ImBuf: Remove pre-2.80 Texture mipmaps/filters

Removes various image filtering/mipmapping leftovers from
pre-2.80 days.

Code: removes all mipmap handling from ImBuf (which is about half of
ImBuf struct size), removes now unused "sample procedural texture
with mipmaps" code, now-unused FELINE filter, etc. The osatex
parameter to various CPU texture sampling functions is never
actually used, which means none of the mipmap code was ever executing.

User visible part: there were settings on the legacy Texture data
block (as used by Brushes etc.), under Sampling section: "MIP Map",
"Gaussian Filter", "Filter Type", "Eccentricity", "Minimum Size" --
they had no effect anywhere, so they are gone, and what remains is
only "Interpolation" and "Size".

RNA / Python API part: removes the ImageTexture RNA properties
corresponding to the above: filter_type, use_mipmap, use_mipmap_gauss,
filter_lightprobes, filter_eccentricity, use_filter_size_min.

Pull Request: https://projects.blender.org/blender/blender/pulls/139978
This commit is contained in:
Aras Pranckevicius
2025-06-09 11:35:19 +02:00
committed by Aras Pranckevicius
parent 3ee94825ce
commit f685f23434
33 changed files with 38 additions and 2024 deletions

View File

@@ -1027,7 +1027,6 @@ url_manual_mapping = (
("bpy.types.geometrynodesetinstancetransform*", "modeling/geometry_nodes/instances/set_instance_transform.html#bpy-types-geometrynodesetinstancetransform"),
("bpy.types.greasepencilv3.ghost_after_range*", "grease_pencil/properties/onion_skinning.html#bpy-types-greasepencilv3-ghost-after-range"),
("bpy.types.imagetexture.use_calculate_alpha*", "render/materials/legacy_textures/types/image_movie.html#bpy-types-imagetexture-use-calculate-alpha"),
("bpy.types.imagetexture.use_filter_size_min*", "render/materials/legacy_textures/types/image_movie.html#bpy-types-imagetexture-use-filter-size-min"),
("bpy.types.material.max_vertex_displacement*", "render/eevee/material_settings.html#bpy-types-material-max-vertex-displacement"),
("bpy.types.material.use_raytrace_refraction*", "render/eevee/material_settings.html#bpy-types-material-use-raytrace-refraction"),
("bpy.types.materialgpencilstyle.show_stroke*", "grease_pencil/materials/properties.html#bpy-types-materialgpencilstyle-show-stroke"),
@@ -1400,7 +1399,6 @@ url_manual_mapping = (
("bpy.types.greasepencilv3.use_onion_loop*", "grease_pencil/properties/onion_skinning.html#bpy-types-greasepencilv3-use-onion-loop"),
("bpy.types.imageformatsettings.exr_codec*", "files/media/image_formats.html#bpy-types-imageformatsettings-exr-codec"),
("bpy.types.imagepaint.use_normal_falloff*", "sculpt_paint/brush/falloff.html#bpy-types-imagepaint-use-normal-falloff"),
("bpy.types.imagetexture.use_mipmap_gauss*", "render/materials/legacy_textures/types/image_movie.html#bpy-types-imagetexture-use-mipmap-gauss"),
("bpy.types.layercollection.hide_viewport*", "editors/outliner/interface.html#bpy-types-layercollection-hide-viewport"),
("bpy.types.layercollection.indirect_only*", "editors/outliner/interface.html#bpy-types-layercollection-indirect-only"),
("bpy.types.light.use_absolute_resolution*", "render/eevee/light_settings.html#bpy-types-light-use-absolute-resolution"),
@@ -2156,7 +2154,6 @@ url_manual_mapping = (
("bpy.types.image.use_view_as_render*", "editors/image/image_settings.html#bpy-types-image-use-view-as-render"),
("bpy.types.imagepaint.interpolation*", "sculpt_paint/texture_paint/tool_settings/texture_slots.html#bpy-types-imagepaint-interpolation"),
("bpy.types.imagetexture.filter_size*", "render/materials/legacy_textures/types/image_movie.html#bpy-types-imagetexture-filter-size"),
("bpy.types.imagetexture.filter_type*", "render/materials/legacy_textures/types/image_movie.html#bpy-types-imagetexture-filter-type"),
("bpy.types.keyingset.bl_description*", "animation/keyframes/keying_sets.html#bpy-types-keyingset-bl-description"),
("bpy.types.linestyle*modifier_noise*", "render/freestyle/view_layer/line_style/modifiers/color/noise.html#bpy-types-linestyle-modifier-noise"),
("bpy.types.maintainvolumeconstraint*", "animation/constraints/transform/maintain_volume.html#bpy-types-maintainvolumeconstraint"),
@@ -2335,7 +2332,6 @@ url_manual_mapping = (
("bpy.types.greasepencilgrid.offset*", "grease_pencil/properties/display.html#bpy-types-greasepencilgrid-offset"),
("bpy.types.greasepencillayer.scale*", "grease_pencil/properties/layers.html#bpy-types-greasepencillayer-scale"),
("bpy.types.imagepaint.normal_angle*", "sculpt_paint/brush/falloff.html#bpy-types-imagepaint-normal-angle"),
("bpy.types.imagetexture.use_mipmap*", "render/materials/legacy_textures/types/image_movie.html#bpy-types-imagetexture-use-mipmap"),
("bpy.types.keyingsetpath.data_path*", "animation/keyframes/keying_sets.html#bpy-types-keyingsetpath-data-path"),
("bpy.types.keyingsets.active_index*", "animation/keyframes/keying_sets.html#bpy-types-keyingsets-active-index"),
("bpy.types.keymapitem.key_modifier*", "editors/preferences/keymap.html#bpy-types-keymapitem-key-modifier"),

View File

@@ -408,20 +408,6 @@ class TEXTURE_PT_image_settings(TextureTypePanel, Panel):
layout.template_image(tex, "image", tex.image_user)
def texture_filter_common(tex, layout):
layout.prop(tex, "filter_type", text="Filter Type")
if tex.use_mipmap and tex.filter_type in {'AREA', 'EWA', 'FELINE'}:
col = layout.column()
if tex.filter_type == 'FELINE':
col.prop(tex, "filter_lightprobes", text="Light Probes")
else:
col.prop(tex, "filter_eccentricity", text="Eccentricity")
layout.prop(tex, "filter_size", text="Size")
layout.prop(tex, "use_filter_size_min", text="Minimum Size")
class TEXTURE_PT_image_sampling(TextureTypePanel, Panel):
bl_label = "Sampling"
bl_options = {'DEFAULT_CLOSED'}
@@ -442,18 +428,7 @@ class TEXTURE_PT_image_sampling(TextureTypePanel, Panel):
col = flow.column()
col.prop(tex, "use_interpolation")
col.separator()
col = flow.column()
col.prop(tex, "use_mipmap")
sub = col.column()
sub.active = tex.use_mipmap
sub.prop(tex, "use_mipmap_gauss", text="Gaussian Filter")
col.separator()
texture_filter_common(tex, flow)
col.prop(tex, "filter_size", text="Size")
class TEXTURE_PT_image_alpha(TextureTypePanel, Panel):

View File

@@ -882,8 +882,7 @@ static void do_texture_effector(EffectorCache *eff,
madd_v3_v3fl(tex_co, efd->nor, fac);
}
hasrgb = multitex_ext(
eff->pd->tex, tex_co, nullptr, nullptr, 0, result, 0, nullptr, true, false);
hasrgb = multitex_ext(eff->pd->tex, tex_co, result, 0, nullptr, true, false);
if (hasrgb && mode == PFIELD_TEX_RGB) {
force[0] = (0.5f - result->trgba[0]) * strength;
@@ -894,15 +893,15 @@ static void do_texture_effector(EffectorCache *eff,
strength /= nabla;
tex_co[0] += nabla;
multitex_ext(eff->pd->tex, tex_co, nullptr, nullptr, 0, result + 1, 0, nullptr, true, false);
multitex_ext(eff->pd->tex, tex_co, result + 1, 0, nullptr, true, false);
tex_co[0] -= nabla;
tex_co[1] += nabla;
multitex_ext(eff->pd->tex, tex_co, nullptr, nullptr, 0, result + 2, 0, nullptr, true, false);
multitex_ext(eff->pd->tex, tex_co, result + 2, 0, nullptr, true, false);
tex_co[1] -= nabla;
tex_co[2] += nabla;
multitex_ext(eff->pd->tex, tex_co, nullptr, nullptr, 0, result + 3, 0, nullptr, true, false);
multitex_ext(eff->pd->tex, tex_co, result + 3, 0, nullptr, true, false);
if (mode == PFIELD_TEX_GRAD || !hasrgb) { /* if we don't have rgb fall back to grad */
/* generate intensity if texture only has rgb value */

View File

@@ -1556,11 +1556,6 @@ static uintptr_t image_mem_size(Image *image)
}
size += IMB_get_size_in_memory(ibuf);
for (int level = 0; level < IMB_MIPMAP_LEVELS; level++) {
ImBuf *ibufm = ibuf->mipmap[level];
size += IMB_get_size_in_memory(ibufm);
}
}
IMB_moviecacheIter_free(iter);
}

View File

@@ -796,13 +796,6 @@ void blo_do_versions_250(FileData *fd, Library * /*lib*/, Main *bmain)
}
}
/* texture filter */
LISTBASE_FOREACH (Tex *, tex, &bmain->textures) {
if (tex->afmax == 0) {
tex->afmax = 8;
}
}
LISTBASE_FOREACH (Scene *, sce, &bmain->scenes) {
ToolSettings *ts = sce->toolsettings;
if (!ts->uv_selectmode || ts->vgroup_weight == 0.0f) {

View File

@@ -334,12 +334,6 @@ static bool write_internal_bake_pixels(Image *image,
ibuf->userflags |= IB_RECT_INVALID;
}
/* force mipmap recalc */
if (ibuf->mipmap[0]) {
ibuf->userflags |= IB_MIPMAP_INVALID;
IMB_free_mipmaps(ibuf);
}
BKE_image_release_ibuf(image, ibuf, nullptr);
if (mask_buffer) {

View File

@@ -159,10 +159,6 @@ void imapaint_image_update(
return;
}
if (ibuf->mipmap[0]) {
ibuf->userflags |= IB_MIPMAP_INVALID;
}
IMB_partial_display_buffer_update_delayed(ibuf,
imapaintpartial.dirty_region.xmin,
imapaintpartial.dirty_region.ymin,

View File

@@ -2860,10 +2860,6 @@ static wmOperatorStatus image_flip_exec(bContext *C, wmOperator *op)
ibuf->userflags |= IB_DISPLAY_BUFFER_INVALID;
BKE_image_mark_dirty(ima, ibuf);
if (ibuf->mipmap[0]) {
ibuf->userflags |= IB_MIPMAP_INVALID;
}
ED_image_undo_push_end();
BKE_image_partial_update_mark_full_update(ima);
@@ -2934,10 +2930,6 @@ static wmOperatorStatus image_rotate_orthogonal_exec(bContext *C, wmOperator *op
ibuf->userflags |= IB_DISPLAY_BUFFER_INVALID;
BKE_image_mark_dirty(ima, ibuf);
if (ibuf->mipmap[0]) {
ibuf->userflags |= IB_MIPMAP_INVALID;
}
ED_image_undo_push_end();
BKE_image_partial_update_mark_full_update(ima);
@@ -3201,10 +3193,6 @@ static wmOperatorStatus image_invert_exec(bContext *C, wmOperator *op)
ibuf->userflags |= IB_DISPLAY_BUFFER_INVALID;
BKE_image_mark_dirty(ima, ibuf);
if (ibuf->mipmap[0]) {
ibuf->userflags |= IB_MIPMAP_INVALID;
}
ED_image_undo_push_end();
BKE_image_partial_update_mark_full_update(ima);

View File

@@ -349,9 +349,6 @@ static void ptile_restore_runtime_map(PaintTileMap *paint_tile_map)
if (ibuf->float_buffer.data) {
ibuf->userflags |= IB_RECT_INVALID; /* force recreate of char rect */
}
if (ibuf->mipmap[0]) {
ibuf->userflags |= IB_MIPMAP_INVALID; /* Force MIP-MAP recreation. */
}
ibuf->userflags |= IB_DISPLAY_BUFFER_INVALID;
BKE_image_release_ibuf(image, ibuf, nullptr);
@@ -633,9 +630,6 @@ static void uhandle_restore_list(ListBase *undo_handles, bool use_init)
if (ibuf->float_buffer.data) {
ibuf->userflags |= IB_RECT_INVALID; /* Force recreate of char `rect` */
}
if (ibuf->mipmap[0]) {
ibuf->userflags |= IB_MIPMAP_INVALID; /* Force MIP-MAP recreation. */
}
ibuf->userflags |= IB_DISPLAY_BUFFER_INVALID;
DEG_id_tag_update(&image->id, 0);

View File

@@ -120,8 +120,7 @@ ImBuf *IMB_allocFromBuffer(const uint8_t *byte_buffer,
* Assign the content of the corresponding buffer with the given data and ownership.
* The current content of the buffer is released corresponding to its ownership configuration.
*
* \note Does not modify the topology (width, height, number of channels)
* or the mipmaps in any way.
* \note Does not modify the topology (width, height, number of channels).
*/
void IMB_assign_byte_buffer(ImBuf *ibuf, uint8_t *buffer_data, ImBufOwnership ownership);
void IMB_assign_float_buffer(ImBuf *ibuf, float *buffer_data, ImBufOwnership ownership);
@@ -130,8 +129,7 @@ void IMB_assign_float_buffer(ImBuf *ibuf, float *buffer_data, ImBufOwnership own
* Assign the content and the color space of the corresponding buffer the data from the given
* buffer.
*
* \note Does not modify the topology (width, height, number of channels)
* or the mipmaps in any way.
* \note Does not modify the topology (width, height, number of channels).
*
* \note The ownership of the data in the source buffer is ignored.
*/
@@ -305,20 +303,9 @@ void IMB_mask_clear(ImBuf *ibuf, const char *mask, int val);
* will be used for the average. The mask will be set to one for the pixels which were written.
*/
void IMB_filter_extend(ImBuf *ibuf, char *mask, int filter);
/**
* Frees too (if there) and recreates new data.
*/
void IMB_makemipmap(ImBuf *ibuf, int use_filter);
/**
* Thread-safe version, only recreates existing maps.
*/
void IMB_remakemipmap(ImBuf *ibuf, int use_filter);
ImBuf *IMB_getmipmap(ImBuf *ibuf, int level);
void IMB_filtery(ImBuf *ibuf);
ImBuf *IMB_onehalf(ImBuf *ibuf1);
/** Interpolation filter used by `IMB_scale`. */
enum class IMBScaleFilter {
/** No filtering (point sampling). This is fastest but lowest quality. */
@@ -463,9 +450,6 @@ void IMB_buffer_byte_from_byte(unsigned char *rect_to,
void IMB_alpha_under_color_float(float *rect_float, int x, int y, float backcol[3]);
void IMB_alpha_under_color_byte(unsigned char *rect, int x, int y, const float backcol[3]);
ImBuf *IMB_half_x(ImBuf *ibuf1);
ImBuf *IMB_half_y(ImBuf *ibuf1);
void IMB_flipx(ImBuf *ibuf);
void IMB_flipy(ImBuf *ibuf);
@@ -550,7 +534,7 @@ void *imb_alloc_pixels(unsigned int x,
bool IMB_alloc_byte_pixels(ImBuf *ibuf, bool initialize_pixels = true);
/**
* Deallocate image byte storage. Also deallocates any mipmaps.
* Deallocate image byte storage.
*/
void IMB_free_byte_pixels(ImBuf *ibuf);
@@ -562,16 +546,11 @@ bool IMB_alloc_float_pixels(ImBuf *ibuf,
const unsigned int channels,
bool initialize_pixels = true);
/**
* Deallocate image float storage. Also deallocates any mipmaps.
* Deallocate image float storage.
*/
void IMB_free_float_pixels(ImBuf *ibuf);
/**
* Deallocate mipmaps.
*/
void IMB_free_mipmaps(ImBuf *ibuf);
/** Deallocate all CPU side data storage (byte, float, encoded, mipmaps). */
/** Deallocate all CPU side data storage (byte, float, encoded). */
void IMB_free_all_data(ImBuf *ibuf);
/* Free the GPU textures of the given image buffer, leaving the CPU buffers unchanged.

View File

@@ -24,7 +24,6 @@ class ColorSpace;
}
using ColorSpace = blender::ocio::ColorSpace;
#define IMB_MIPMAP_LEVELS 20
#define IMB_FILEPATH_SIZE 1024
/**
@@ -220,11 +219,6 @@ struct ImBuf {
/** Amount of dithering to apply, when converting float -> byte. */
float dither;
/* mipmapping */
/** MipMap levels, a series of halved images */
ImBuf *mipmap[IMB_MIPMAP_LEVELS];
int miptot, miplevel;
/* externally used data */
/** reference index for ImBuf lists */
int index;
@@ -273,8 +267,6 @@ struct ImBuf {
enum {
/** image needs to be saved is not the same as filename */
IB_BITMAPDIRTY = (1 << 1),
/** image mipmaps are invalid, need recreate */
IB_MIPMAP_INVALID = (1 << 2),
/** float buffer changed, needs recreation of byte rect */
IB_RECT_INVALID = (1 << 3),
/** either float or byte buffer changed, need to re-calculate display buffers */

View File

@@ -18,8 +18,3 @@ void IMB_premultiply_rect_float(float *rect_float, int channels, int w, int h);
void IMB_unpremultiply_rect(uint8_t *rect, char planes, int w, int h);
void IMB_unpremultiply_rect_float(float *rect_float, int channels, int w, int h);
/**
* Result in ibuf2, scaling should be done correctly.
*/
void imb_onehalf_no_alloc(ImBuf *ibuf2, ImBuf *ibuf1);

View File

@@ -161,32 +161,12 @@ auto imb_steal_buffer_data(BufferType &buffer) -> decltype(BufferType::data)
return nullptr;
}
void IMB_free_mipmaps(ImBuf *ibuf)
{
int a;
/* Do not trust ibuf->miptot, in some cases IMB_remakemipmap can leave unfreed unused levels,
* leading to memory leaks... */
for (a = 0; a < IMB_MIPMAP_LEVELS; a++) {
if (ibuf->mipmap[a] != nullptr) {
IMB_freeImBuf(ibuf->mipmap[a]);
ibuf->mipmap[a] = nullptr;
}
}
ibuf->miptot = 0;
}
void IMB_free_float_pixels(ImBuf *ibuf)
{
if (ibuf == nullptr) {
return;
}
imb_free_buffer(ibuf->float_buffer);
IMB_free_mipmaps(ibuf);
ibuf->flags &= ~IB_float_data;
}
@@ -195,11 +175,7 @@ void IMB_free_byte_pixels(ImBuf *ibuf)
if (ibuf == nullptr) {
return;
}
imb_free_buffer(ibuf->byte_buffer);
IMB_free_mipmaps(ibuf);
ibuf->flags &= ~IB_byte_data;
}
@@ -359,11 +335,8 @@ bool IMB_alloc_float_pixels(ImBuf *ibuf, const uint channels, bool initialize_pi
return false;
}
/* NOTE: Follows the historical code.
* Is unclear if it is desired or not to free mipmaps. If mipmaps are to be preserved a simple
* `imb_free_buffer(ibuf->float_buffer)` can be used instead. */
if (ibuf->float_buffer.data) {
IMB_free_float_pixels(ibuf); /* frees mipmap too, hrm */
IMB_free_float_pixels(ibuf);
}
if (!imb_alloc_buffer(
@@ -386,8 +359,6 @@ bool IMB_alloc_byte_pixels(ImBuf *ibuf, bool initialize_pixels)
return false;
}
/* Don't call IMB_free_byte_pixels, it frees mipmaps,
* this call is used only too give float buffers display. */
imb_free_buffer(ibuf->byte_buffer);
if (!imb_alloc_buffer(
@@ -600,7 +571,7 @@ ImBuf *IMB_dupImBuf(const ImBuf *ibuf1)
{
ImBuf *ibuf2, tbuf;
int flags = IB_uninitialized_pixels;
int a, x, y;
int x, y;
if (ibuf1 == nullptr) {
return nullptr;
@@ -656,9 +627,6 @@ ImBuf *IMB_dupImBuf(const ImBuf *ibuf1)
tbuf.byte_buffer = ibuf2->byte_buffer;
tbuf.float_buffer = ibuf2->float_buffer;
tbuf.encoded_buffer = ibuf2->encoded_buffer;
for (a = 0; a < IMB_MIPMAP_LEVELS; a++) {
tbuf.mipmap[a] = nullptr;
}
tbuf.dds_data.data = nullptr;
/* Set `malloc` flag. */
@@ -686,7 +654,6 @@ size_t IMB_get_pixel_count(const ImBuf *ibuf)
size_t IMB_get_size_in_memory(const ImBuf *ibuf)
{
int a;
size_t size = 0, channel_size = 0;
size += sizeof(ImBuf);
@@ -701,13 +668,5 @@ size_t IMB_get_size_in_memory(const ImBuf *ibuf)
size += channel_size * IMB_get_pixel_count(ibuf) * size_t(ibuf->channels);
if (ibuf->miptot) {
for (a = 0; a < ibuf->miptot; a++) {
if (ibuf->mipmap[a]) {
size += IMB_get_size_in_memory(ibuf->mipmap[a]);
}
}
}
return size;
}

View File

@@ -97,123 +97,6 @@ void IMB_filtery(ImBuf *ibuf)
}
}
static void imb_filterN(ImBuf *out, ImBuf *in)
{
BLI_assert(out->channels == in->channels);
BLI_assert(out->x == in->x && out->y == in->y);
const int channels = in->channels;
const int rowlen = in->x;
if (in->byte_buffer.data && out->byte_buffer.data) {
for (int y = 0; y < in->y; y++) {
/* setup rows */
const char *row2 = (const char *)in->byte_buffer.data + y * channels * rowlen;
const char *row1 = (y == 0) ? row2 : row2 - channels * rowlen;
const char *row3 = (y == in->y - 1) ? row2 : row2 + channels * rowlen;
char *cp = (char *)out->byte_buffer.data + y * channels * rowlen;
for (int x = 0; x < rowlen; x++) {
const char *r11, *r13, *r21, *r23, *r31, *r33;
if (x == 0) {
r11 = row1;
r21 = row2;
r31 = row3;
}
else {
r11 = row1 - channels;
r21 = row2 - channels;
r31 = row3 - channels;
}
if (x == rowlen - 1) {
r13 = row1;
r23 = row2;
r33 = row3;
}
else {
r13 = row1 + channels;
r23 = row2 + channels;
r33 = row3 + channels;
}
cp[0] = (r11[0] + 2 * row1[0] + r13[0] + 2 * r21[0] + 4 * row2[0] + 2 * r23[0] + r31[0] +
2 * row3[0] + r33[0]) >>
4;
cp[1] = (r11[1] + 2 * row1[1] + r13[1] + 2 * r21[1] + 4 * row2[1] + 2 * r23[1] + r31[1] +
2 * row3[1] + r33[1]) >>
4;
cp[2] = (r11[2] + 2 * row1[2] + r13[2] + 2 * r21[2] + 4 * row2[2] + 2 * r23[2] + r31[2] +
2 * row3[2] + r33[2]) >>
4;
cp[3] = (r11[3] + 2 * row1[3] + r13[3] + 2 * r21[3] + 4 * row2[3] + 2 * r23[3] + r31[3] +
2 * row3[3] + r33[3]) >>
4;
cp += channels;
row1 += channels;
row2 += channels;
row3 += channels;
}
}
}
if (in->float_buffer.data && out->float_buffer.data) {
for (int y = 0; y < in->y; y++) {
/* setup rows */
const float *row2 = (const float *)in->float_buffer.data + y * channels * rowlen;
const float *row1 = (y == 0) ? row2 : row2 - channels * rowlen;
const float *row3 = (y == in->y - 1) ? row2 : row2 + channels * rowlen;
float *cp = out->float_buffer.data + y * channels * rowlen;
for (int x = 0; x < rowlen; x++) {
const float *r11, *r13, *r21, *r23, *r31, *r33;
if (x == 0) {
r11 = row1;
r21 = row2;
r31 = row3;
}
else {
r11 = row1 - channels;
r21 = row2 - channels;
r31 = row3 - channels;
}
if (x == rowlen - 1) {
r13 = row1;
r23 = row2;
r33 = row3;
}
else {
r13 = row1 + channels;
r23 = row2 + channels;
r33 = row3 + channels;
}
cp[0] = (r11[0] + 2 * row1[0] + r13[0] + 2 * r21[0] + 4 * row2[0] + 2 * r23[0] + r31[0] +
2 * row3[0] + r33[0]) *
(1.0f / 16.0f);
cp[1] = (r11[1] + 2 * row1[1] + r13[1] + 2 * r21[1] + 4 * row2[1] + 2 * r23[1] + r31[1] +
2 * row3[1] + r33[1]) *
(1.0f / 16.0f);
cp[2] = (r11[2] + 2 * row1[2] + r13[2] + 2 * r21[2] + 4 * row2[2] + 2 * r23[2] + r31[2] +
2 * row3[2] + r33[2]) *
(1.0f / 16.0f);
cp[3] = (r11[3] + 2 * row1[3] + r13[3] + 2 * r21[3] + 4 * row2[3] + 2 * r23[3] + r31[3] +
2 * row3[3] + r33[3]) *
(1.0f / 16.0f);
cp += channels;
row1 += channels;
row2 += channels;
row3 += channels;
}
}
}
}
void IMB_mask_filter_extend(char *mask, int width, int height)
{
const char *row1, *row2, *row3;
@@ -449,85 +332,6 @@ void IMB_filter_extend(ImBuf *ibuf, char *mask, int filter)
}
}
void IMB_remakemipmap(ImBuf *ibuf, int use_filter)
{
ImBuf *hbuf = ibuf;
int curmap = 0;
ibuf->miptot = 1;
while (curmap < IMB_MIPMAP_LEVELS) {
if (ibuf->mipmap[curmap]) {
if (use_filter) {
ImBuf *nbuf = IMB_allocImBuf(hbuf->x, hbuf->y, hbuf->planes, hbuf->flags);
imb_filterN(nbuf, hbuf);
imb_onehalf_no_alloc(ibuf->mipmap[curmap], nbuf);
IMB_freeImBuf(nbuf);
}
else {
imb_onehalf_no_alloc(ibuf->mipmap[curmap], hbuf);
}
}
ibuf->miptot = curmap + 2;
hbuf = ibuf->mipmap[curmap];
if (hbuf) {
hbuf->miplevel = curmap + 1;
}
if (!hbuf || (hbuf->x <= 2 && hbuf->y <= 2)) {
break;
}
curmap++;
}
}
void IMB_makemipmap(ImBuf *ibuf, int use_filter)
{
ImBuf *hbuf = ibuf;
int curmap = 0;
IMB_free_mipmaps(ibuf);
/* no mipmap for non RGBA images */
if (ibuf->float_buffer.data && ibuf->channels < 4) {
return;
}
ibuf->miptot = 1;
while (curmap < IMB_MIPMAP_LEVELS) {
if (use_filter) {
ImBuf *nbuf = IMB_allocImBuf(hbuf->x, hbuf->y, hbuf->planes, hbuf->flags);
imb_filterN(nbuf, hbuf);
ibuf->mipmap[curmap] = IMB_onehalf(nbuf);
IMB_freeImBuf(nbuf);
}
else {
ibuf->mipmap[curmap] = IMB_onehalf(hbuf);
}
ibuf->miptot = curmap + 2;
hbuf = ibuf->mipmap[curmap];
hbuf->miplevel = curmap + 1;
if (hbuf->x < 2 && hbuf->y < 2) {
break;
}
curmap++;
}
}
ImBuf *IMB_getmipmap(ImBuf *ibuf, int level)
{
CLAMP(level, 0, ibuf->miptot - 1);
return (level == 0) ? ibuf : ibuf->mipmap[level - 1];
}
void IMB_premultiply_rect(uint8_t *rect, char planes, int w, int h)
{
uint8_t *cp;

View File

@@ -25,319 +25,6 @@ using blender::float3;
using blender::float4;
using blender::uchar4;
static void imb_half_x_no_alloc(ImBuf *ibuf2, ImBuf *ibuf1)
{
uchar *p1, *_p1, *dest;
short a, r, g, b;
int x, y;
float af, rf, gf, bf, *p1f, *_p1f, *destf;
bool do_rect, do_float;
do_rect = (ibuf1->byte_buffer.data != nullptr);
do_float = (ibuf1->float_buffer.data != nullptr && ibuf2->float_buffer.data != nullptr);
_p1 = ibuf1->byte_buffer.data;
dest = ibuf2->byte_buffer.data;
_p1f = ibuf1->float_buffer.data;
destf = ibuf2->float_buffer.data;
for (y = ibuf2->y; y > 0; y--) {
p1 = _p1;
p1f = _p1f;
for (x = ibuf2->x; x > 0; x--) {
if (do_rect) {
a = *(p1++);
b = *(p1++);
g = *(p1++);
r = *(p1++);
a += *(p1++);
b += *(p1++);
g += *(p1++);
r += *(p1++);
*(dest++) = a >> 1;
*(dest++) = b >> 1;
*(dest++) = g >> 1;
*(dest++) = r >> 1;
}
if (do_float) {
af = *(p1f++);
bf = *(p1f++);
gf = *(p1f++);
rf = *(p1f++);
af += *(p1f++);
bf += *(p1f++);
gf += *(p1f++);
rf += *(p1f++);
*(destf++) = 0.5f * af;
*(destf++) = 0.5f * bf;
*(destf++) = 0.5f * gf;
*(destf++) = 0.5f * rf;
}
}
if (do_rect) {
_p1 += (ibuf1->x << 2);
}
if (do_float) {
_p1f += (ibuf1->x << 2);
}
}
}
ImBuf *IMB_half_x(ImBuf *ibuf1)
{
ImBuf *ibuf2;
if (ibuf1 == nullptr) {
return nullptr;
}
if (ibuf1->byte_buffer.data == nullptr && ibuf1->float_buffer.data == nullptr) {
return nullptr;
}
if (ibuf1->x <= 1) {
return IMB_dupImBuf(ibuf1);
}
ibuf2 = IMB_allocImBuf((ibuf1->x) / 2, ibuf1->y, ibuf1->planes, ibuf1->flags);
if (ibuf2 == nullptr) {
return nullptr;
}
imb_half_x_no_alloc(ibuf2, ibuf1);
return ibuf2;
}
static void imb_half_y_no_alloc(ImBuf *ibuf2, ImBuf *ibuf1)
{
uchar *p1, *p2, *_p1, *dest;
short a, r, g, b;
int x, y;
float af, rf, gf, bf, *p1f, *p2f, *_p1f, *destf;
p1 = p2 = nullptr;
p1f = p2f = nullptr;
const bool do_rect = (ibuf1->byte_buffer.data != nullptr);
const bool do_float = (ibuf1->float_buffer.data != nullptr &&
ibuf2->float_buffer.data != nullptr);
_p1 = ibuf1->byte_buffer.data;
dest = ibuf2->byte_buffer.data;
_p1f = ibuf1->float_buffer.data;
destf = ibuf2->float_buffer.data;
for (y = ibuf2->y; y > 0; y--) {
if (do_rect) {
p1 = _p1;
p2 = _p1 + (ibuf1->x << 2);
}
if (do_float) {
p1f = _p1f;
p2f = _p1f + (ibuf1->x << 2);
}
for (x = ibuf2->x; x > 0; x--) {
if (do_rect) {
a = *(p1++);
b = *(p1++);
g = *(p1++);
r = *(p1++);
a += *(p2++);
b += *(p2++);
g += *(p2++);
r += *(p2++);
*(dest++) = a >> 1;
*(dest++) = b >> 1;
*(dest++) = g >> 1;
*(dest++) = r >> 1;
}
if (do_float) {
af = *(p1f++);
bf = *(p1f++);
gf = *(p1f++);
rf = *(p1f++);
af += *(p2f++);
bf += *(p2f++);
gf += *(p2f++);
rf += *(p2f++);
*(destf++) = 0.5f * af;
*(destf++) = 0.5f * bf;
*(destf++) = 0.5f * gf;
*(destf++) = 0.5f * rf;
}
}
if (do_rect) {
_p1 += (ibuf1->x << 3);
}
if (do_float) {
_p1f += (ibuf1->x << 3);
}
}
}
ImBuf *IMB_half_y(ImBuf *ibuf1)
{
ImBuf *ibuf2;
if (ibuf1 == nullptr) {
return nullptr;
}
if (ibuf1->byte_buffer.data == nullptr && ibuf1->float_buffer.data == nullptr) {
return nullptr;
}
if (ibuf1->y <= 1) {
return IMB_dupImBuf(ibuf1);
}
ibuf2 = IMB_allocImBuf(ibuf1->x, (ibuf1->y) / 2, ibuf1->planes, ibuf1->flags);
if (ibuf2 == nullptr) {
return nullptr;
}
imb_half_y_no_alloc(ibuf2, ibuf1);
return ibuf2;
}
/* pretty much specific functions which converts uchar <-> ushort but assumes
* ushort range of 255*255 which is more convenient here
*/
MINLINE void straight_uchar_to_premul_ushort(ushort result[4], const uchar color[4])
{
ushort alpha = color[3];
result[0] = color[0] * alpha;
result[1] = color[1] * alpha;
result[2] = color[2] * alpha;
result[3] = alpha * 256;
}
MINLINE void premul_ushort_to_straight_uchar(uchar *result, const ushort color[4])
{
if (color[3] <= 255) {
result[0] = unit_ushort_to_uchar(color[0]);
result[1] = unit_ushort_to_uchar(color[1]);
result[2] = unit_ushort_to_uchar(color[2]);
result[3] = unit_ushort_to_uchar(color[3]);
}
else {
ushort alpha = color[3] / 256;
result[0] = unit_ushort_to_uchar(ushort(color[0] / alpha * 256));
result[1] = unit_ushort_to_uchar(ushort(color[1] / alpha * 256));
result[2] = unit_ushort_to_uchar(ushort(color[2] / alpha * 256));
result[3] = unit_ushort_to_uchar(color[3]);
}
}
void imb_onehalf_no_alloc(ImBuf *ibuf2, ImBuf *ibuf1)
{
int x, y;
const bool do_rect = (ibuf1->byte_buffer.data != nullptr);
const bool do_float = (ibuf1->float_buffer.data != nullptr) &&
(ibuf2->float_buffer.data != nullptr);
if (do_rect && (ibuf2->byte_buffer.data == nullptr)) {
IMB_alloc_byte_pixels(ibuf2);
}
if (ibuf1->x <= 1) {
imb_half_y_no_alloc(ibuf2, ibuf1);
return;
}
if (ibuf1->y <= 1) {
imb_half_x_no_alloc(ibuf2, ibuf1);
return;
}
if (do_rect) {
uchar *cp1, *cp2, *dest;
cp1 = ibuf1->byte_buffer.data;
dest = ibuf2->byte_buffer.data;
for (y = ibuf2->y; y > 0; y--) {
cp2 = cp1 + (ibuf1->x << 2);
for (x = ibuf2->x; x > 0; x--) {
ushort p1i[8], p2i[8], desti[4];
straight_uchar_to_premul_ushort(p1i, cp1);
straight_uchar_to_premul_ushort(p2i, cp2);
straight_uchar_to_premul_ushort(p1i + 4, cp1 + 4);
straight_uchar_to_premul_ushort(p2i + 4, cp2 + 4);
desti[0] = (uint(p1i[0]) + p2i[0] + p1i[4] + p2i[4]) >> 2;
desti[1] = (uint(p1i[1]) + p2i[1] + p1i[5] + p2i[5]) >> 2;
desti[2] = (uint(p1i[2]) + p2i[2] + p1i[6] + p2i[6]) >> 2;
desti[3] = (uint(p1i[3]) + p2i[3] + p1i[7] + p2i[7]) >> 2;
premul_ushort_to_straight_uchar(dest, desti);
cp1 += 8;
cp2 += 8;
dest += 4;
}
cp1 = cp2;
if (ibuf1->x & 1) {
cp1 += 4;
}
}
}
if (do_float) {
float *p1f, *p2f, *destf;
p1f = ibuf1->float_buffer.data;
destf = ibuf2->float_buffer.data;
for (y = ibuf2->y; y > 0; y--) {
p2f = p1f + (ibuf1->x << 2);
for (x = ibuf2->x; x > 0; x--) {
destf[0] = 0.25f * (p1f[0] + p2f[0] + p1f[4] + p2f[4]);
destf[1] = 0.25f * (p1f[1] + p2f[1] + p1f[5] + p2f[5]);
destf[2] = 0.25f * (p1f[2] + p2f[2] + p1f[6] + p2f[6]);
destf[3] = 0.25f * (p1f[3] + p2f[3] + p1f[7] + p2f[7]);
p1f += 8;
p2f += 8;
destf += 4;
}
p1f = p2f;
if (ibuf1->x & 1) {
p1f += 4;
}
}
}
}
ImBuf *IMB_onehalf(ImBuf *ibuf1)
{
ImBuf *ibuf2;
if (ibuf1 == nullptr) {
return nullptr;
}
if (ibuf1->byte_buffer.data == nullptr && ibuf1->float_buffer.data == nullptr) {
return nullptr;
}
if (ibuf1->x <= 1) {
return IMB_half_y(ibuf1);
}
if (ibuf1->y <= 1) {
return IMB_half_x(ibuf1);
}
ibuf2 = IMB_allocImBuf((ibuf1->x) / 2, (ibuf1->y) / 2, ibuf1->planes, ibuf1->flags);
if (ibuf2 == nullptr) {
return nullptr;
}
imb_onehalf_no_alloc(ibuf2, ibuf1);
return ibuf2;
}
static void alloc_scale_dst_buffers(
const ImBuf *ibuf, uint newx, uint newy, uchar4 **r_dst_byte, float **r_dst_float)
{

View File

@@ -63,14 +63,12 @@
.ima = NULL, \
.stype = 0, \
.flag = TEX_CHECKER_ODD | TEX_NO_CLAMP, \
.imaflag = TEX_INTERPOL | TEX_MIPMAP | TEX_USEALPHA, \
.imaflag = TEX_INTERPOL | TEX_USEALPHA, \
.extend = TEX_REPEAT, \
.cropxmin = 0.0, \
.cropymin = 0.0, \
.cropxmax = 1.0, \
.cropymax = 1.0, \
.texfilter = TXF_EWA, \
.afmax = 8, \
.xrepeat = 1, \
.yrepeat = 1, \
.sfra = 1, \

View File

@@ -168,9 +168,6 @@ typedef struct Tex {
short type, stype;
float cropxmin, cropymin, cropxmax, cropymax;
int texfilter;
/** Anisotropic filter maximum value, EWA -> max eccentricity, feline -> max probes. */
int afmax;
short xrepeat, yrepeat;
short extend;
@@ -319,23 +316,12 @@ enum {
enum {
TEX_INTERPOL = 1 << 0,
TEX_USEALPHA = 1 << 1,
TEX_MIPMAP = 1 << 2,
TEX_IMAROT = 1 << 4,
TEX_CALCALPHA = 1 << 5,
TEX_NORMALMAP = 1 << 11,
TEX_GAUSS_MIP = 1 << 12,
TEX_FILTER_MIN = 1 << 13,
TEX_DERIVATIVEMAP = 1 << 14,
};
/** #Tex::texfilter type. */
enum {
TXF_BOX = 0, /* Blender's old texture filtering method. */
TXF_EWA = 1,
TXF_FELINE = 2,
TXF_AREA = 3,
};
/** #Tex::flag bit-mask. */
enum {
TEX_COLORBAND = 1 << 0,

View File

@@ -676,7 +676,7 @@ static void rna_Image_pixels_set(PointerRNA *ptr, const float *values)
/* NOTE: Do update from the set() because typically pixels.foreach_set() is used to update
* the values, and it does not invoke the update(). */
ibuf->userflags |= IB_DISPLAY_BUFFER_INVALID | IB_MIPMAP_INVALID;
ibuf->userflags |= IB_DISPLAY_BUFFER_INVALID;
BKE_image_mark_dirty(ima, ibuf);
if (!G.background) {
BKE_image_free_gputextures(ima);

View File

@@ -23,16 +23,6 @@
#include "WM_api.hh"
#include "WM_types.hh"
#ifndef RNA_RUNTIME
static const EnumPropertyItem texture_filter_items[] = {
{TXF_BOX, "BOX", 0, "Box", ""},
{TXF_EWA, "EWA", 0, "EWA", ""},
{TXF_FELINE, "FELINE", 0, "FELINE", ""},
{TXF_AREA, "AREA", 0, "Area", ""},
{0, nullptr, 0, nullptr, nullptr},
};
#endif
const EnumPropertyItem rna_enum_texture_type_items[] = {
{0, "NONE", 0, "None", ""},
{TEX_BLEND, "BLEND", ICON_TEXTURE, "Blend", "Procedural - create a ramp texture"},
@@ -447,18 +437,6 @@ static void rna_Texture_use_nodes_update(bContext *C, PointerRNA *ptr)
rna_Texture_nodes_update(CTX_data_main(C), CTX_data_scene(C), ptr);
}
static void rna_ImageTexture_mipmap_set(PointerRNA *ptr, bool value)
{
Tex *tex = (Tex *)ptr->data;
if (value) {
tex->imaflag |= TEX_MIPMAP;
}
else {
tex->imaflag &= ~TEX_MIPMAP;
}
}
#else
static void rna_def_texmapping(BlenderRNA *brna)
@@ -694,57 +672,11 @@ static void rna_def_mtex(BlenderRNA *brna)
static void rna_def_filter_common(StructRNA *srna)
{
PropertyRNA *prop;
prop = RNA_def_property(srna, "use_mipmap", PROP_BOOLEAN, PROP_NONE);
RNA_def_property_boolean_sdna(prop, nullptr, "imaflag", TEX_MIPMAP);
RNA_def_property_boolean_funcs(prop, nullptr, "rna_ImageTexture_mipmap_set");
RNA_def_property_ui_text(prop, "MIP Map", "Use auto-generated MIP maps for the image");
RNA_def_property_update(prop, 0, "rna_Texture_update");
prop = RNA_def_property(srna, "use_mipmap_gauss", PROP_BOOLEAN, PROP_NONE);
RNA_def_property_boolean_sdna(prop, nullptr, "imaflag", TEX_GAUSS_MIP);
RNA_def_property_ui_text(
prop, "MIP Map Gaussian filter", "Use Gauss filter to sample down MIP maps");
RNA_def_property_update(prop, 0, "rna_Texture_update");
prop = RNA_def_property(srna, "filter_type", PROP_ENUM, PROP_NONE);
RNA_def_property_enum_sdna(prop, nullptr, "texfilter");
RNA_def_property_enum_items(prop, texture_filter_items);
RNA_def_property_ui_text(prop, "Filter", "Texture filter to use for sampling image");
RNA_def_property_update(prop, 0, "rna_Texture_update");
prop = RNA_def_property(srna, "filter_lightprobes", PROP_INT, PROP_NONE);
RNA_def_property_int_sdna(prop, nullptr, "afmax");
RNA_def_property_range(prop, 1, 256);
RNA_def_property_ui_text(
prop,
"Filter Probes",
"Maximum number of samples (higher gives less blur at distant/oblique angles, "
"but is also slower)");
RNA_def_property_update(prop, 0, "rna_Texture_update");
prop = RNA_def_property(srna, "filter_eccentricity", PROP_INT, PROP_NONE);
RNA_def_property_int_sdna(prop, nullptr, "afmax");
RNA_def_property_range(prop, 1, 256);
RNA_def_property_ui_text(
prop,
"Filter Eccentricity",
"Maximum eccentricity (higher gives less blur at distant/oblique angles, "
"but is also slower)");
RNA_def_property_update(prop, 0, "rna_Texture_update");
prop = RNA_def_property(srna, "use_filter_size_min", PROP_BOOLEAN, PROP_NONE);
RNA_def_property_boolean_sdna(prop, nullptr, "imaflag", TEX_FILTER_MIN);
RNA_def_property_ui_text(
prop, "Minimum Filter Size", "Use Filter Size as a minimal filter value in pixels");
RNA_def_property_update(prop, 0, "rna_Texture_update");
prop = RNA_def_property(srna, "filter_size", PROP_FLOAT, PROP_NONE);
RNA_def_property_float_sdna(prop, nullptr, "filtersize");
RNA_def_property_range(prop, 0.1, 50.0);
RNA_def_property_ui_range(prop, 0.1, 50.0, 1, 2);
RNA_def_property_ui_text(
prop, "Filter Size", "Multiply the filter size used by MIP Map and Interpolation");
RNA_def_property_ui_text(prop, "Filter Size", "Multiply the filter size used by interpolation");
RNA_def_property_update(prop, 0, "rna_Texture_update");
}

View File

@@ -29,7 +29,7 @@ static void texture_evaluate(Tex *tex, const float value[3], float r_color[4])
TexResult texres = {0.0f};
/* TODO(sergey): always use color management now. */
multitex_ext(tex, value, nullptr, nullptr, 1, &texres, 0, nullptr, true, false);
multitex_ext(tex, value, &texres, 0, nullptr, true, false);
copy_v3_v3(r_color, texres.trgba);
r_color[3] = texres.tin;

View File

@@ -18,9 +18,6 @@ void ntreeTexEndExecTree(struct bNodeTreeExec *exec);
int ntreeTexExecTree(struct bNodeTree *ntree,
struct TexResult *target,
const float co[3],
float dxt[3],
float dyt[3],
int osatex,
short thread,
const struct Tex *tex,
short which_output,

View File

@@ -306,9 +306,6 @@ void ntreeTexEndExecTree(bNodeTreeExec *exec)
int ntreeTexExecTree(bNodeTree *ntree,
TexResult *target,
const float co[3],
float dxt[3],
float dyt[3],
int osatex,
const short thread,
const Tex * /*tex*/,
short which_output,
@@ -322,9 +319,6 @@ int ntreeTexExecTree(bNodeTree *ntree,
bNodeTreeExec *exec = ntree->runtime->execdata;
data.co = co;
data.dxt = dxt;
data.dyt = dyt;
data.osatex = osatex;
data.target = target;
data.do_preview = preview;
data.do_manage = true;

View File

@@ -105,10 +105,7 @@ float tex_input_value(bNodeStack *in, TexParams *params, short thread)
void params_from_cdata(TexParams *out, TexCallData *in)
{
out->co = in->co;
out->dxt = in->dxt;
out->dyt = in->dyt;
out->previewco = in->co;
out->osatex = in->osatex;
out->cfra = in->cfra;
out->mtex = in->mtex;
}

View File

@@ -23,11 +23,9 @@ struct bNodeThreadStack;
struct TexCallData {
TexResult *target;
/* all float[3] */
/* float[3] */
const float *co;
float *dxt, *dyt;
int osatex;
bool do_preview;
bool do_manage;
short thread;
@@ -39,10 +37,8 @@ struct TexCallData {
struct TexParams {
const float *co;
float *dxt, *dyt;
const float *previewco;
int cfra;
int osatex;
/* optional. we don't really want these here, but image
* textures need to do mapping & color correction */

View File

@@ -45,8 +45,7 @@ static void do_proc(float *result,
TexResult texres;
int textype;
textype = multitex_nodes(
tex, p->co, p->dxt, p->dyt, p->osatex, &texres, thread, 0, p->mtex, nullptr);
textype = multitex_nodes(tex, p->co, &texres, thread, 0, p->mtex, nullptr);
if (textype & TEX_RGB) {
copy_v4_v4(result, texres.trgba);

View File

@@ -48,22 +48,16 @@ static void rotate(float new_co[3], float a, const float ax[3], const float co[3
static void colorfn(float *out, TexParams *p, bNode * /*node*/, bNodeStack **in, short thread)
{
float new_co[3], new_dxt[3], new_dyt[3], a, ax[3];
float new_co[3], a, ax[3];
a = tex_input_value(in[1], p, thread);
tex_input_vec(ax, in[2], p, thread);
rotate(new_co, a, ax, p->co);
if (p->osatex) {
rotate(new_dxt, a, ax, p->dxt);
rotate(new_dyt, a, ax, p->dyt);
}
{
TexParams np = *p;
np.co = new_co;
np.dxt = new_dxt;
np.dyt = new_dyt;
tex_input_rgba(out, in[0], &np, thread);
}
}

View File

@@ -23,20 +23,14 @@ static blender::bke::bNodeSocketTemplate outputs[] = {
static void colorfn(float *out, TexParams *p, bNode * /*node*/, bNodeStack **in, short thread)
{
float scale[3], new_co[3], new_dxt[3], new_dyt[3];
float scale[3], new_co[3];
TexParams np = *p;
np.co = new_co;
np.dxt = new_dxt;
np.dyt = new_dyt;
tex_input_vec(scale, in[1], p, thread);
mul_v3_v3v3(new_co, p->co, scale);
if (p->osatex) {
mul_v3_v3v3(new_dxt, p->dxt, scale);
mul_v3_v3v3(new_dyt, p->dyt, scale);
}
tex_input_rgba(out, in[0], &np, thread);
}

View File

@@ -33,17 +33,9 @@ static void colorfn(float *out, TexParams *p, bNode *node, bNodeStack **in, shor
Tex *nodetex = (Tex *)node->id;
static float red[] = {1, 0, 0, 1};
static float white[] = {1, 1, 1, 1};
float co[3], dxt[3], dyt[3];
float co[3];
copy_v3_v3(co, p->co);
if (p->osatex) {
copy_v3_v3(dxt, p->dxt);
copy_v3_v3(dyt, p->dyt);
}
else {
zero_v3(dxt);
zero_v3(dyt);
}
if (node->custom2 || node->runtime->need_exec == 0) {
/* this node refers to its own texture tree! */
@@ -57,8 +49,7 @@ static void colorfn(float *out, TexParams *p, bNode *node, bNodeStack **in, shor
tex_input_rgba(col1, in[0], p, thread);
tex_input_rgba(col2, in[1], p, thread);
textype = multitex_nodes(
nodetex, co, dxt, dyt, p->osatex, &texres, thread, 0, p->mtex, nullptr);
textype = multitex_nodes(nodetex, co, &texres, thread, 0, p->mtex, nullptr);
if (textype & TEX_RGB) {
copy_v4_v4(out, texres.trgba);

View File

@@ -97,9 +97,6 @@ struct TexResult {
*/
int multitex_ext(struct Tex *tex,
const float texvec[3],
float dxt[3],
float dyt[3],
int osatex,
struct TexResult *texres,
short thread,
struct ImagePool *pool,
@@ -127,9 +124,6 @@ int multitex_ext_safe(struct Tex *tex,
*/
int multitex_nodes(struct Tex *tex,
const float texvec[3],
float dxt[3],
float dyt[3],
int osatex,
struct TexResult *texres,
short thread,
short which_output,

View File

@@ -1601,11 +1601,6 @@ static void finish_images(MultiresBakeRender *bkr, MultiresBakeResult *result)
ibuf->userflags |= IB_RECT_INVALID;
}
if (ibuf->mipmap[0]) {
ibuf->userflags |= IB_MIPMAP_INVALID;
IMB_free_mipmaps(ibuf);
}
if (ibuf->userdata) {
if (userdata->displacement_buffer) {
MEM_freeN(userdata->displacement_buffer);

View File

@@ -68,15 +68,6 @@ struct TexResult;
/* `texture_image.cc` */
int imagewraposa(struct Tex *tex,
struct Image *ima,
struct ImBuf *ibuf,
const float texvec[3],
const float DXT[2],
const float DYT[2],
struct TexResult *texres,
struct ImagePool *pool,
bool skip_load_image);
int imagewrap(struct Tex *tex,
struct Image *ima,
const float texvec[3],

View File

@@ -644,10 +644,6 @@ static void boxsample(ImBuf *ibuf,
struct afdata_t {
float dxt[2], dyt[2];
int intpol, extflag;
/* feline only */
float majrad, minrad, theta;
int iProbes;
float dusc, dvsc;
};
/* this only used here to make it easier to pass extend flags as single int */
@@ -720,68 +716,6 @@ static int ibuf_get_color_clip(float col[4], ImBuf *ibuf, int x, int y, int extf
return clip;
}
/* as above + bilerp */
static int ibuf_get_color_clip_bilerp(
float col[4], ImBuf *ibuf, float u, float v, int intpol, int extflag)
{
if (intpol) {
float c00[4], c01[4], c10[4], c11[4];
const float ufl = floorf(u -= 0.5f), vfl = floorf(v -= 0.5f);
const float uf = u - ufl, vf = v - vfl;
const float w00 = (1.0f - uf) * (1.0f - vf), w10 = uf * (1.0f - vf), w01 = (1.0f - uf) * vf,
w11 = uf * vf;
const int x1 = int(ufl), y1 = int(vfl), x2 = x1 + 1, y2 = y1 + 1;
int clip = ibuf_get_color_clip(c00, ibuf, x1, y1, extflag);
clip |= ibuf_get_color_clip(c10, ibuf, x2, y1, extflag);
clip |= ibuf_get_color_clip(c01, ibuf, x1, y2, extflag);
clip |= ibuf_get_color_clip(c11, ibuf, x2, y2, extflag);
col[0] = w00 * c00[0] + w10 * c10[0] + w01 * c01[0] + w11 * c11[0];
col[1] = w00 * c00[1] + w10 * c10[1] + w01 * c01[1] + w11 * c11[1];
col[2] = w00 * c00[2] + w10 * c10[2] + w01 * c01[2] + w11 * c11[2];
col[3] = clip ? 0.0f : w00 * c00[3] + w10 * c10[3] + w01 * c01[3] + w11 * c11[3];
return clip;
}
return ibuf_get_color_clip(col, ibuf, int(u), int(v), extflag);
}
static void area_sample(TexResult *texr, ImBuf *ibuf, float fx, float fy, const afdata_t *AFD)
{
int xs, ys, clip = 0;
float tc[4], xsd, ysd, cw = 0.0f;
const float ux = ibuf->x * AFD->dxt[0], uy = ibuf->y * AFD->dxt[1];
const float vx = ibuf->x * AFD->dyt[0], vy = ibuf->y * AFD->dyt[1];
int xsam = int(0.5f * sqrtf(ux * ux + uy * uy) + 0.5f);
int ysam = int(0.5f * sqrtf(vx * vx + vy * vy) + 0.5f);
const int minsam = AFD->intpol ? 2 : 4;
xsam = std::clamp(xsam, minsam, ibuf->x * 2);
ysam = std::clamp(ysam, minsam, ibuf->y * 2);
xsd = 1.0f / xsam;
ysd = 1.0f / ysam;
texr->trgba[0] = texr->trgba[1] = texr->trgba[2] = texr->trgba[3] = 0.0f;
for (ys = 0; ys < ysam; ys++) {
for (xs = 0; xs < xsam; xs++) {
const float su = (xs + ((ys & 1) + 0.5f) * 0.5f) * xsd - 0.5f;
const float sv = (ys + ((xs & 1) + 0.5f) * 0.5f) * ysd - 0.5f;
const float pu = fx + su * AFD->dxt[0] + sv * AFD->dyt[0];
const float pv = fy + su * AFD->dxt[1] + sv * AFD->dyt[1];
const int out = ibuf_get_color_clip_bilerp(
tc, ibuf, pu * ibuf->x, pv * ibuf->y, AFD->intpol, AFD->extflag);
clip |= out;
cw += out ? 0.0f : 1.0f;
texr->trgba[0] += tc[0];
texr->trgba[1] += tc[1];
texr->trgba[2] += tc[2];
texr->trgba[3] += texr->talpha ? tc[3] : 0.0f;
}
}
xsd *= ysd;
texr->trgba[0] *= xsd;
texr->trgba[1] *= xsd;
texr->trgba[2] *= xsd;
/* clipping can be ignored if alpha used, texr->trgba[3] already includes filtered edge */
texr->trgba[3] = texr->talpha ? texr->trgba[3] * xsd : (clip ? cw * xsd : 1.0f);
}
struct ReadEWAData {
ImBuf *ibuf;
const afdata_t *AFD;
@@ -811,885 +745,8 @@ static void ewa_eval(TexResult *texr, ImBuf *ibuf, float fx, float fy, const afd
texr->trgba);
}
static void feline_eval(TexResult *texr, ImBuf *ibuf, float fx, float fy, const afdata_t *AFD)
{
const int maxn = AFD->iProbes - 1;
const float ll = ((AFD->majrad == AFD->minrad) ? 2.0f * AFD->majrad :
2.0f * (AFD->majrad - AFD->minrad)) /
(maxn ? float(maxn) : 1.0f);
float du = maxn ? cosf(AFD->theta) * ll : 0.0f;
float dv = maxn ? sinf(AFD->theta) * ll : 0.0f;
// const float D = -0.5f*(du*du + dv*dv) / (AFD->majrad*AFD->majrad);
const float D = (EWA_MAXIDX + 1) * 0.25f * (du * du + dv * dv) / (AFD->majrad * AFD->majrad);
float d; /* TXF alpha: `cw = 0.0f`. */
int n; /* TXF alpha: `clip = 0`. */
/* Have to use same scaling for du/dv here as for Ux/Vx/Uy/Vy (*after* D is calculated.) */
du *= AFD->dusc;
dv *= AFD->dvsc;
d = texr->trgba[0] = texr->trgba[2] = texr->trgba[1] = texr->trgba[3] = 0.0f;
for (n = -maxn; n <= maxn; n += 2) {
float tc[4];
const float hn = n * 0.5f;
const float u = fx + hn * du, v = fy + hn * dv;
/* Can use ewa table here too. */
#if 0
const float wt = expf(n * n * D);
#else
const float wt = EWA_WTS[int(n * n * D)];
#endif
/* `const int out =` */ ibuf_get_color_clip_bilerp(
tc, ibuf, ibuf->x * u, ibuf->y * v, AFD->intpol, AFD->extflag);
/* TXF alpha: `clip |= out;`
* TXF alpha: `cw += out ? 0.0f : wt;` */
texr->trgba[0] += tc[0] * wt;
texr->trgba[1] += tc[1] * wt;
texr->trgba[2] += tc[2] * wt;
texr->trgba[3] += texr->talpha ? tc[3] * wt : 0.0f;
d += wt;
}
d = 1.0f / d;
texr->trgba[0] *= d;
texr->trgba[1] *= d;
texr->trgba[2] *= d;
/* Clipping can be ignored if alpha used, `texr->trgba[3]` already includes filtered edge */
texr->trgba[3] = texr->talpha ? texr->trgba[3] * d :
1.0f; /* TXF alpha: `(clip ? cw*d : 1.0f);` */
}
#undef EWA_MAXIDX
static void alpha_clip_aniso(const ImBuf *ibuf,
float minx,
float miny,
float maxx,
float maxy,
int extflag,
TexResult *texres)
{
float alphaclip;
rctf rf;
/* TXF alpha: we're doing the same alpha-clip here as box-sample, but I'm doubting
* if this is actually correct for the all the filtering algorithms. */
if (!ELEM(extflag, TXC_REPT, TXC_EXTD)) {
rf.xmin = minx * (ibuf->x);
rf.xmax = maxx * (ibuf->x);
rf.ymin = miny * (ibuf->y);
rf.ymax = maxy * (ibuf->y);
alphaclip = clipx_rctf(&rf, 0.0, float(ibuf->x));
alphaclip *= clipy_rctf(&rf, 0.0, float(ibuf->y));
alphaclip = max_ff(alphaclip, 0.0f);
if (alphaclip != 1.0f) {
/* Pre-multiply it all. */
texres->trgba[0] *= alphaclip;
texres->trgba[1] *= alphaclip;
texres->trgba[2] *= alphaclip;
texres->trgba[3] *= alphaclip;
}
}
}
static void image_mipmap_test(Tex *tex, ImBuf *ibuf)
{
if (tex->imaflag & TEX_MIPMAP) {
if (ibuf->mipmap[0] && (ibuf->userflags & IB_MIPMAP_INVALID)) {
BLI_thread_lock(LOCK_IMAGE);
if (ibuf->userflags & IB_MIPMAP_INVALID) {
IMB_remakemipmap(ibuf, tex->imaflag & TEX_GAUSS_MIP);
ibuf->userflags &= ~IB_MIPMAP_INVALID;
}
BLI_thread_unlock(LOCK_IMAGE);
}
if (ibuf->mipmap[0] == nullptr) {
BLI_thread_lock(LOCK_IMAGE);
if (ibuf->mipmap[0] == nullptr) {
IMB_makemipmap(ibuf, tex->imaflag & TEX_GAUSS_MIP);
}
BLI_thread_unlock(LOCK_IMAGE);
}
/* if no mipmap could be made, fall back on non-mipmap render */
if (ibuf->mipmap[0] == nullptr) {
tex->imaflag &= ~TEX_MIPMAP;
}
}
}
static int imagewraposa_aniso(Tex *tex,
Image *ima,
ImBuf *ibuf,
const float texvec[3],
float dxt[2],
float dyt[2],
TexResult *texres,
ImagePool *pool,
const bool skip_load_image)
{
TexResult texr;
float fx, fy, minx, maxx, miny, maxy;
float maxd;
int curmap, retval, intpol, extflag = 0;
afdata_t AFD;
void (*filterfunc)(TexResult *, ImBuf *, float, float, const afdata_t *);
switch (tex->texfilter) {
case TXF_EWA:
filterfunc = ewa_eval;
break;
case TXF_FELINE:
filterfunc = feline_eval;
break;
case TXF_AREA:
default:
filterfunc = area_sample;
}
texres->tin = texres->trgba[3] = texres->trgba[0] = texres->trgba[1] = texres->trgba[2] = 0.0f;
retval = TEX_RGB;
/* quick tests */
if (ibuf == nullptr && ima == nullptr) {
return retval;
}
if (ima) { /* hack for icon render */
if (skip_load_image && !BKE_image_has_loaded_ibuf(ima)) {
return retval;
}
ibuf = BKE_image_pool_acquire_ibuf(ima, &tex->iuser, pool);
}
if ((ibuf == nullptr) ||
((ibuf->byte_buffer.data == nullptr) && (ibuf->float_buffer.data == nullptr)))
{
if (ima) {
BKE_image_pool_release_ibuf(ima, ibuf, pool);
}
return retval;
}
if (ima) {
ima->flag |= IMA_USED_FOR_RENDER;
}
/* mipmap test */
image_mipmap_test(tex, ibuf);
if (ima) {
if ((tex->imaflag & TEX_USEALPHA) && (ima->alpha_mode != IMA_ALPHA_IGNORE)) {
if ((tex->imaflag & TEX_CALCALPHA) == 0) {
texres->talpha = true;
}
}
}
texr.talpha = texres->talpha;
if (tex->imaflag & TEX_IMAROT) {
fy = texvec[0];
fx = texvec[1];
}
else {
fx = texvec[0];
fy = texvec[1];
}
/* pixel coordinates */
minx = min_fff(dxt[0], dyt[0], dxt[0] + dyt[0]);
maxx = max_fff(dxt[0], dyt[0], dxt[0] + dyt[0]);
miny = min_fff(dxt[1], dyt[1], dxt[1] + dyt[1]);
maxy = max_fff(dxt[1], dyt[1], dxt[1] + dyt[1]);
/* tex_sharper has been removed */
minx = (maxx - minx) * 0.5f;
miny = (maxy - miny) * 0.5f;
if (tex->imaflag & TEX_FILTER_MIN) {
/* Make sure the filtersize is minimal in pixels
* (normal, ref map can have miniature pixel dx/dy). */
const float addval = (0.5f * tex->filtersize) / float(std::min(ibuf->x, ibuf->y));
minx = std::max(addval, minx);
miny = std::max(addval, miny);
}
else if (tex->filtersize != 1.0f) {
minx *= tex->filtersize;
miny *= tex->filtersize;
dxt[0] *= tex->filtersize;
dxt[1] *= tex->filtersize;
dyt[0] *= tex->filtersize;
dyt[1] *= tex->filtersize;
}
if (tex->imaflag & TEX_IMAROT) {
float t;
std::swap(minx, miny);
/* must rotate dxt/dyt 90 deg
* yet another blender problem is that swapping X/Y axes (or any tex projection switches)
* should do something similar, but it doesn't, it only swaps coords,
* so filter area will be incorrect in those cases. */
t = dxt[0];
dxt[0] = dxt[1];
dxt[1] = -t;
t = dyt[0];
dyt[0] = dyt[1];
dyt[1] = -t;
}
/* side faces of unit-cube */
minx = (minx > 0.25f) ? 0.25f : ((minx < 1e-5f) ? 1e-5f : minx);
miny = (miny > 0.25f) ? 0.25f : ((miny < 1e-5f) ? 1e-5f : miny);
/* repeat and clip */
if (tex->extend == TEX_REPEAT) {
if ((tex->flag & (TEX_REPEAT_XMIR | TEX_REPEAT_YMIR)) == (TEX_REPEAT_XMIR | TEX_REPEAT_YMIR)) {
extflag = TXC_EXTD;
}
else if (tex->flag & TEX_REPEAT_XMIR) {
extflag = TXC_XMIR;
}
else if (tex->flag & TEX_REPEAT_YMIR) {
extflag = TXC_YMIR;
}
else {
extflag = TXC_REPT;
}
}
else if (tex->extend == TEX_EXTEND) {
extflag = TXC_EXTD;
}
if (tex->extend == TEX_CHECKER) {
int xs = int(floorf(fx)), ys = int(floorf(fy));
/* both checkers available, no boundary exceptions, checkerdist will eat aliasing */
if ((tex->flag & TEX_CHECKER_ODD) && (tex->flag & TEX_CHECKER_EVEN)) {
fx -= xs;
fy -= ys;
}
else if ((tex->flag & TEX_CHECKER_ODD) == 0 && (tex->flag & TEX_CHECKER_EVEN) == 0) {
if (ima) {
BKE_image_pool_release_ibuf(ima, ibuf, pool);
}
return retval;
}
else {
int xs1 = int(floorf(fx - minx));
int ys1 = int(floorf(fy - miny));
int xs2 = int(floorf(fx + minx));
int ys2 = int(floorf(fy + miny));
if ((xs1 != xs2) || (ys1 != ys2)) {
if (tex->flag & TEX_CHECKER_ODD) {
fx -= ((xs1 + ys) & 1) ? xs2 : xs1;
fy -= ((ys1 + xs) & 1) ? ys2 : ys1;
}
if (tex->flag & TEX_CHECKER_EVEN) {
fx -= ((xs1 + ys) & 1) ? xs1 : xs2;
fy -= ((ys1 + xs) & 1) ? ys1 : ys2;
}
}
else {
if ((tex->flag & TEX_CHECKER_ODD) == 0 && ((xs + ys) & 1) == 0) {
if (ima) {
BKE_image_pool_release_ibuf(ima, ibuf, pool);
}
return retval;
}
if ((tex->flag & TEX_CHECKER_EVEN) == 0 && (xs + ys) & 1) {
if (ima) {
BKE_image_pool_release_ibuf(ima, ibuf, pool);
}
return retval;
}
fx -= xs;
fy -= ys;
}
}
/* scale around center, (0.5, 0.5) */
if (tex->checkerdist < 1.0f) {
const float omcd = 1.0f / (1.0f - tex->checkerdist);
fx = (fx - 0.5f) * omcd + 0.5f;
fy = (fy - 0.5f) * omcd + 0.5f;
minx *= omcd;
miny *= omcd;
}
}
if (tex->extend == TEX_CLIPCUBE) {
if ((fx + minx) < 0.0f || (fy + miny) < 0.0f || (fx - minx) > 1.0f || (fy - miny) > 1.0f ||
texvec[2] < -1.0f || texvec[2] > 1.0f)
{
if (ima) {
BKE_image_pool_release_ibuf(ima, ibuf, pool);
}
return retval;
}
}
else if (ELEM(tex->extend, TEX_CLIP, TEX_CHECKER)) {
if ((fx + minx) < 0.0f || (fy + miny) < 0.0f || (fx - minx) > 1.0f || (fy - miny) > 1.0f) {
if (ima) {
BKE_image_pool_release_ibuf(ima, ibuf, pool);
}
return retval;
}
}
else {
if (tex->extend == TEX_EXTEND) {
fx = (fx > 1.0f) ? 1.0f : ((fx < 0.0f) ? 0.0f : fx);
fy = (fy > 1.0f) ? 1.0f : ((fy < 0.0f) ? 0.0f : fy);
}
else {
fx -= floorf(fx);
fy -= floorf(fy);
}
}
intpol = tex->imaflag & TEX_INTERPOL;
/* struct common data */
copy_v2_v2(AFD.dxt, dxt);
copy_v2_v2(AFD.dyt, dyt);
AFD.intpol = intpol;
AFD.extflag = extflag;
/* NOTE(@brecht): added stupid clamping here, large dx/dy can give very large
* filter sizes which take ages to render, it may be better to do this
* more intelligently later in the code .. probably it's not noticeable */
if (AFD.dxt[0] * AFD.dxt[0] + AFD.dxt[1] * AFD.dxt[1] > 2.0f * 2.0f) {
mul_v2_fl(AFD.dxt, 2.0f / len_v2(AFD.dxt));
}
if (AFD.dyt[0] * AFD.dyt[0] + AFD.dyt[1] * AFD.dyt[1] > 2.0f * 2.0f) {
mul_v2_fl(AFD.dyt, 2.0f / len_v2(AFD.dyt));
}
/* choice: */
if (tex->imaflag & TEX_MIPMAP) {
ImBuf *previbuf, *curibuf;
float levf;
int maxlev;
ImBuf *mipmaps[IMB_MIPMAP_LEVELS + 1];
/* Modify ellipse minor axis if too eccentric, use for area sampling as well
* scaling `dxt/dyt` as done in PBRT is not the same
* (as in `ewa_eval()`, scale by `sqrt(ibuf->x)` to maximize precision). */
const float ff = sqrtf(ibuf->x), q = ibuf->y / ff;
const float Ux = dxt[0] * ff, Vx = dxt[1] * q, Uy = dyt[0] * ff, Vy = dyt[1] * q;
const float A = Vx * Vx + Vy * Vy;
const float B = -2.0f * (Ux * Vx + Uy * Vy);
const float C = Ux * Ux + Uy * Uy;
const float F = A * C - B * B * 0.25f;
float a, b, th, ecc;
BLI_ewa_imp2radangle(A, B, C, F, &a, &b, &th, &ecc);
if (tex->texfilter == TXF_FELINE) {
float fProbes;
a *= ff;
b *= ff;
a = max_ff(a, 1.0f);
b = max_ff(b, 1.0f);
fProbes = 2.0f * (a / b) - 1.0f;
AFD.iProbes = round_fl_to_int(fProbes);
AFD.iProbes = std::min(AFD.iProbes, tex->afmax);
if (AFD.iProbes < fProbes) {
b = 2.0f * a / float(AFD.iProbes + 1);
}
AFD.majrad = a / ff;
AFD.minrad = b / ff;
AFD.theta = th;
AFD.dusc = 1.0f / ff;
AFD.dvsc = ff / float(ibuf->y);
}
else { /* EWA & area */
if (ecc > float(tex->afmax)) {
b = a / float(tex->afmax);
}
b *= ff;
}
maxd = max_ff(b, 1e-8f);
levf = float(M_LOG2E) * logf(maxd);
curmap = 0;
maxlev = 1;
mipmaps[0] = ibuf;
while (curmap < IMB_MIPMAP_LEVELS) {
mipmaps[curmap + 1] = ibuf->mipmap[curmap];
if (ibuf->mipmap[curmap]) {
maxlev++;
}
curmap++;
}
/* mipmap level */
if (levf < 0.0f) { /* original image only */
previbuf = curibuf = mipmaps[0];
levf = 0.0f;
}
else if (levf >= maxlev - 1) {
previbuf = curibuf = mipmaps[maxlev - 1];
levf = 0.0f;
if (tex->texfilter == TXF_FELINE) {
AFD.iProbes = 1;
}
}
else {
const int lev = isnan(levf) ? 0 : int(levf);
curibuf = mipmaps[lev];
previbuf = mipmaps[lev + 1];
levf -= floorf(levf);
}
/* filter functions take care of interpolation themselves, no need to modify dxt/dyt here */
filterfunc(texres, curibuf, fx, fy, &AFD);
if (previbuf != curibuf) { /* interpolate */
filterfunc(&texr, previbuf, fx, fy, &AFD);
texres->trgba[0] += levf * (texr.trgba[0] - texres->trgba[0]);
texres->trgba[1] += levf * (texr.trgba[1] - texres->trgba[1]);
texres->trgba[2] += levf * (texr.trgba[2] - texres->trgba[2]);
texres->trgba[3] += levf * (texr.trgba[3] - texres->trgba[3]);
}
if (tex->texfilter != TXF_EWA) {
alpha_clip_aniso(ibuf, fx - minx, fy - miny, fx + minx, fy + miny, extflag, texres);
}
}
else { /* no mipmap */
/* filter functions take care of interpolation themselves, no need to modify dxt/dyt here */
if (tex->texfilter == TXF_FELINE) {
const float ff = sqrtf(ibuf->x), q = ibuf->y / ff;
const float Ux = dxt[0] * ff, Vx = dxt[1] * q, Uy = dyt[0] * ff, Vy = dyt[1] * q;
const float A = Vx * Vx + Vy * Vy;
const float B = -2.0f * (Ux * Vx + Uy * Vy);
const float C = Ux * Ux + Uy * Uy;
const float F = A * C - B * B * 0.25f;
float a, b, th, ecc, fProbes;
BLI_ewa_imp2radangle(A, B, C, F, &a, &b, &th, &ecc);
a *= ff;
b *= ff;
a = max_ff(a, 1.0f);
b = max_ff(b, 1.0f);
fProbes = 2.0f * (a / b) - 1.0f;
/* no limit to number of Probes here */
AFD.iProbes = round_fl_to_int(fProbes);
if (AFD.iProbes < fProbes) {
b = 2.0f * a / float(AFD.iProbes + 1);
}
AFD.majrad = a / ff;
AFD.minrad = b / ff;
AFD.theta = th;
AFD.dusc = 1.0f / ff;
AFD.dvsc = ff / float(ibuf->y);
}
filterfunc(texres, ibuf, fx, fy, &AFD);
if (tex->texfilter != TXF_EWA) {
alpha_clip_aniso(ibuf, fx - minx, fy - miny, fx + minx, fy + miny, extflag, texres);
}
}
if (tex->imaflag & TEX_CALCALPHA) {
texres->trgba[3] = texres->tin = texres->trgba[3] *
max_fff(texres->trgba[0], texres->trgba[1], texres->trgba[2]);
}
else {
texres->tin = texres->trgba[3];
}
if (tex->flag & TEX_NEGALPHA) {
texres->trgba[3] = 1.0f - texres->trgba[3];
}
/* de-pre-multiply, this is being pre-multiplied in shade_input_do_shade()
* TXF: this currently does not (yet?) work properly, destroys edge AA in clip/checker mode,
* so for now commented out also disabled in #imagewraposa()
* to be able to compare results with blender's default texture filtering */
/* NOTE(@brecht): tried to fix this, see "TXF alpha" comments. */
/* do not de-pre-multiply for generated alpha, it is already in straight */
if (texres->trgba[3] != 1.0f && texres->trgba[3] > 1e-4f && !(tex->imaflag & TEX_CALCALPHA)) {
fx = 1.0f / texres->trgba[3];
texres->trgba[0] *= fx;
texres->trgba[1] *= fx;
texres->trgba[2] *= fx;
}
if (ima) {
BKE_image_pool_release_ibuf(ima, ibuf, pool);
}
BRICONTRGB;
return retval;
}
int imagewraposa(Tex *tex,
Image *ima,
ImBuf *ibuf,
const float texvec[3],
const float DXT[2],
const float DYT[2],
TexResult *texres,
ImagePool *pool,
const bool skip_load_image)
{
TexResult texr;
float fx, fy, minx, maxx, miny, maxy, dx, dy, dxt[2], dyt[2];
float maxd, pixsize;
int curmap, retval, imaprepeat, imapextend;
/* TXF: since dxt/dyt might be modified here and since they might be needed after imagewraposa()
* call, make a local copy here so that original vecs remain untouched. */
copy_v2_v2(dxt, DXT);
copy_v2_v2(dyt, DYT);
/* anisotropic filtering */
if (tex->texfilter != TXF_BOX) {
return imagewraposa_aniso(tex, ima, ibuf, texvec, dxt, dyt, texres, pool, skip_load_image);
}
texres->tin = texres->trgba[3] = texres->trgba[0] = texres->trgba[1] = texres->trgba[2] = 0.0f;
retval = TEX_RGB;
/* quick tests */
if (ibuf == nullptr && ima == nullptr) {
return retval;
}
if (ima) {
/* hack for icon render */
if (skip_load_image && !BKE_image_has_loaded_ibuf(ima)) {
return retval;
}
ibuf = BKE_image_pool_acquire_ibuf(ima, &tex->iuser, pool);
ima->flag |= IMA_USED_FOR_RENDER;
}
if (ibuf == nullptr || (ibuf->byte_buffer.data == nullptr && ibuf->float_buffer.data == nullptr))
{
if (ima) {
BKE_image_pool_release_ibuf(ima, ibuf, pool);
}
return retval;
}
/* mipmap test */
image_mipmap_test(tex, ibuf);
if (ima) {
if ((tex->imaflag & TEX_USEALPHA) && (ima->alpha_mode != IMA_ALPHA_IGNORE)) {
if ((tex->imaflag & TEX_CALCALPHA) == 0) {
texres->talpha = true;
}
}
}
texr.talpha = texres->talpha;
if (tex->imaflag & TEX_IMAROT) {
fy = texvec[0];
fx = texvec[1];
}
else {
fx = texvec[0];
fy = texvec[1];
}
/* pixel coordinates */
minx = min_fff(dxt[0], dyt[0], dxt[0] + dyt[0]);
maxx = max_fff(dxt[0], dyt[0], dxt[0] + dyt[0]);
miny = min_fff(dxt[1], dyt[1], dxt[1] + dyt[1]);
maxy = max_fff(dxt[1], dyt[1], dxt[1] + dyt[1]);
/* tex_sharper has been removed */
minx = (maxx - minx) / 2.0f;
miny = (maxy - miny) / 2.0f;
if (tex->imaflag & TEX_FILTER_MIN) {
/* Make sure the filtersize is minimal in pixels
* (normal, ref map can have miniature pixel dx/dy). */
float addval = (0.5f * tex->filtersize) / float(std::min(ibuf->x, ibuf->y));
minx = std::max(addval, minx);
miny = std::max(addval, miny);
}
else if (tex->filtersize != 1.0f) {
minx *= tex->filtersize;
miny *= tex->filtersize;
dxt[0] *= tex->filtersize;
dxt[1] *= tex->filtersize;
dyt[0] *= tex->filtersize;
dyt[1] *= tex->filtersize;
}
if (tex->imaflag & TEX_IMAROT) {
std::swap(minx, miny);
}
if (minx > 0.25f) {
minx = 0.25f;
}
else if (minx < 0.00001f) {
minx = 0.00001f; /* side faces of unit-cube */
}
if (miny > 0.25f) {
miny = 0.25f;
}
else if (miny < 0.00001f) {
miny = 0.00001f;
}
/* repeat and clip */
imaprepeat = (tex->extend == TEX_REPEAT);
imapextend = (tex->extend == TEX_EXTEND);
if (tex->extend == TEX_REPEAT) {
if (tex->flag & (TEX_REPEAT_XMIR | TEX_REPEAT_YMIR)) {
imaprepeat = 0;
imapextend = 1;
}
}
if (tex->extend == TEX_CHECKER) {
int xs, ys, xs1, ys1, xs2, ys2, boundary;
xs = int(floor(fx));
ys = int(floor(fy));
/* both checkers available, no boundary exceptions, checkerdist will eat aliasing */
if ((tex->flag & TEX_CHECKER_ODD) && (tex->flag & TEX_CHECKER_EVEN)) {
fx -= xs;
fy -= ys;
}
else if ((tex->flag & TEX_CHECKER_ODD) == 0 && (tex->flag & TEX_CHECKER_EVEN) == 0) {
if (ima) {
BKE_image_pool_release_ibuf(ima, ibuf, pool);
}
return retval;
}
else {
xs1 = int(floor(fx - minx));
ys1 = int(floor(fy - miny));
xs2 = int(floor(fx + minx));
ys2 = int(floor(fy + miny));
boundary = (xs1 != xs2) || (ys1 != ys2);
if (boundary == 0) {
if ((tex->flag & TEX_CHECKER_ODD) == 0) {
if ((xs + ys) & 1) {
/* pass */
}
else {
if (ima) {
BKE_image_pool_release_ibuf(ima, ibuf, pool);
}
return retval;
}
}
if ((tex->flag & TEX_CHECKER_EVEN) == 0) {
if ((xs + ys) & 1) {
if (ima) {
BKE_image_pool_release_ibuf(ima, ibuf, pool);
}
return retval;
}
}
fx -= xs;
fy -= ys;
}
else {
if (tex->flag & TEX_CHECKER_ODD) {
if ((xs1 + ys) & 1) {
fx -= xs2;
}
else {
fx -= xs1;
}
if ((ys1 + xs) & 1) {
fy -= ys2;
}
else {
fy -= ys1;
}
}
if (tex->flag & TEX_CHECKER_EVEN) {
if ((xs1 + ys) & 1) {
fx -= xs1;
}
else {
fx -= xs2;
}
if ((ys1 + xs) & 1) {
fy -= ys1;
}
else {
fy -= ys2;
}
}
}
}
/* scale around center, (0.5, 0.5) */
if (tex->checkerdist < 1.0f) {
fx = (fx - 0.5f) / (1.0f - tex->checkerdist) + 0.5f;
fy = (fy - 0.5f) / (1.0f - tex->checkerdist) + 0.5f;
minx /= (1.0f - tex->checkerdist);
miny /= (1.0f - tex->checkerdist);
}
}
if (tex->extend == TEX_CLIPCUBE) {
if (fx + minx < 0.0f || fy + miny < 0.0f || fx - minx > 1.0f || fy - miny > 1.0f ||
texvec[2] < -1.0f || texvec[2] > 1.0f)
{
if (ima) {
BKE_image_pool_release_ibuf(ima, ibuf, pool);
}
return retval;
}
}
else if (ELEM(tex->extend, TEX_CLIP, TEX_CHECKER)) {
if (fx + minx < 0.0f || fy + miny < 0.0f || fx - minx > 1.0f || fy - miny > 1.0f) {
if (ima) {
BKE_image_pool_release_ibuf(ima, ibuf, pool);
}
return retval;
}
}
else {
if (imapextend) {
if (fx > 1.0f) {
fx = 1.0f;
}
else if (fx < 0.0f) {
fx = 0.0f;
}
}
else {
if (fx > 1.0f) {
fx -= int(fx);
}
else if (fx < 0.0f) {
fx += 1 - int(fx);
}
}
if (imapextend) {
if (fy > 1.0f) {
fy = 1.0f;
}
else if (fy < 0.0f) {
fy = 0.0f;
}
}
else {
if (fy > 1.0f) {
fy -= int(fy);
}
else if (fy < 0.0f) {
fy += 1 - int(fy);
}
}
}
/* Choice: */
if (tex->imaflag & TEX_MIPMAP) {
ImBuf *previbuf, *curibuf;
dx = minx;
dy = miny;
maxd = max_ff(dx, dy);
maxd = std::min(maxd, 0.5f);
pixsize = 1.0f / float(std::min(ibuf->x, ibuf->y));
curmap = 0;
previbuf = curibuf = ibuf;
while (curmap < IMB_MIPMAP_LEVELS && ibuf->mipmap[curmap]) {
if (maxd < pixsize) {
break;
}
previbuf = curibuf;
curibuf = ibuf->mipmap[curmap];
pixsize = 1.0f / float(std::min(curibuf->x, curibuf->y));
curmap++;
}
if (previbuf != curibuf || (tex->imaflag & TEX_INTERPOL)) {
/* sample at least 1 pixel */
minx = std::max(minx, 0.5f / ibuf->x);
miny = std::max(miny, 0.5f / ibuf->y);
}
maxx = fx + minx;
minx = fx - minx;
maxy = fy + miny;
miny = fy - miny;
boxsample(curibuf, minx, miny, maxx, maxy, texres, imaprepeat, imapextend);
if (previbuf != curibuf) { /* interpolate */
boxsample(previbuf, minx, miny, maxx, maxy, &texr, imaprepeat, imapextend);
fx = 2.0f * (pixsize - maxd) / pixsize;
if (fx >= 1.0f) {
texres->trgba[3] = texr.trgba[3];
texres->trgba[2] = texr.trgba[2];
texres->trgba[1] = texr.trgba[1];
texres->trgba[0] = texr.trgba[0];
}
else {
fy = 1.0f - fx;
texres->trgba[2] = fy * texres->trgba[2] + fx * texr.trgba[2];
texres->trgba[1] = fy * texres->trgba[1] + fx * texr.trgba[1];
texres->trgba[0] = fy * texres->trgba[0] + fx * texr.trgba[0];
texres->trgba[3] = fy * texres->trgba[3] + fx * texr.trgba[3];
}
}
}
else {
const int intpol = tex->imaflag & TEX_INTERPOL;
if (intpol) {
/* sample 1 pixel minimum */
minx = std::max(minx, 0.5f / ibuf->x);
miny = std::max(miny, 0.5f / ibuf->y);
}
boxsample(ibuf, fx - minx, fy - miny, fx + minx, fy + miny, texres, imaprepeat, imapextend);
}
if (tex->imaflag & TEX_CALCALPHA) {
texres->trgba[3] = texres->tin = texres->trgba[3] *
max_fff(texres->trgba[0], texres->trgba[1], texres->trgba[2]);
}
else {
texres->tin = texres->trgba[3];
}
if (tex->flag & TEX_NEGALPHA) {
texres->trgba[3] = 1.0f - texres->trgba[3];
}
/* de-pre-multiply, this is being pre-multiplied in shade_input_do_shade() */
/* do not de-pre-multiply for generated alpha, it is already in straight */
if (texres->trgba[3] != 1.0f && texres->trgba[3] > 1e-4f && !(tex->imaflag & TEX_CALCALPHA)) {
mul_v3_fl(texres->trgba, 1.0f / texres->trgba[3]);
}
if (ima) {
BKE_image_pool_release_ibuf(ima, ibuf, pool);
}
BRICONTRGB;
return retval;
}
void image_sample(
Image *ima, float fx, float fy, float dx, float dy, float result[4], ImagePool *pool)
{

View File

@@ -618,18 +618,17 @@ static int cubemap_glob(const float n[3], float x, float y, float z, float *adr1
/* ------------------------------------------------------------------------- */
static void do_2d_mapping(
const MTex *mtex, float texvec[3], const float n[3], float dxt[3], float dyt[3])
static void do_2d_mapping(const MTex *mtex, float texvec[3], const float n[3])
{
Tex *tex;
float fx, fy, fac1, area[8];
int ok, proj, areaflag = 0, wrap;
float fx, fy, fac1;
int wrap;
/* #MTex variables localized, only cube-map doesn't cooperate yet. */
wrap = mtex->mapping;
tex = mtex->tex;
if (!(dxt && dyt)) {
{
if (wrap == MTEX_FLAT) {
fx = (texvec[0] + 1.0f) / 2.0f;
@@ -692,177 +691,6 @@ static void do_2d_mapping(
fy = tex->cropymin + fy * fac1;
}
texvec[0] = fx;
texvec[1] = fy;
}
else {
if (wrap == MTEX_FLAT) {
fx = (texvec[0] + 1.0f) / 2.0f;
fy = (texvec[1] + 1.0f) / 2.0f;
dxt[0] /= 2.0f;
dxt[1] /= 2.0f;
dxt[2] /= 2.0f;
dyt[0] /= 2.0f;
dyt[1] /= 2.0f;
dyt[2] /= 2.0f;
}
else if (ELEM(wrap, MTEX_TUBE, MTEX_SPHERE)) {
/* exception: the seam behind (y<0.0) */
ok = 1;
if (texvec[1] <= 0.0f) {
fx = texvec[0] + dxt[0];
fy = texvec[0] + dyt[0];
if (fx >= 0.0f && fy >= 0.0f && texvec[0] >= 0.0f) {
/* pass */
}
else if (fx <= 0.0f && fy <= 0.0f && texvec[0] <= 0.0f) {
/* pass */
}
else {
ok = 0;
}
}
if (ok) {
if (wrap == MTEX_TUBE) {
map_to_tube(area, area + 1, texvec[0], texvec[1], texvec[2]);
map_to_tube(
area + 2, area + 3, texvec[0] + dxt[0], texvec[1] + dxt[1], texvec[2] + dxt[2]);
map_to_tube(
area + 4, area + 5, texvec[0] + dyt[0], texvec[1] + dyt[1], texvec[2] + dyt[2]);
}
else {
map_to_sphere(area, area + 1, texvec[0], texvec[1], texvec[2]);
map_to_sphere(
area + 2, area + 3, texvec[0] + dxt[0], texvec[1] + dxt[1], texvec[2] + dxt[2]);
map_to_sphere(
area + 4, area + 5, texvec[0] + dyt[0], texvec[1] + dyt[1], texvec[2] + dyt[2]);
}
areaflag = 1;
}
else {
if (wrap == MTEX_TUBE) {
map_to_tube(&fx, &fy, texvec[0], texvec[1], texvec[2]);
}
else {
map_to_sphere(&fx, &fy, texvec[0], texvec[1], texvec[2]);
}
dxt[0] /= 2.0f;
dxt[1] /= 2.0f;
dyt[0] /= 2.0f;
dyt[1] /= 2.0f;
}
}
else {
proj = cubemap_glob(n, texvec[0], texvec[1], texvec[2], &fx, &fy);
if (proj == 1) {
std::swap(dxt[1], dxt[2]);
std::swap(dyt[1], dyt[2]);
}
else if (proj == 2) {
float f1 = dxt[0], f2 = dyt[0];
dxt[0] = dxt[1];
dyt[0] = dyt[1];
dxt[1] = dxt[2];
dyt[1] = dyt[2];
dxt[2] = f1;
dyt[2] = f2;
}
dxt[0] *= 0.5f;
dxt[1] *= 0.5f;
dxt[2] *= 0.5f;
dyt[0] *= 0.5f;
dyt[1] *= 0.5f;
dyt[2] *= 0.5f;
}
/* If area, then recalculate `dxt[]` and `dyt[]` */
if (areaflag) {
fx = area[0];
fy = area[1];
dxt[0] = area[2] - fx;
dxt[1] = area[3] - fy;
dyt[0] = area[4] - fx;
dyt[1] = area[5] - fy;
}
/* repeat */
if (tex->extend == TEX_REPEAT) {
float max = 1.0f;
if (tex->xrepeat > 1) {
float origf = fx *= tex->xrepeat;
/* TXF: omit mirror here, see comments in do_material_tex() after do_2d_mapping() call */
if (tex->texfilter == TXF_BOX) {
if (fx > 1.0f) {
fx -= int(fx);
}
else if (fx < 0.0f) {
fx += 1 - int(fx);
}
if (tex->flag & TEX_REPEAT_XMIR) {
int orig = int(floor(origf));
if (orig & 1) {
fx = 1.0f - fx;
}
}
}
max = tex->xrepeat;
dxt[0] *= tex->xrepeat;
dyt[0] *= tex->xrepeat;
}
if (tex->yrepeat > 1) {
float origf = fy *= tex->yrepeat;
/* TXF: omit mirror here, see comments in do_material_tex() after do_2d_mapping() call */
if (tex->texfilter == TXF_BOX) {
if (fy > 1.0f) {
fy -= int(fy);
}
else if (fy < 0.0f) {
fy += 1 - int(fy);
}
if (tex->flag & TEX_REPEAT_YMIR) {
int orig = int(floor(origf));
if (orig & 1) {
fy = 1.0f - fy;
}
}
}
max = std::max<float>(max, tex->yrepeat);
dxt[1] *= tex->yrepeat;
dyt[1] *= tex->yrepeat;
}
if (max != 1.0f) {
dxt[2] *= max;
dyt[2] *= max;
}
}
/* crop */
if (tex->cropxmin != 0.0f || tex->cropxmax != 1.0f) {
fac1 = tex->cropxmax - tex->cropxmin;
fx = tex->cropxmin + fx * fac1;
dxt[0] *= fac1;
dyt[0] *= fac1;
}
if (tex->cropymin != 0.0f || tex->cropymax != 1.0f) {
fac1 = tex->cropymax - tex->cropymin;
fy = tex->cropymin + fy * fac1;
dxt[1] *= fac1;
dyt[1] *= fac1;
}
texvec[0] = fx;
texvec[1] = fy;
}
@@ -872,9 +700,6 @@ static void do_2d_mapping(
static int multitex(Tex *tex,
const float texvec[3],
float dxt[3],
float dyt[3],
int osatex,
TexResult *texres,
const short thread,
const short which_output,
@@ -890,18 +715,8 @@ static int multitex(Tex *tex,
if (use_nodes && tex->use_nodes && tex->nodetree) {
const float cfra = 1.0f; /* This was only set for Blender Internal render before. */
retval = ntreeTexExecTree(tex->nodetree,
texres,
texvec,
dxt,
dyt,
osatex,
thread,
tex,
which_output,
cfra,
texnode_preview,
nullptr);
retval = ntreeTexExecTree(
tex->nodetree, texres, texvec, thread, tex, which_output, cfra, texnode_preview, nullptr);
}
else {
switch (tex->type) {
@@ -930,13 +745,7 @@ static int multitex(Tex *tex,
retval = texnoise(tex, texres, thread);
break;
case TEX_IMAGE:
if (osatex) {
retval = imagewraposa(
tex, tex->ima, nullptr, texvec, dxt, dyt, texres, pool, skip_load_image);
}
else {
retval = imagewrap(tex, tex->ima, texvec, texres, pool, skip_load_image);
}
retval = imagewrap(tex, tex->ima, texvec, texres, pool, skip_load_image);
if (tex->ima) {
BKE_image_tag_time(tex->ima);
}
@@ -996,9 +805,6 @@ static int multitex(Tex *tex,
static int multitex_nodes_intern(Tex *tex,
const float texvec[3],
float dxt[3],
float dyt[3],
int osatex,
TexResult *texres,
const short thread,
short which_output,
@@ -1025,12 +831,9 @@ static int multitex_nodes_intern(Tex *tex,
float texvec_l[3];
copy_v3_v3(texvec_l, texvec);
/* we have mtex, use it for 2d mapping images only */
do_2d_mapping(mtex, texvec_l, nullptr, dxt, dyt);
do_2d_mapping(mtex, texvec_l, nullptr);
retval = multitex(tex,
texvec_l,
dxt,
dyt,
osatex,
texres,
thread,
which_output,
@@ -1056,7 +859,7 @@ static int multitex_nodes_intern(Tex *tex,
else {
/* we don't have mtex, do default flat 2d projection */
MTex localmtex;
float texvec_l[3], dxt_l[3], dyt_l[3];
float texvec_l[3];
localmtex.mapping = MTEX_FLAT;
localmtex.tex = tex;
@@ -1064,21 +867,10 @@ static int multitex_nodes_intern(Tex *tex,
localmtex.texco = TEXCO_ORCO;
copy_v3_v3(texvec_l, texvec);
if (dxt && dyt) {
copy_v3_v3(dxt_l, dxt);
copy_v3_v3(dyt_l, dyt);
}
else {
zero_v3(dxt_l);
zero_v3(dyt_l);
}
do_2d_mapping(&localmtex, texvec_l, nullptr, dxt_l, dyt_l);
do_2d_mapping(&localmtex, texvec_l, nullptr);
retval = multitex(tex,
texvec_l,
dxt_l,
dyt_l,
osatex,
texres,
thread,
which_output,
@@ -1107,9 +899,6 @@ static int multitex_nodes_intern(Tex *tex,
return multitex(tex,
texvec,
dxt,
dyt,
osatex,
texres,
thread,
which_output,
@@ -1121,36 +910,18 @@ static int multitex_nodes_intern(Tex *tex,
int multitex_nodes(Tex *tex,
const float texvec[3],
float dxt[3],
float dyt[3],
int osatex,
TexResult *texres,
const short thread,
short which_output,
const MTex *mtex,
ImagePool *pool)
{
return multitex_nodes_intern(tex,
texvec,
dxt,
dyt,
osatex,
texres,
thread,
which_output,
mtex,
pool,
true,
false,
false,
true);
return multitex_nodes_intern(
tex, texvec, texres, thread, which_output, mtex, pool, true, false, false, true);
}
int multitex_ext(Tex *tex,
const float texvec[3],
float dxt[3],
float dyt[3],
int osatex,
TexResult *texres,
const short thread,
ImagePool *pool,
@@ -1159,9 +930,6 @@ int multitex_ext(Tex *tex,
{
return multitex_nodes_intern(tex,
texvec,
dxt,
dyt,
osatex,
texres,
thread,
0,
@@ -1180,20 +948,8 @@ int multitex_ext_safe(Tex *tex,
bool scene_color_manage,
const bool skip_load_image)
{
return multitex_nodes_intern(tex,
texvec,
nullptr,
nullptr,
0,
texres,
0,
0,
nullptr,
pool,
scene_color_manage,
skip_load_image,
false,
false);
return multitex_nodes_intern(
tex, texvec, texres, 0, 0, nullptr, pool, scene_color_manage, skip_load_image, false, false);
}
/* ------------------------------------------------------------------------- */
@@ -1293,7 +1049,7 @@ bool RE_texture_evaluate(const MTex *mtex,
{
Tex *tex;
TexResult texr;
float dxt[3], dyt[3], texvec[3];
float texvec[3];
int rgb;
tex = mtex->tex;
@@ -1325,14 +1081,11 @@ bool RE_texture_evaluate(const MTex *mtex,
/* texture */
if (tex->type == TEX_IMAGE) {
do_2d_mapping(mtex, texvec, nullptr, dxt, dyt);
do_2d_mapping(mtex, texvec, nullptr);
}
rgb = multitex(tex,
texvec,
dxt,
dyt,
0,
&texr,
thread,
mtex->which_output,