuantitativeInvisibilityUP1D(0))
Operators.bidirectionalChain(ChainSilhouetteIterator(), NotUP1D(QuantitativeInvisibilityUP1D(0)))
shaders_list = [
SamplingShader(1),
ConstantThicknessShader(3),
ConstantColorShader(0.0,0.0,0.0),
pyDepthDiscontinuityThicknessShader(0.8, 6)
]
Operators.create(TrueUP1D(), shaders_list)

View File

@@ -1,42 +0,0 @@
#
# Filename : tipremover.py
# Author : Stephane Grabli
# Date : 04/08/2005
# Purpose : Removes strokes extremities
#
#############################################################################
#
# Copyright (C) : Please refer to the COPYRIGHT file distributed
# with this source distribution.
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#
#############################################################################
from Freestyle import *
from logical_operators import *
from ChainingIterators import *
from shaders import *
Operators.select(QuantitativeInvisibilityUP1D(0))
Operators.bidirectionalChain(ChainSilhouetteIterator(), NotUP1D(QuantitativeInvisibilityUP1D(0)))
shaders_list = [
SamplingShader(5),
ConstantThicknessShader(3),
ConstantColorShader(0,0,0),
TipRemoverShader(20)
]
Operators.create(TrueUP1D(), shaders_list)

View File

@@ -1,42 +0,0 @@
#
# Filename : tvertex_remover.py
# Author : Stephane Grabli
# Date : 04/08/2005
# Purpose : Removes TVertices
#
#############################################################################
#
# Copyright (C) : Please refer to the COPYRIGHT file distributed
# with this source distribution.
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#
#############################################################################
from Freestyle import *
from logical_operators import *
from PredicatesB1D import *
from shaders import *
Operators.select(QuantitativeInvisibilityUP1D(0))
Operators.bidirectionalChain(ChainSilhouetteIterator(), NotUP1D(QuantitativeInvisibilityUP1D(0)))
shaders_list = [
IncreasingThicknessShader(3, 5),
ConstantColorShader(0.2,0.2,0.2, 1),
SamplingShader(10.0),
pyTVertexRemoverShader()
]
Operators.create(TrueUP1D(), shaders_list)

View File

@@ -1,40 +0,0 @@
from Freestyle import *
from logical_operators import *
from PredicatesU1D import *
from PredicatesU0D import *
from PredicatesB1D import *
from Functions0D import *
from Functions1D import *
from shaders import *
class pyDensityUP1D(UnaryPredicate1D):
def __init__(self,wsize,threshold, integration = MEAN, sampling=2.0):
UnaryPredicate1D.__init__(self)
self._wsize = wsize
self._threshold = threshold
self._integration = integration
self._func = DensityF1D(self._wsize, self._integration, sampling)
def getName(self):
return "pyDensityUP1D"
def __call__(self, inter):
d = self._func(inter)
print "For Chain ", inter.getId().getFirst(), inter.getId().getSecond(), "density is ", d
if(d < self._threshold):
return 1
return 0
Operators.select(QuantitativeInvisibilityUP1D(0))
Operators.bidirectionalChain(ChainSilhouetteIterator())
#Operators.sequentialSplit(pyVertexNatureUP0D(VIEW_VERTEX), 2)
Operators.sort(pyZBP1D())
shaders_list = [
StrokeTextureShader("smoothAlpha.bmp", Stroke.OPAQUE_MEDIUM, 0),
ConstantThicknessShader(3),
SamplingShader(5.0),
ConstantColorShader(0,0,0,1)
]
Operators.create(pyDensityUP1D(2,0.05, MEAN,4), shaders_list)
#Operators.create(pyDensityFunctorUP1D(8,0.03, pyGetInverseProjectedZF1D(), 0,1, MEAN), shaders_list)

View File

@@ -1,241 +0,0 @@
# This module defines 3d geometrical vectors with the standard
# operations on them.
#
# Written by: Konrad Hinsen
# Last revision: 1996-1-26
#
"""This module defines three-dimensional geometrical vectors. Vectors support
the usual mathematical operations (v1, v2: vectors, s: scalar):
v1+v2 addition
v1-v2 subtraction
v1*v2 scalar product
s*v1 multiplication with a scalar
v1/s division by a scalar
v1.cross(v2) cross product
v1.length() length
v1.normal() normal vector in direction of v1
v1.angle(v2) angle between two vectors
v1.x(), v1[0] first element
v1.y(), v1[1] second element
v1.z(), v1[2] third element
The module offers the following items for export:
Vec3D(x,y,z) the constructor for vectors
isVector(x) a type check function
ex, ey, ez unit vectors along the x-, y-, and z-axes (predefined constants)
Note: vector elements can be any kind of numbers on which the operations
addition, subtraction, multiplication, division, comparison, sqrt, and acos
are defined. Integer elements are treated as floating point elements.
"""
import math, types
class Vec3:
isVec3 = 1
def __init__(self, x=0., y=0., z=0.):
self.data = [x,y,z]
def __repr__(self):
return 'Vec3(%s,%s,%s)' % (`self.data[0]`,\
`self.data[1]`,`self.data[2]`)
def __str__(self):
return `self.data`
def __add__(self, other):
return Vec3(self.data[0]+other.data[0],\
self.data[1]+other.data[1],self.data[2]+other.data[2])
__radd__ = __add__
def __neg__(self):
return Vec3(-self.data[0], -self.data[1], -self.data[2])
def __sub__(self, other):
return Vec3(self.data[0]-other.data[0],\
self.data[1]-other.data[1],self.data[2]-other.data[2])
def __rsub__(self, other):
return Vec3(other.data[0]-self.data[0],\
other.data[1]-self.data[1],other.data[2]-self.data[2])
def __mul__(self, other):
if isVec3(other):
return reduce(lambda a,b: a+b,
map(lambda a,b: a*b, self.data, other.data))
else:
return Vec3(self.data[0]*other, self.data[1]*other,
self.data[2]*other)
def __rmul__(self, other):
if isVec3(other):
return reduce(lambda a,b: a+b,
map(lambda a,b: a*b, self.data, other.data))
else:
return Vec3(other*self.data[0], other*self.data[1],
other*self.data[2])
def __div__(self, other):
if isVec3(other):
raise TypeError, "Can't divide by a vector"
else:
return Vec3(_div(self.data[0],other), _div(self.data[1],other),
_div(self.data[2],other))
def __rdiv__(self, other):
raise TypeError, "Can't divide by a vector"
def __cmp__(self, other):
return cmp(self.data[0],other.data[0]) \
or cmp(self.data[1],other.data[1]) \
or cmp(self.data[2],other.data[2])
def __getitem__(self, index):
return self.data[index]
def x(self):
return self.data[0]
def y(self):
return self.data[1]
def z(self):
return self.data[2]
def length(self):
return math.sqrt(self*self)
def normal(self):
len = self.length()
if len == 0:
raise ZeroDivisionError, "Can't normalize a zero-length vector"
return self/len
def cross(self, other):
if not isVec3(other):
raise TypeError, "Cross product with non-vector"
return Vec3(self.data[1]*other.data[2]-self.data[2]*other.data[1],
self.data[2]*other.data[0]-self.data[0]*other.data[2],
self.data[0]*other.data[1]-self.data[1]*other.data[0])
def angle(self, other):
if not isVec3(other):
raise TypeError, "Angle between vector and non-vector"
cosa = (self*other)/(self.length()*other.length())
cosa = max(-1.,min(1.,cosa))
return math.acos(cosa)
class Vec2:
isVec2 = 1
def __init__(self, x=0., y=0.):
self.data = [x,y]
def __repr__(self):
return 'Vec2(%s,%s,%s)' % (`self.data[0]`,\
`self.data[1]`)
def __str__(self):
return `self.data`
def __add__(self, other):
return Vec2(self.data[0]+other.data[0],\
self.data[1]+other.data[1])
__radd__ = __add__
def __neg__(self):
return Vec2(-self.data[0], -self.data[1])
def __sub__(self, other):
return Vec2(self.data[0]-other.data[0],\
self.data[1]-other.data[1])
def __rsub__(self, other):
return Vec2(other.data[0]-self.data[0],\
other.data[1]-self.data[1])
def __mul__(self, other):
if isVec2(other):
return reduce(lambda a,b: a+b,
map(lambda a,b: a*b, self.data, other.data))
else:
return Vec2(self.data[0]*other, self.data[1]*other)
def __rmul__(self, other):
if isVec2(other):
return reduce(lambda a,b: a+b,
map(lambda a,b: a*b, self.data, other.data))
else:
return Vec2(other*self.data[0], other*self.data[1])
def __div__(self, other):
if isVec2(other):
raise TypeError, "Can't divide by a vector"
else:
return Vec2(_div(self.data[0],other), _div(self.data[1],other))
def __rdiv__(self, other):
raise TypeError, "Can't divide by a vector"
def __cmp__(self, other):
return cmp(self.data[0],other.data[0]) \
or cmp(self.data[1],other.data[1])
def __getitem__(self, index):
return self.data[index]
def x(self):
return self.data[0]
def y(self):
return self.data[1]
def length(self):
return math.sqrt(self*self)
def normal(self):
len = self.length()
if len == 0:
raise ZeroDivisionError, "Can't normalize a zero-length vector"
return self/len
#def cross(self, other):
# if not isVec2(other):
# raise TypeError, "Cross product with non-vector"
# return Vec2(self.data[1]*other.data[2]-self.data[2]*other.data[1],
# self.data[2]*other.data[0]-self.data[0]*other.data[2],
# self.data[0]*other.data[1]-self.data[1]*other.data[0])
def angle(self, other):
if not isVec2(other):
raise TypeError, "Angle between vector and non-vector"
cosa = (self*other)/(self.length()*other.length())
cosa = max(-1.,min(1.,cosa))
return math.acos(cosa)
# Type check
def isVec3(x):
return hasattr(x,'isVec3')
def isVec2(x):
return hasattr(x,'isVec2')
# "Correct" division for arbitrary number types
def _div(a,b):
if type(a) == types.IntType and type(b) == types.IntType:
return float(a)/float(b)
else:
return a/b
# Some useful constants
ex = Vec3(1.,0.,0.)
ey = Vec3(0.,1.,0.)
ez = Vec3(0.,0.,1.)