Cleanup: Use C++ threading API in subdiv_ccg.cc

Allows removing various structs for passing around arguments,
and simplifies the use of thread-local storage.
This commit is contained in:
Hans Goudey
2023-11-29 10:35:15 -05:00
parent c28cb3d0ac
commit dfc6b1deb6

View File

@@ -13,11 +13,12 @@
#include "MEM_guardedalloc.h"
#include "BLI_enumerable_thread_specific.hh"
#include "BLI_ghash.h"
#include "BLI_math_bits.h"
#include "BLI_math_geom.h"
#include "BLI_math_vector.h"
#include "BLI_task.h"
#include "BLI_task.hh"
#include "BKE_DerivedMesh.hh"
#include "BKE_ccg.h"
@@ -29,14 +30,15 @@
#include "opensubdiv_topology_refiner_capi.h"
using blender::Array;
using blender::float3;
using blender::MutableSpan;
using blender::Span;
using blender::Vector;
/* -------------------------------------------------------------------- */
/** \name Various forward declarations
* \{ */
static void subdiv_ccg_average_all_boundaries_and_corners(SubdivCCG *subdiv_ccg, CCGKey *key);
static void subdiv_ccg_average_inner_face_grids(SubdivCCG *subdiv_ccg,
CCGKey *key,
SubdivCCGFace *face);
@@ -165,22 +167,13 @@ static void subdiv_ccg_alloc_elements(SubdivCCG *subdiv_ccg, Subdiv *subdiv)
/** \name Grids evaluation
* \{ */
struct CCGEvalGridsData {
SubdivCCG *subdiv_ccg;
Subdiv *subdiv;
int *face_ptex_offset;
SubdivCCGMaskEvaluator *mask_evaluator;
SubdivCCGMaterialFlagsEvaluator *material_flags_evaluator;
};
static void subdiv_ccg_eval_grid_element_limit(CCGEvalGridsData *data,
static void subdiv_ccg_eval_grid_element_limit(Subdiv *subdiv,
SubdivCCG *subdiv_ccg,
const int ptex_face_index,
const float u,
const float v,
uchar *element)
{
Subdiv *subdiv = data->subdiv;
SubdivCCG *subdiv_ccg = data->subdiv_ccg;
if (subdiv->displacement_evaluator != nullptr) {
BKE_subdiv_eval_final_point(subdiv, ptex_face_index, u, v, (float *)element);
}
@@ -197,39 +190,45 @@ static void subdiv_ccg_eval_grid_element_limit(CCGEvalGridsData *data,
}
}
static void subdiv_ccg_eval_grid_element_mask(CCGEvalGridsData *data,
static void subdiv_ccg_eval_grid_element_mask(SubdivCCG *subdiv_ccg,
SubdivCCGMaskEvaluator *mask_evaluator,
const int ptex_face_index,
const float u,
const float v,
uchar *element)
{
SubdivCCG *subdiv_ccg = data->subdiv_ccg;
if (!subdiv_ccg->has_mask) {
return;
}
float *mask_value_ptr = (float *)(element + subdiv_ccg->mask_offset);
if (data->mask_evaluator != nullptr) {
*mask_value_ptr = data->mask_evaluator->eval_mask(data->mask_evaluator, ptex_face_index, u, v);
if (mask_evaluator != nullptr) {
*mask_value_ptr = mask_evaluator->eval_mask(mask_evaluator, ptex_face_index, u, v);
}
else {
*mask_value_ptr = 0.0f;
}
}
static void subdiv_ccg_eval_grid_element(CCGEvalGridsData *data,
static void subdiv_ccg_eval_grid_element(Subdiv *subdiv,
SubdivCCG *subdiv_ccg,
SubdivCCGMaskEvaluator *mask_evaluator,
const int ptex_face_index,
const float u,
const float v,
uchar *element)
{
subdiv_ccg_eval_grid_element_limit(data, ptex_face_index, u, v, element);
subdiv_ccg_eval_grid_element_mask(data, ptex_face_index, u, v, element);
subdiv_ccg_eval_grid_element_limit(subdiv, subdiv_ccg, ptex_face_index, u, v, element);
subdiv_ccg_eval_grid_element_mask(subdiv_ccg, mask_evaluator, ptex_face_index, u, v, element);
}
static void subdiv_ccg_eval_regular_grid(CCGEvalGridsData *data, const int face_index)
static void subdiv_ccg_eval_regular_grid(Subdiv *subdiv,
SubdivCCG *subdiv_ccg,
const int *face_ptex_offset,
SubdivCCGMaskEvaluator *mask_evaluator,
SubdivCCGMaterialFlagsEvaluator *material_flags_evaluator,
const int face_index)
{
SubdivCCG *subdiv_ccg = data->subdiv_ccg;
const int ptex_face_index = data->face_ptex_offset[face_index];
const int ptex_face_index = face_ptex_offset[face_index];
const int grid_size = subdiv_ccg->grid_size;
const float grid_size_1_inv = 1.0f / (grid_size - 1);
const int element_size = element_size_bytes_get(subdiv_ccg);
@@ -247,20 +246,25 @@ static void subdiv_ccg_eval_regular_grid(CCGEvalGridsData *data, const int face_
BKE_subdiv_rotate_grid_to_quad(corner, grid_u, grid_v, &u, &v);
const size_t grid_element_index = size_t(y) * grid_size + x;
const size_t grid_element_offset = grid_element_index * element_size;
subdiv_ccg_eval_grid_element(data, ptex_face_index, u, v, &grid[grid_element_offset]);
subdiv_ccg_eval_grid_element(
subdiv, subdiv_ccg, mask_evaluator, ptex_face_index, u, v, &grid[grid_element_offset]);
}
}
/* Assign grid's face. */
grid_to_face_map[grid_index] = face_index;
/* Assign material flags. */
subdiv_ccg->grid_flag_mats[grid_index] = data->material_flags_evaluator->eval_material_flags(
data->material_flags_evaluator, face_index);
subdiv_ccg->grid_flag_mats[grid_index] = material_flags_evaluator->eval_material_flags(
material_flags_evaluator, face_index);
}
}
static void subdiv_ccg_eval_special_grid(CCGEvalGridsData *data, const int face_index)
static void subdiv_ccg_eval_special_grid(Subdiv *subdiv,
SubdivCCG *subdiv_ccg,
const int *face_ptex_offset,
SubdivCCGMaskEvaluator *mask_evaluator,
SubdivCCGMaterialFlagsEvaluator *material_flags_evaluator,
const int face_index)
{
SubdivCCG *subdiv_ccg = data->subdiv_ccg;
const int grid_size = subdiv_ccg->grid_size;
const float grid_size_1_inv = 1.0f / (grid_size - 1);
const int element_size = element_size_bytes_get(subdiv_ccg);
@@ -269,7 +273,7 @@ static void subdiv_ccg_eval_special_grid(CCGEvalGridsData *data, const int face_
const SubdivCCGFace *face = &faces[face_index];
for (int corner = 0; corner < face->num_grids; corner++) {
const int grid_index = face->start_grid_index + corner;
const int ptex_face_index = data->face_ptex_offset[face_index] + corner;
const int ptex_face_index = face_ptex_offset[face_index] + corner;
uchar *grid = (uchar *)subdiv_ccg->grids[grid_index];
for (int y = 0; y < grid_size; y++) {
const float u = 1.0f - (y * grid_size_1_inv);
@@ -277,29 +281,15 @@ static void subdiv_ccg_eval_special_grid(CCGEvalGridsData *data, const int face_
const float v = 1.0f - (x * grid_size_1_inv);
const size_t grid_element_index = size_t(y) * grid_size + x;
const size_t grid_element_offset = grid_element_index * element_size;
subdiv_ccg_eval_grid_element(data, ptex_face_index, u, v, &grid[grid_element_offset]);
subdiv_ccg_eval_grid_element(
subdiv, subdiv_ccg, mask_evaluator, ptex_face_index, u, v, &grid[grid_element_offset]);
}
}
/* Assign grid's face. */
grid_to_face_map[grid_index] = face_index;
/* Assign material flags. */
subdiv_ccg->grid_flag_mats[grid_index] = data->material_flags_evaluator->eval_material_flags(
data->material_flags_evaluator, face_index);
}
}
static void subdiv_ccg_eval_grids_task(void *__restrict userdata_v,
const int face_index,
const TaskParallelTLS *__restrict /*tls*/)
{
CCGEvalGridsData *data = static_cast<CCGEvalGridsData *>(userdata_v);
SubdivCCG *subdiv_ccg = data->subdiv_ccg;
SubdivCCGFace *face = &subdiv_ccg->faces[face_index];
if (face->num_grids == 4) {
subdiv_ccg_eval_regular_grid(data, face_index);
}
else {
subdiv_ccg_eval_special_grid(data, face_index);
subdiv_ccg->grid_flag_mats[grid_index] = material_flags_evaluator->eval_material_flags(
material_flags_evaluator, face_index);
}
}
@@ -308,20 +298,30 @@ static bool subdiv_ccg_evaluate_grids(SubdivCCG *subdiv_ccg,
SubdivCCGMaskEvaluator *mask_evaluator,
SubdivCCGMaterialFlagsEvaluator *material_flags_evaluator)
{
using namespace blender;
OpenSubdiv_TopologyRefiner *topology_refiner = subdiv->topology_refiner;
const int num_faces = topology_refiner->getNumFaces(topology_refiner);
/* Initialize data passed to all the tasks. */
CCGEvalGridsData data;
data.subdiv_ccg = subdiv_ccg;
data.subdiv = subdiv;
data.face_ptex_offset = BKE_subdiv_face_ptex_offset_get(subdiv);
data.mask_evaluator = mask_evaluator;
data.material_flags_evaluator = material_flags_evaluator;
/* Threaded grids evaluation. */
TaskParallelSettings parallel_range_settings;
BLI_parallel_range_settings_defaults(&parallel_range_settings);
BLI_task_parallel_range(
0, num_faces, &data, subdiv_ccg_eval_grids_task, &parallel_range_settings);
const int *face_ptex_offset = BKE_subdiv_face_ptex_offset_get(subdiv);
threading::parallel_for(IndexRange(num_faces), 1024, [&](const IndexRange range) {
for (const int face_index : range) {
if (subdiv_ccg->faces[face_index].num_grids == 4) {
subdiv_ccg_eval_regular_grid(subdiv,
subdiv_ccg,
face_ptex_offset,
mask_evaluator,
material_flags_evaluator,
face_index);
}
else {
subdiv_ccg_eval_special_grid(subdiv,
subdiv_ccg,
face_ptex_offset,
mask_evaluator,
material_flags_evaluator,
face_index);
}
}
});
/* If displacement is used, need to calculate normals after all final
* coordinates are known. */
if (subdiv->displacement_evaluator != nullptr) {
@@ -640,15 +640,6 @@ void BKE_subdiv_ccg_key_top_level(CCGKey *key, const SubdivCCG *subdiv_ccg)
/** \name Normals
* \{ */
struct RecalcInnerNormalsData {
SubdivCCG *subdiv_ccg;
CCGKey *key;
};
struct RecalcInnerNormalsTLSData {
float (*face_normals)[3];
};
/* Evaluate high-res face normals, for faces which corresponds to grid elements
*
* {(x, y), {x + 1, y}, {x + 1, y + 1}, {x, y + 1}}
@@ -656,16 +647,12 @@ struct RecalcInnerNormalsTLSData {
* The result is stored in normals storage from TLS. */
static void subdiv_ccg_recalc_inner_face_normals(SubdivCCG *subdiv_ccg,
CCGKey *key,
RecalcInnerNormalsTLSData *tls,
MutableSpan<float3> face_normals,
const int grid_index)
{
const int grid_size = subdiv_ccg->grid_size;
const int grid_size_1 = grid_size - 1;
CCGElem *grid = subdiv_ccg->grids[grid_index];
if (tls->face_normals == nullptr) {
tls->face_normals = static_cast<float(*)[3]>(
MEM_malloc_arrayN(grid_size_1 * grid_size_1, sizeof(float[3]), "CCG TLS normals"));
}
for (int y = 0; y < grid_size - 1; y++) {
for (int x = 0; x < grid_size - 1; x++) {
CCGElem *grid_elements[4] = {
@@ -681,7 +668,7 @@ static void subdiv_ccg_recalc_inner_face_normals(SubdivCCG *subdiv_ccg,
CCG_elem_co(key, grid_elements[3]),
};
const int face_index = y * grid_size_1 + x;
float *face_normal = tls->face_normals[face_index];
float *face_normal = face_normals[face_index];
normal_quad_v3(face_normal, co[0], co[1], co[2], co[3]);
}
}
@@ -690,13 +677,12 @@ static void subdiv_ccg_recalc_inner_face_normals(SubdivCCG *subdiv_ccg,
/* Average normals at every grid element, using adjacent faces normals. */
static void subdiv_ccg_average_inner_face_normals(SubdivCCG *subdiv_ccg,
CCGKey *key,
RecalcInnerNormalsTLSData *tls,
const Span<float3> face_normals,
const int grid_index)
{
const int grid_size = subdiv_ccg->grid_size;
const int grid_size_1 = grid_size - 1;
CCGElem *grid = subdiv_ccg->grids[grid_index];
const float(*face_normals)[3] = tls->face_normals;
for (int y = 0; y < grid_size; y++) {
for (int x = 0; x < grid_size; x++) {
float normal_acc[3] = {0.0f, 0.0f, 0.0f};
@@ -726,42 +712,28 @@ static void subdiv_ccg_average_inner_face_normals(SubdivCCG *subdiv_ccg,
}
}
static void subdiv_ccg_recalc_inner_normal_task(void *__restrict userdata_v,
const int grid_index,
const TaskParallelTLS *__restrict tls_v)
{
RecalcInnerNormalsData *data = static_cast<RecalcInnerNormalsData *>(userdata_v);
RecalcInnerNormalsTLSData *tls = static_cast<RecalcInnerNormalsTLSData *>(tls_v->userdata_chunk);
subdiv_ccg_recalc_inner_face_normals(data->subdiv_ccg, data->key, tls, grid_index);
subdiv_ccg_average_inner_face_normals(data->subdiv_ccg, data->key, tls, grid_index);
}
static void subdiv_ccg_recalc_inner_normal_free(const void *__restrict /*userdata*/,
void *__restrict tls_v)
{
RecalcInnerNormalsTLSData *tls = static_cast<RecalcInnerNormalsTLSData *>(tls_v);
MEM_SAFE_FREE(tls->face_normals);
}
/* Recalculate normals which corresponds to non-boundaries elements of grids. */
static void subdiv_ccg_recalc_inner_grid_normals(SubdivCCG *subdiv_ccg)
{
using namespace blender;
CCGKey key;
BKE_subdiv_ccg_key_top_level(&key, subdiv_ccg);
RecalcInnerNormalsData data{};
data.subdiv_ccg = subdiv_ccg;
data.key = &key;
RecalcInnerNormalsTLSData tls_data = {nullptr};
TaskParallelSettings parallel_range_settings;
BLI_parallel_range_settings_defaults(&parallel_range_settings);
parallel_range_settings.userdata_chunk = &tls_data;
parallel_range_settings.userdata_chunk_size = sizeof(tls_data);
parallel_range_settings.func_free = subdiv_ccg_recalc_inner_normal_free;
BLI_task_parallel_range(0,
subdiv_ccg->num_grids,
&data,
subdiv_ccg_recalc_inner_normal_task,
&parallel_range_settings);
const int grid_size_1 = subdiv_ccg->grid_size - 1;
threading::EnumerableThreadSpecific<Array<float3>> face_normals_tls(
Array<float3>(grid_size_1 * grid_size_1));
const SubdivCCGFace *faces = subdiv_ccg->faces;
threading::parallel_for(IndexRange(subdiv_ccg->num_faces), 1024, [&](const IndexRange range) {
MutableSpan<float3> face_normals = face_normals_tls.local();
for (const int face_index : range) {
const SubdivCCGFace &face = faces[face_index];
for (const int grid_index : IndexRange(face.start_grid_index, face.num_grids)) {
subdiv_ccg_recalc_inner_face_normals(subdiv_ccg, &key, face_normals, grid_index);
subdiv_ccg_average_inner_face_normals(subdiv_ccg, &key, face_normals, grid_index);
}
}
});
}
void BKE_subdiv_ccg_recalc_normals(SubdivCCG *subdiv_ccg)
@@ -774,59 +746,31 @@ void BKE_subdiv_ccg_recalc_normals(SubdivCCG *subdiv_ccg)
BKE_subdiv_ccg_average_grids(subdiv_ccg);
}
struct RecalcModifiedInnerNormalsData {
SubdivCCG *subdiv_ccg;
CCGKey *key;
SubdivCCGFace **effected_ccg_faces;
};
static void subdiv_ccg_recalc_modified_inner_normal_task(void *__restrict userdata_v,
const int face_index,
const TaskParallelTLS *__restrict tls_v)
{
RecalcModifiedInnerNormalsData *data = static_cast<RecalcModifiedInnerNormalsData *>(userdata_v);
SubdivCCG *subdiv_ccg = data->subdiv_ccg;
CCGKey *key = data->key;
RecalcInnerNormalsTLSData *tls = static_cast<RecalcInnerNormalsTLSData *>(tls_v->userdata_chunk);
SubdivCCGFace **faces = data->effected_ccg_faces;
SubdivCCGFace *face = faces[face_index];
const int num_face_grids = face->num_grids;
for (int i = 0; i < num_face_grids; i++) {
const int grid_index = face->start_grid_index + i;
subdiv_ccg_recalc_inner_face_normals(data->subdiv_ccg, data->key, tls, grid_index);
subdiv_ccg_average_inner_face_normals(data->subdiv_ccg, data->key, tls, grid_index);
}
subdiv_ccg_average_inner_face_grids(subdiv_ccg, key, face);
}
static void subdiv_ccg_recalc_modified_inner_normal_free(const void *__restrict /*userdata*/,
void *__restrict tls_v)
{
RecalcInnerNormalsTLSData *tls = static_cast<RecalcInnerNormalsTLSData *>(tls_v);
MEM_SAFE_FREE(tls->face_normals);
}
static void subdiv_ccg_recalc_modified_inner_grid_normals(SubdivCCG *subdiv_ccg,
SubdivCCGFace **effected_faces,
int num_effected_faces)
{
using namespace blender;
CCGKey key;
BKE_subdiv_ccg_key_top_level(&key, subdiv_ccg);
RecalcModifiedInnerNormalsData data{};
data.subdiv_ccg = subdiv_ccg;
data.key = &key;
data.effected_ccg_faces = (SubdivCCGFace **)effected_faces;
RecalcInnerNormalsTLSData tls_data = {nullptr};
TaskParallelSettings parallel_range_settings;
BLI_parallel_range_settings_defaults(&parallel_range_settings);
parallel_range_settings.userdata_chunk = &tls_data;
parallel_range_settings.userdata_chunk_size = sizeof(tls_data);
parallel_range_settings.func_free = subdiv_ccg_recalc_modified_inner_normal_free;
BLI_task_parallel_range(0,
num_effected_faces,
&data,
subdiv_ccg_recalc_modified_inner_normal_task,
&parallel_range_settings);
const int grid_size_1 = subdiv_ccg->grid_size - 1;
threading::EnumerableThreadSpecific<Array<float3>> face_normals_tls(
Array<float3>(grid_size_1 * grid_size_1));
threading::parallel_for(IndexRange(num_effected_faces), 1024, [&](const IndexRange range) {
MutableSpan<float3> tls = face_normals_tls.local();
for (const int i : range) {
SubdivCCGFace *face = effected_faces[i];
const int num_face_grids = face->num_grids;
for (int i = 0; i < num_face_grids; i++) {
const int grid_index = face->start_grid_index + i;
subdiv_ccg_recalc_inner_face_normals(subdiv_ccg, &key, tls, grid_index);
subdiv_ccg_average_inner_face_normals(subdiv_ccg, &key, tls, grid_index);
}
subdiv_ccg_average_inner_face_grids(subdiv_ccg, &key, face);
}
});
}
void BKE_subdiv_ccg_update_normals(SubdivCCG *subdiv_ccg,
@@ -971,34 +915,10 @@ static void subdiv_ccg_average_inner_face_grids(SubdivCCG *subdiv_ccg,
}
}
static void subdiv_ccg_average_inner_grids_task(void *__restrict userdata_v,
const int face_index,
const TaskParallelTLS *__restrict /*tls_v*/)
{
AverageInnerGridsData *data = static_cast<AverageInnerGridsData *>(userdata_v);
SubdivCCG *subdiv_ccg = data->subdiv_ccg;
CCGKey *key = data->key;
SubdivCCGFace *faces = subdiv_ccg->faces;
SubdivCCGFace *face = &faces[face_index];
subdiv_ccg_average_inner_face_grids(subdiv_ccg, key, face);
}
struct AverageGridsBoundariesData {
SubdivCCG *subdiv_ccg;
CCGKey *key;
/* Optional lookup table. Maps task index to index in `subdiv_ccg->adjacent_vertices`. */
const int *adjacent_edge_index_map;
};
struct AverageGridsBoundariesTLSData {
GridElementAccumulator *accumulators;
};
static void subdiv_ccg_average_grids_boundary(SubdivCCG *subdiv_ccg,
CCGKey *key,
SubdivCCGAdjacentEdge *adjacent_edge,
AverageGridsBoundariesTLSData *tls)
MutableSpan<GridElementAccumulator> accumulators)
{
const int num_adjacent_faces = adjacent_edge->num_adjacent_faces;
const int grid_size2 = subdiv_ccg->grid_size * 2;
@@ -1006,59 +926,29 @@ static void subdiv_ccg_average_grids_boundary(SubdivCCG *subdiv_ccg,
/* Nothing to average with. */
return;
}
if (tls->accumulators == nullptr) {
tls->accumulators = static_cast<GridElementAccumulator *>(
MEM_calloc_arrayN(grid_size2, sizeof(GridElementAccumulator), "average accumulators"));
}
else {
for (int i = 1; i < grid_size2 - 1; i++) {
element_accumulator_init(&tls->accumulators[i]);
}
for (int i = 1; i < grid_size2 - 1; i++) {
element_accumulator_init(&accumulators[i]);
}
for (int face_index = 0; face_index < num_adjacent_faces; face_index++) {
for (int i = 1; i < grid_size2 - 1; i++) {
CCGElem *grid_element = subdiv_ccg_coord_to_elem(
key, subdiv_ccg, &adjacent_edge->boundary_coords[face_index][i]);
element_accumulator_add(&tls->accumulators[i], subdiv_ccg, key, grid_element);
element_accumulator_add(&accumulators[i], subdiv_ccg, key, grid_element);
}
}
for (int i = 1; i < grid_size2 - 1; i++) {
element_accumulator_mul_fl(&tls->accumulators[i], 1.0f / num_adjacent_faces);
element_accumulator_mul_fl(&accumulators[i], 1.0f / num_adjacent_faces);
}
/* Copy averaged value to all the other faces. */
for (int face_index = 0; face_index < num_adjacent_faces; face_index++) {
for (int i = 1; i < grid_size2 - 1; i++) {
CCGElem *grid_element = subdiv_ccg_coord_to_elem(
key, subdiv_ccg, &adjacent_edge->boundary_coords[face_index][i]);
element_accumulator_copy(subdiv_ccg, key, grid_element, &tls->accumulators[i]);
element_accumulator_copy(subdiv_ccg, key, grid_element, &accumulators[i]);
}
}
}
static void subdiv_ccg_average_grids_boundaries_task(void *__restrict userdata_v,
const int n,
const TaskParallelTLS *__restrict tls_v)
{
AverageGridsBoundariesData *data = static_cast<AverageGridsBoundariesData *>(userdata_v);
const int adjacent_edge_index = data->adjacent_edge_index_map ?
data->adjacent_edge_index_map[n] :
n;
AverageGridsBoundariesTLSData *tls = static_cast<AverageGridsBoundariesTLSData *>(
tls_v->userdata_chunk);
SubdivCCG *subdiv_ccg = data->subdiv_ccg;
CCGKey *key = data->key;
SubdivCCGAdjacentEdge *adjacent_edge = &subdiv_ccg->adjacent_edges[adjacent_edge_index];
subdiv_ccg_average_grids_boundary(subdiv_ccg, key, adjacent_edge, tls);
}
static void subdiv_ccg_average_grids_boundaries_free(const void *__restrict /*userdata*/,
void *__restrict tls_v)
{
AverageGridsBoundariesTLSData *tls = static_cast<AverageGridsBoundariesTLSData *>(tls_v);
MEM_SAFE_FREE(tls->accumulators);
}
struct AverageGridsCornerData {
SubdivCCG *subdiv_ccg;
CCGKey *key;
@@ -1092,45 +982,39 @@ static void subdiv_ccg_average_grids_corners(SubdivCCG *subdiv_ccg,
}
}
static void subdiv_ccg_average_grids_corners_task(void *__restrict userdata_v,
const int n,
const TaskParallelTLS *__restrict /*tls_v*/)
{
AverageGridsCornerData *data = static_cast<AverageGridsCornerData *>(userdata_v);
const int adjacent_vertex_index = data->adjacent_vert_index_map ?
data->adjacent_vert_index_map[n] :
n;
SubdivCCG *subdiv_ccg = data->subdiv_ccg;
CCGKey *key = data->key;
SubdivCCGAdjacentVertex *adjacent_vertex = &subdiv_ccg->adjacent_vertices[adjacent_vertex_index];
subdiv_ccg_average_grids_corners(subdiv_ccg, key, adjacent_vertex);
}
static void subdiv_ccg_average_boundaries(SubdivCCG *subdiv_ccg,
CCGKey *key,
const int *adjacent_edge_index_map,
int num_adjacent_edges)
{
TaskParallelSettings parallel_range_settings;
BLI_parallel_range_settings_defaults(&parallel_range_settings);
AverageGridsBoundariesData boundaries_data{};
boundaries_data.subdiv_ccg = subdiv_ccg;
boundaries_data.key = key;
boundaries_data.adjacent_edge_index_map = adjacent_edge_index_map;
AverageGridsBoundariesTLSData tls_data = {nullptr};
parallel_range_settings.userdata_chunk = &tls_data;
parallel_range_settings.userdata_chunk_size = sizeof(tls_data);
parallel_range_settings.func_free = subdiv_ccg_average_grids_boundaries_free;
BLI_task_parallel_range(0,
num_adjacent_edges,
&boundaries_data,
subdiv_ccg_average_grids_boundaries_task,
&parallel_range_settings);
using namespace blender;
threading::EnumerableThreadSpecific<Array<GridElementAccumulator>> all_accumulators(
Array<GridElementAccumulator>(subdiv_ccg->grid_size * 2));
threading::parallel_for(IndexRange(num_adjacent_edges), 1024, [&](const IndexRange range) {
MutableSpan<GridElementAccumulator> accumulators = all_accumulators.local();
for (const int i : range) {
const int adjacent_edge_index = adjacent_edge_index_map[i];
SubdivCCGAdjacentEdge *adjacent_edge = &subdiv_ccg->adjacent_edges[adjacent_edge_index];
subdiv_ccg_average_grids_boundary(subdiv_ccg, key, adjacent_edge, accumulators);
}
});
}
static void subdiv_ccg_average_all_boundaries(SubdivCCG *subdiv_ccg, CCGKey *key)
{
subdiv_ccg_average_boundaries(subdiv_ccg, key, nullptr, subdiv_ccg->num_adjacent_edges);
using namespace blender;
threading::EnumerableThreadSpecific<Array<GridElementAccumulator>> all_accumulators(
Array<GridElementAccumulator>(subdiv_ccg->grid_size * 2));
threading::parallel_for(
IndexRange(subdiv_ccg->num_adjacent_edges), 1024, [&](const IndexRange range) {
MutableSpan<GridElementAccumulator> accumulators = all_accumulators.local();
for (const int i : range) {
SubdivCCGAdjacentEdge *adjacent_edge = &subdiv_ccg->adjacent_edges[i];
subdiv_ccg_average_grids_boundary(subdiv_ccg, key, adjacent_edge, accumulators);
}
});
}
static void subdiv_ccg_average_corners(SubdivCCG *subdiv_ccg,
@@ -1138,21 +1022,25 @@ static void subdiv_ccg_average_corners(SubdivCCG *subdiv_ccg,
const int *adjacent_vert_index_map,
int num_adjacent_vertices)
{
TaskParallelSettings parallel_range_settings;
BLI_parallel_range_settings_defaults(&parallel_range_settings);
AverageGridsCornerData corner_data{};
corner_data.subdiv_ccg = subdiv_ccg;
corner_data.key = key;
corner_data.adjacent_vert_index_map = adjacent_vert_index_map;
BLI_task_parallel_range(0,
num_adjacent_vertices,
&corner_data,
subdiv_ccg_average_grids_corners_task,
&parallel_range_settings);
using namespace blender;
threading::parallel_for(IndexRange(num_adjacent_vertices), 1024, [&](const IndexRange range) {
for (const int i : range) {
const int adjacent_vert_index = adjacent_vert_index_map[i];
SubdivCCGAdjacentVertex *adjacent_vert = &subdiv_ccg->adjacent_vertices[adjacent_vert_index];
subdiv_ccg_average_grids_corners(subdiv_ccg, key, adjacent_vert);
}
});
}
static void subdiv_ccg_average_all_corners(SubdivCCG *subdiv_ccg, CCGKey *key)
{
subdiv_ccg_average_corners(subdiv_ccg, key, nullptr, subdiv_ccg->num_adjacent_vertices);
using namespace blender;
threading::parallel_for(
IndexRange(subdiv_ccg->num_adjacent_vertices), 1024, [&](const IndexRange range) {
for (const int i : range) {
SubdivCCGAdjacentVertex *adjacent_vert = &subdiv_ccg->adjacent_vertices[i];
subdiv_ccg_average_grids_corners(subdiv_ccg, key, adjacent_vert);
}
});
}
static void subdiv_ccg_average_all_boundaries_and_corners(SubdivCCG *subdiv_ccg, CCGKey *key)
@@ -1163,20 +1051,16 @@ static void subdiv_ccg_average_all_boundaries_and_corners(SubdivCCG *subdiv_ccg,
void BKE_subdiv_ccg_average_grids(SubdivCCG *subdiv_ccg)
{
using namespace blender;
CCGKey key;
BKE_subdiv_ccg_key_top_level(&key, subdiv_ccg);
TaskParallelSettings parallel_range_settings;
BLI_parallel_range_settings_defaults(&parallel_range_settings);
/* Average inner boundaries of grids (within one face), across faces
* from different face-corners. */
AverageInnerGridsData inner_data{};
inner_data.subdiv_ccg = subdiv_ccg;
inner_data.key = &key;
BLI_task_parallel_range(0,
subdiv_ccg->num_faces,
&inner_data,
subdiv_ccg_average_inner_grids_task,
&parallel_range_settings);
threading::parallel_for(IndexRange(subdiv_ccg->num_faces), 1024, [&](const IndexRange range) {
for (const int face_index : range) {
subdiv_ccg_average_inner_face_grids(subdiv_ccg, &key, &subdiv_ccg->faces[face_index]);
}
});
subdiv_ccg_average_all_boundaries_and_corners(subdiv_ccg, &key);
}
@@ -1257,40 +1141,18 @@ void subdiv_ccg_average_faces_boundaries_and_corners(SubdivCCG *subdiv_ccg,
BLI_gset_free(adjacent_edges, nullptr);
}
struct StitchFacesInnerGridsData {
SubdivCCG *subdiv_ccg;
CCGKey *key;
SubdivCCGFace **effected_ccg_faces;
};
static void subdiv_ccg_stitch_face_inner_grids_task(void *__restrict userdata_v,
const int face_index,
const TaskParallelTLS *__restrict /*tls_v*/)
{
StitchFacesInnerGridsData *data = static_cast<StitchFacesInnerGridsData *>(userdata_v);
SubdivCCG *subdiv_ccg = data->subdiv_ccg;
CCGKey *key = data->key;
SubdivCCGFace *face = data->effected_ccg_faces[face_index];
subdiv_ccg_average_inner_face_grids(subdiv_ccg, key, face);
}
void BKE_subdiv_ccg_average_stitch_faces(SubdivCCG *subdiv_ccg,
SubdivCCGFace **effected_faces,
int num_effected_faces)
{
using namespace blender;
CCGKey key;
BKE_subdiv_ccg_key_top_level(&key, subdiv_ccg);
StitchFacesInnerGridsData data{};
data.subdiv_ccg = subdiv_ccg;
data.key = &key;
data.effected_ccg_faces = effected_faces;
TaskParallelSettings parallel_range_settings;
BLI_parallel_range_settings_defaults(&parallel_range_settings);
BLI_task_parallel_range(0,
num_effected_faces,
&data,
subdiv_ccg_stitch_face_inner_grids_task,
&parallel_range_settings);
threading::parallel_for(IndexRange(num_effected_faces), 1024, [&](const IndexRange range) {
for (const int i : range) {
subdiv_ccg_average_inner_face_grids(subdiv_ccg, &key, effected_faces[i]);
}
});
/* TODO(sergey): Only average elements which are adjacent to modified
* faces. */
subdiv_ccg_average_all_boundaries_and_corners(subdiv_ccg, &key);