Eigen: fold remaining OpenNL code into intern/eigen.

Differential Revision: https://developer.blender.org/D1662
This commit is contained in:
Brecht Van Lommel
2015-11-24 20:42:10 +01:00
parent 858b680a50
commit f9047c3f8c
56 changed files with 681 additions and 6064 deletions

View File

@@ -362,7 +362,6 @@ if(WIN32)
endif()
option(WITH_INPUT_NDOF "Enable NDOF input devices (SpaceNavigator and friends)" ${_init_INPUT_NDOF})
option(WITH_RAYOPTIMIZATION "Enable use of SIMD (SSE) optimizations for the raytracer" ON)
option(WITH_OPENNL "Enable use of Open Numerical Library" ON)
if(UNIX AND NOT APPLE)
option(WITH_INSTALL_PORTABLE "Install redistributeable runtime, otherwise install into CMAKE_INSTALL_PREFIX" ON)
option(WITH_STATIC_LIBS "Try to link with static libraries, as much as possible, to make blender more portable across distributions" OFF)
@@ -2983,9 +2982,6 @@ if(FIRST_RUN)
info_cfg_option(WITH_GL_ANGLE)
endif()
info_cfg_text("Other:")
info_cfg_option(WITH_OPENNL)
# debug
message(STATUS "HAVE_STDBOOL_H = ${HAVE_STDBOOL_H}")

View File

@@ -555,7 +555,6 @@ else:
# TODO, make optional (as with CMake)
env['CPPFLAGS'].append('-DWITH_AVI')
env['CPPFLAGS'].append('-DWITH_OPENNL')
if env['OURPLATFORM'] not in ('win32-vc', 'win64-vc'):
env['CPPFLAGS'].append('-DHAVE_STDBOOL_H')

View File

@@ -32,7 +32,6 @@ USE_QUIET = (os.environ.get("QUIET", None) is not None)
CHECKER_IGNORE_PREFIX = [
"extern",
"intern/moto",
"blender/intern/opennl",
]
CHECKER_BIN = "python2"

View File

@@ -32,7 +32,6 @@ USE_QUIET = (os.environ.get("QUIET", None) is not None)
CHECKER_IGNORE_PREFIX = [
"extern",
"intern/moto",
"blender/intern/opennl",
]
CHECKER_BIN = "cppcheck"

View File

@@ -25,7 +25,6 @@
CHECKER_IGNORE_PREFIX = [
"extern",
"intern/moto",
"blender/intern/opennl",
]
CHECKER_BIN = "smatch"

View File

@@ -25,7 +25,6 @@
CHECKER_IGNORE_PREFIX = [
"extern",
"intern/moto",
"blender/intern/opennl",
]
CHECKER_BIN = "sparse"

View File

@@ -25,7 +25,6 @@
CHECKER_IGNORE_PREFIX = [
"extern",
"intern/moto",
"blender/intern/opennl",
]
CHECKER_BIN = "splint"

View File

@@ -43,7 +43,6 @@ set(WITH_OPENAL ON CACHE BOOL "" FORCE)
set(WITH_OPENCOLLADA ON CACHE BOOL "" FORCE)
set(WITH_OPENCOLORIO ON CACHE BOOL "" FORCE)
set(WITH_OPENMP ON CACHE BOOL "" FORCE)
set(WITH_OPENNL ON CACHE BOOL "" FORCE)
set(WITH_PYTHON_INSTALL ON CACHE BOOL "" FORCE)
set(WITH_RAYOPTIMIZATION ON CACHE BOOL "" FORCE)
set(WITH_SDL ON CACHE BOOL "" FORCE)

View File

@@ -47,7 +47,6 @@ set(WITH_OPENCOLLADA OFF CACHE BOOL "" FORCE)
set(WITH_OPENCOLORIO OFF CACHE BOOL "" FORCE)
set(WITH_OPENIMAGEIO OFF CACHE BOOL "" FORCE)
set(WITH_OPENMP OFF CACHE BOOL "" FORCE)
set(WITH_OPENNL OFF CACHE BOOL "" FORCE)
set(WITH_RAYOPTIMIZATION OFF CACHE BOOL "" FORCE)
set(WITH_SDL OFF CACHE BOOL "" FORCE)
set(WITH_X11_XINPUT OFF CACHE BOOL "" FORCE)

View File

@@ -596,7 +596,6 @@ function(SETUP_BLENDER_SORTED_LIBS)
ge_phys_bullet
bf_intern_smoke
extern_lzma
extern_colamd
ge_logic_ketsji
extern_recastnavigation
ge_logic
@@ -698,10 +697,6 @@ function(SETUP_BLENDER_SORTED_LIBS)
list(APPEND BLENDER_SORTED_LIBS bf_intern_locale)
endif()
if(WITH_OPENNL)
list_insert_after(BLENDER_SORTED_LIBS "bf_render" "bf_intern_opennl")
endif()
if(WITH_BULLET)
list_insert_after(BLENDER_SORTED_LIBS "bf_blenkernel" "bf_intern_rigidbody")
endif()

View File

@@ -38,7 +38,7 @@
* \ingroup intern
*/
/** \defgroup opennl opennl
/** \defgroup eigen eigen
* \ingroup intern
*/

View File

@@ -30,10 +30,6 @@ add_subdirectory(rangetree)
add_subdirectory(wcwidth)
add_subdirectory(libmv)
if(WITH_OPENNL)
add_subdirectory(colamd)
endif()
if(WITH_BULLET)
if(NOT WITH_SYSTEM_BULLET)
add_subdirectory(bullet2)

1
extern/SConscript vendored
View File

@@ -7,7 +7,6 @@ if env['WITH_BF_GLEW_ES']:
else:
SConscript(['glew/SConscript'])
SConscript(['colamd/SConscript'])
SConscript(['rangetree/SConscript'])
SConscript(['wcwidth/SConscript'])
SConscript(['libmv/SConscript'])

View File

@@ -1,41 +0,0 @@
# ***** BEGIN GPL LICENSE BLOCK *****
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
# The Original Code is Copyright (C) 2011, Blender Foundation
# All rights reserved.
#
# Contributor(s): Blender Foundation,
# Sergey Sharybin
#
# ***** END GPL LICENSE BLOCK *****
set(INC
Include
)
set(INC_SYS
)
set(SRC
Source/colamd.c
Source/colamd_global.c
Include/colamd.h
Include/UFconfig.h
)
blender_add_lib(extern_colamd "${SRC}" "${INC}" "${INC_SYS}")

View File

@@ -1,129 +0,0 @@
May 31, 2007: version 2.7.0
* ported to 64-bit MATLAB
* subdirectories added (Source/, Include/, Lib/, Doc/, MATLAB/, Demo/)
Dec 12, 2006, version 2.5.2
* minor MATLAB cleanup. MATLAB functions renamed colamd2 and symamd2,
so that they do not conflict with the built-in versions. Note that
the MATLAB built-in functions colamd and symamd are identical to
the colamd and symamd functions here.
Aug 31, 2006: Version 2.5.1
* minor change to colamd.m and symamd.m, to use etree instead
of sparsfun.
Apr. 30, 2006: Version 2.5
* colamd_recommended modified, to do more careful integer overflow
checking. It now returns size_t, not int. colamd_l_recommended
also returns size_t. A zero is returned if an error occurs. A
postive return value denotes success. In v2.4 and earlier,
-1 was returned on error (an int or long).
* long replaced with UF_long integer, which is long except on WIN64.
Nov 15, 2005:
* minor editting of comments; version number (2.4) unchanged.
Changes from Version 2.3 to 2.4 (Aug 30, 2005)
* Makefile now relies on ../UFconfig/UFconfig.mk
* changed the dense row/col detection. The meaning of the knobs
has thus changed.
* added an option to turn off aggressive absorption. It was
always on in versions 2.3 and earlier.
* added a #define'd version number
* added a function pointer (colamd_printf) for COLAMD's printing.
* added a -DNPRINT option, to turn off printing at compile-time.
* added a check for integer overflow in colamd_recommended
* minor changes to allow for more simpler 100% test coverage
* bug fix. If symamd v2.3 fails to allocate its copy of the input
matrix, then it erroneously frees a calloc'd workspace twice.
This bug has no effect on the MATLAB symamd mexFunction, since
mxCalloc terminates the mexFunction if it fails to allocate
memory. Similarly, UMFPACK is not affected because it does not
use symamd. The bug has no effect on the colamd ordering
routine in v2.3.
Changes from Version 2.2 to 2.3 (Sept. 8, 2003)
* removed the call to the MATLAB spparms ('spumoni') function.
This can take a lot of time if you are ordering many small
matrices. Only affects the MATLAB interface (colamdmex.c,
symamdmex.c, colamdtestmex.c, and symamdtestmex.c). The
usage of the optional 2nd argument to the colamd and symamd
mexFunctions was changed accordingly.
Changes from Version 2.1 to 2.2 (Sept. 23, 2002)
* extensive testing routines added (colamd_test.m, colamdtestmex.c,
and symamdtestmex.c), and the Makefile modified accordingly.
* a few typos in the comments corrected
* use of the MATLAB "flops" command removed from colamd_demo, and an
m-file routine luflops.m added.
* an explicit typecast from unsigned to int added, for COLAMD_C and
COLAMD_R in colamd.h.
* #include <stdio.h> added to colamd_example.c
Changes from Version 2.0 to 2.1 (May 4, 2001)
* TRUE and FALSE are predefined on some systems, so they are defined
here only if not already defined.
* web site changed
* UNIX Makefile modified, to handle the case if "." is not in your path.
Changes from Version 1.0 to 2.0 (January 31, 2000)
No bugs were found in version 1.1. These changes merely add new
functionality.
* added the COLAMD_RECOMMENDED (nnz, n_row, n_col) macro.
* moved the output statistics, from A, to a separate output argument.
The arguments changed for the C-callable routines.
* added colamd_report and symamd_report.
* added a C-callable symamd routine. Formerly, symamd was only
available as a mexFunction from MATLAB.
* added error-checking to symamd. Formerly, it assumed its input
was error-free.
* added the optional stats and knobs arguments to the symamd mexFunction
* deleted colamd_help. A help message is still available from
"help colamd" and "help symamd" in MATLAB.
* deleted colamdtree.m and symamdtree.m. Now, colamd.m and symamd.m
also do the elimination tree post-ordering. The Version 1.1
colamd and symamd mexFunctions, which do not do the post-
ordering, are now visible as colamdmex and symamdmex from
MATLAB. Essentialy, the post-ordering is now the default
behavior of colamd.m and symamd.m, to match the behavior of
colmmd and symmmd. The post-ordering is only available in the
MATLAB interface, not the C-callable interface.
* made a slight change to the dense row/column detection in symamd,
to match the stated specifications.

View File

@@ -1,504 +0,0 @@
GNU LESSER GENERAL PUBLIC LICENSE
Version 2.1, February 1999
Copyright (C) 1991, 1999 Free Software Foundation, Inc.
51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
[This is the first released version of the Lesser GPL. It also counts
as the successor of the GNU Library Public License, version 2, hence
the version number 2.1.]
Preamble
The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
Licenses are intended to guarantee your freedom to share and change
free software--to make sure the software is free for all its users.
This license, the Lesser General Public License, applies to some
specially designated software packages--typically libraries--of the
Free Software Foundation and other authors who decide to use it. You
can use it too, but we suggest you first think carefully about whether
this license or the ordinary General Public License is the better
strategy to use in any particular case, based on the explanations below.
When we speak of free software, we are referring to freedom of use,
not price. Our General Public Licenses are designed to make sure that
you have the freedom to distribute copies of free software (and charge
for this service if you wish); that you receive source code or can get
it if you want it; that you can change the software and use pieces of
it in new free programs; and that you are informed that you can do
these things.
To protect your rights, we need to make restrictions that forbid
distributors to deny you these rights or to ask you to surrender these
rights. These restrictions translate to certain responsibilities for
you if you distribute copies of the library or if you modify it.
For example, if you distribute copies of the library, whether gratis
or for a fee, you must give the recipients all the rights that we gave
you. You must make sure that they, too, receive or can get the source
code. If you link other code with the library, you must provide
complete object files to the recipients, so that they can relink them
with the library after making changes to the library and recompiling
it. And you must show them these terms so they know their rights.
We protect your rights with a two-step method: (1) we copyright the
library, and (2) we offer you this license, which gives you legal
permission to copy, distribute and/or modify the library.
To protect each distributor, we want to make it very clear that
there is no warranty for the free library. Also, if the library is
modified by someone else and passed on, the recipients should know
that what they have is not the original version, so that the original
author's reputation will not be affected by problems that might be
introduced by others.
Finally, software patents pose a constant threat to the existence of
any free program. We wish to make sure that a company cannot
effectively restrict the users of a free program by obtaining a
restrictive license from a patent holder. Therefore, we insist that
any patent license obtained for a version of the library must be
consistent with the full freedom of use specified in this license.
Most GNU software, including some libraries, is covered by the
ordinary GNU General Public License. This license, the GNU Lesser
General Public License, applies to certain designated libraries, and
is quite different from the ordinary General Public License. We use
this license for certain libraries in order to permit linking those
libraries into non-free programs.
When a program is linked with a library, whether statically or using
a shared library, the combination of the two is legally speaking a
combined work, a derivative of the original library. The ordinary
General Public License therefore permits such linking only if the
entire combination fits its criteria of freedom. The Lesser General
Public License permits more lax criteria for linking other code with
the library.
We call this license the "Lesser" General Public License because it
does Less to protect the user's freedom than the ordinary General
Public License. It also provides other free software developers Less
of an advantage over competing non-free programs. These disadvantages
are the reason we use the ordinary General Public License for many
libraries. However, the Lesser license provides advantages in certain
special circumstances.
For example, on rare occasions, there may be a special need to
encourage the widest possible use of a certain library, so that it becomes
a de-facto standard. To achieve this, non-free programs must be
allowed to use the library. A more frequent case is that a free
library does the same job as widely used non-free libraries. In this
case, there is little to gain by limiting the free library to free
software only, so we use the Lesser General Public License.
In other cases, permission to use a particular library in non-free
programs enables a greater number of people to use a large body of
free software. For example, permission to use the GNU C Library in
non-free programs enables many more people to use the whole GNU
operating system, as well as its variant, the GNU/Linux operating
system.
Although the Lesser General Public License is Less protective of the
users' freedom, it does ensure that the user of a program that is
linked with the Library has the freedom and the wherewithal to run
that program using a modified version of the Library.
The precise terms and conditions for copying, distribution and
modification follow. Pay close attention to the difference between a
"work based on the library" and a "work that uses the library". The
former contains code derived from the library, whereas the latter must
be combined with the library in order to run.
GNU LESSER GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
0. This License Agreement applies to any software library or other
program which contains a notice placed by the copyright holder or
other authorized party saying it may be distributed under the terms of
this Lesser General Public License (also called "this License").
Each licensee is addressed as "you".
A "library" means a collection of software functions and/or data
prepared so as to be conveniently linked with application programs
(which use some of those functions and data) to form executables.
The "Library", below, refers to any such software library or work
which has been distributed under these terms. A "work based on the
Library" means either the Library or any derivative work under
copyright law: that is to say, a work containing the Library or a
portion of it, either verbatim or with modifications and/or translated
straightforwardly into another language. (Hereinafter, translation is
included without limitation in the term "modification".)
"Source code" for a work means the preferred form of the work for
making modifications to it. For a library, complete source code means
all the source code for all modules it contains, plus any associated
interface definition files, plus the scripts used to control compilation
and installation of the library.
Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running a program using the Library is not restricted, and output from
such a program is covered only if its contents constitute a work based
on the Library (independent of the use of the Library in a tool for
writing it). Whether that is true depends on what the Library does
and what the program that uses the Library does.
1. You may copy and distribute verbatim copies of the Library's
complete source code as you receive it, in any medium, provided that
you conspicuously and appropriately publish on each copy an
appropriate copyright notice and disclaimer of warranty; keep intact
all the notices that refer to this License and to the absence of any
warranty; and distribute a copy of this License along with the
Library.
You may charge a fee for the physical act of transferring a copy,
and you may at your option offer warranty protection in exchange for a
fee.
2. You may modify your copy or copies of the Library or any portion
of it, thus forming a work based on the Library, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:
a) The modified work must itself be a software library.
b) You must cause the files modified to carry prominent notices
stating that you changed the files and the date of any change.
c) You must cause the whole of the work to be licensed at no
charge to all third parties under the terms of this License.
d) If a facility in the modified Library refers to a function or a
table of data to be supplied by an application program that uses
the facility, other than as an argument passed when the facility
is invoked, then you must make a good faith effort to ensure that,
in the event an application does not supply such function or
table, the facility still operates, and performs whatever part of
its purpose remains meaningful.
(For example, a function in a library to compute square roots has
a purpose that is entirely well-defined independent of the
application. Therefore, Subsection 2d requires that any
application-supplied function or table used by this function must
be optional: if the application does not supply it, the square
root function must still compute square roots.)
These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Library,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Library, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote
it.
Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Library.
In addition, mere aggregation of another work not based on the Library
with the Library (or with a work based on the Library) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.
3. You may opt to apply the terms of the ordinary GNU General Public
License instead of this License to a given copy of the Library. To do
this, you must alter all the notices that refer to this License, so
that they refer to the ordinary GNU General Public License, version 2,
instead of to this License. (If a newer version than version 2 of the
ordinary GNU General Public License has appeared, then you can specify
that version instead if you wish.) Do not make any other change in
these notices.
Once this change is made in a given copy, it is irreversible for
that copy, so the ordinary GNU General Public License applies to all
subsequent copies and derivative works made from that copy.
This option is useful when you wish to copy part of the code of
the Library into a program that is not a library.
4. You may copy and distribute the Library (or a portion or
derivative of it, under Section 2) in object code or executable form
under the terms of Sections 1 and 2 above provided that you accompany
it with the complete corresponding machine-readable source code, which
must be distributed under the terms of Sections 1 and 2 above on a
medium customarily used for software interchange.
If distribution of object code is made by offering access to copy
from a designated place, then offering equivalent access to copy the
source code from the same place satisfies the requirement to
distribute the source code, even though third parties are not
compelled to copy the source along with the object code.
5. A program that contains no derivative of any portion of the
Library, but is designed to work with the Library by being compiled or
linked with it, is called a "work that uses the Library". Such a
work, in isolation, is not a derivative work of the Library, and
therefore falls outside the scope of this License.
However, linking a "work that uses the Library" with the Library
creates an executable that is a derivative of the Library (because it
contains portions of the Library), rather than a "work that uses the
library". The executable is therefore covered by this License.
Section 6 states terms for distribution of such executables.
When a "work that uses the Library" uses material from a header file
that is part of the Library, the object code for the work may be a
derivative work of the Library even though the source code is not.
Whether this is true is especially significant if the work can be
linked without the Library, or if the work is itself a library. The
threshold for this to be true is not precisely defined by law.
If such an object file uses only numerical parameters, data
structure layouts and accessors, and small macros and small inline
functions (ten lines or less in length), then the use of the object
file is unrestricted, regardless of whether it is legally a derivative
work. (Executables containing this object code plus portions of the
Library will still fall under Section 6.)
Otherwise, if the work is a derivative of the Library, you may
distribute the object code for the work under the terms of Section 6.
Any executables containing that work also fall under Section 6,
whether or not they are linked directly with the Library itself.
6. As an exception to the Sections above, you may also combine or
link a "work that uses the Library" with the Library to produce a
work containing portions of the Library, and distribute that work
under terms of your choice, provided that the terms permit
modification of the work for the customer's own use and reverse
engineering for debugging such modifications.
You must give prominent notice with each copy of the work that the
Library is used in it and that the Library and its use are covered by
this License. You must supply a copy of this License. If the work
during execution displays copyright notices, you must include the
copyright notice for the Library among them, as well as a reference
directing the user to the copy of this License. Also, you must do one
of these things:
a) Accompany the work with the complete corresponding
machine-readable source code for the Library including whatever
changes were used in the work (which must be distributed under
Sections 1 and 2 above); and, if the work is an executable linked
with the Library, with the complete machine-readable "work that
uses the Library", as object code and/or source code, so that the
user can modify the Library and then relink to produce a modified
executable containing the modified Library. (It is understood
that the user who changes the contents of definitions files in the
Library will not necessarily be able to recompile the application
to use the modified definitions.)
b) Use a suitable shared library mechanism for linking with the
Library. A suitable mechanism is one that (1) uses at run time a
copy of the library already present on the user's computer system,
rather than copying library functions into the executable, and (2)
will operate properly with a modified version of the library, if
the user installs one, as long as the modified version is
interface-compatible with the version that the work was made with.
c) Accompany the work with a written offer, valid for at
least three years, to give the same user the materials
specified in Subsection 6a, above, for a charge no more
than the cost of performing this distribution.
d) If distribution of the work is made by offering access to copy
from a designated place, offer equivalent access to copy the above
specified materials from the same place.
e) Verify that the user has already received a copy of these
materials or that you have already sent this user a copy.
For an executable, the required form of the "work that uses the
Library" must include any data and utility programs needed for
reproducing the executable from it. However, as a special exception,
the materials to be distributed need not include anything that is
normally distributed (in either source or binary form) with the major
components (compiler, kernel, and so on) of the operating system on
which the executable runs, unless that component itself accompanies
the executable.
It may happen that this requirement contradicts the license
restrictions of other proprietary libraries that do not normally
accompany the operating system. Such a contradiction means you cannot
use both them and the Library together in an executable that you
distribute.
7. You may place library facilities that are a work based on the
Library side-by-side in a single library together with other library
facilities not covered by this License, and distribute such a combined
library, provided that the separate distribution of the work based on
the Library and of the other library facilities is otherwise
permitted, and provided that you do these two things:
a) Accompany the combined library with a copy of the same work
based on the Library, uncombined with any other library
facilities. This must be distributed under the terms of the
Sections above.
b) Give prominent notice with the combined library of the fact
that part of it is a work based on the Library, and explaining
where to find the accompanying uncombined form of the same work.
8. You may not copy, modify, sublicense, link with, or distribute
the Library except as expressly provided under this License. Any
attempt otherwise to copy, modify, sublicense, link with, or
distribute the Library is void, and will automatically terminate your
rights under this License. However, parties who have received copies,
or rights, from you under this License will not have their licenses
terminated so long as such parties remain in full compliance.
9. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Library or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Library (or any work based on the
Library), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Library or works based on it.
10. Each time you redistribute the Library (or any work based on the
Library), the recipient automatically receives a license from the
original licensor to copy, distribute, link with or modify the Library
subject to these terms and conditions. You may not impose any further
restrictions on the recipients' exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties with
this License.
11. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Library at all. For example, if a patent
license would not permit royalty-free redistribution of the Library by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Library.
If any portion of this section is held invalid or unenforceable under any
particular circumstance, the balance of the section is intended to apply,
and the section as a whole is intended to apply in other circumstances.
It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.
This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.
12. If the distribution and/or use of the Library is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Library under this License may add
an explicit geographical distribution limitation excluding those countries,
so that distribution is permitted only in or among countries not thus
excluded. In such case, this License incorporates the limitation as if
written in the body of this License.
13. The Free Software Foundation may publish revised and/or new
versions of the Lesser General Public License from time to time.
Such new versions will be similar in spirit to the present version,
but may differ in detail to address new problems or concerns.
Each version is given a distinguishing version number. If the Library
specifies a version number of this License which applies to it and
"any later version", you have the option of following the terms and
conditions either of that version or of any later version published by
the Free Software Foundation. If the Library does not specify a
license version number, you may choose any version ever published by
the Free Software Foundation.
14. If you wish to incorporate parts of the Library into other free
programs whose distribution conditions are incompatible with these,
write to the author to ask for permission. For software which is
copyrighted by the Free Software Foundation, write to the Free
Software Foundation; we sometimes make exceptions for this. Our
decision will be guided by the two goals of preserving the free status
of all derivatives of our free software and of promoting the sharing
and reuse of software generally.
NO WARRANTY
15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW.
EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE
LIBRARY IS WITH YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME
THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY
AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU
FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE
LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING
RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A
FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF
SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.
END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Libraries
If you develop a new library, and you want it to be of the greatest
possible use to the public, we recommend making it free software that
everyone can redistribute and change. You can do so by permitting
redistribution under these terms (or, alternatively, under the terms of the
ordinary General Public License).
To apply these terms, attach the following notices to the library. It is
safest to attach them to the start of each source file to most effectively
convey the exclusion of warranty; and each file should have at least the
"copyright" line and a pointer to where the full notice is found.
<one line to give the library's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
Also add information on how to contact you by electronic and paper mail.
You should also get your employer (if you work as a programmer) or your
school, if any, to sign a "copyright disclaimer" for the library, if
necessary. Here is a sample; alter the names:
Yoyodyne, Inc., hereby disclaims all copyright interest in the
library `Frob' (a library for tweaking knobs) written by James Random Hacker.
<signature of Ty Coon>, 1 April 1990
Ty Coon, President of Vice
That's all there is to it!

View File

@@ -1,118 +0,0 @@
/* ========================================================================== */
/* === UFconfig.h =========================================================== */
/* ========================================================================== */
/* Configuration file for SuiteSparse: a Suite of Sparse matrix packages
* (AMD, COLAMD, CCOLAMD, CAMD, CHOLMOD, UMFPACK, CXSparse, and others).
*
* UFconfig.h provides the definition of the long integer. On most systems,
* a C program can be compiled in LP64 mode, in which long's and pointers are
* both 64-bits, and int's are 32-bits. Windows 64, however, uses the LLP64
* model, in which int's and long's are 32-bits, and long long's and pointers
* are 64-bits.
*
* SuiteSparse packages that include long integer versions are
* intended for the LP64 mode. However, as a workaround for Windows 64
* (and perhaps other systems), the long integer can be redefined.
*
* If _WIN64 is defined, then the __int64 type is used instead of long.
*
* The long integer can also be defined at compile time. For example, this
* could be added to UFconfig.mk:
*
* CFLAGS = -O -D'UF_long=long long' -D'UF_long_max=9223372036854775801' \
* -D'UF_long_id="%lld"'
*
* This file defines UF_long as either long (on all but _WIN64) or
* __int64 on Windows 64. The intent is that a UF_long is always a 64-bit
* integer in a 64-bit code. ptrdiff_t might be a better choice than long;
* it is always the same size as a pointer.
*
* This file also defines the SUITESPARSE_VERSION and related definitions.
*
* Copyright (c) 2007, University of Florida. No licensing restrictions
* apply to this file or to the UFconfig directory. Author: Timothy A. Davis.
*/
#ifndef _UFCONFIG_H
#define _UFCONFIG_H
#ifdef __cplusplus
extern "C" {
#endif
#include <limits.h>
/* ========================================================================== */
/* === UF_long ============================================================== */
/* ========================================================================== */
#ifndef UF_long
#ifdef _WIN64
#define UF_long __int64
#define UF_long_max _I64_MAX
#define UF_long_id "%I64d"
#else
#define UF_long long
#define UF_long_max LONG_MAX
#define UF_long_id "%ld"
#endif
#endif
/* ========================================================================== */
/* === SuiteSparse version ================================================== */
/* ========================================================================== */
/* SuiteSparse is not a package itself, but a collection of packages, some of
* which must be used together (UMFPACK requires AMD, CHOLMOD requires AMD,
* COLAMD, CAMD, and CCOLAMD, etc). A version number is provided here for the
* collection itself. The versions of packages within each version of
* SuiteSparse are meant to work together. Combining one packge from one
* version of SuiteSparse, with another package from another version of
* SuiteSparse, may or may not work.
*
* SuiteSparse Version 3.4.0 contains the following packages:
*
* AMD version 2.2.0
* CAMD version 2.2.0
* COLAMD version 2.7.1
* CCOLAMD version 2.7.1
* CHOLMOD version 1.7.1
* CSparse version 2.2.3
* CXSparse version 2.2.3
* KLU version 1.1.0
* BTF version 1.1.0
* LDL version 2.0.1
* UFconfig version number is the same as SuiteSparse
* UMFPACK version 5.4.0
* RBio version 1.1.2
* UFcollection version 1.2.0
* LINFACTOR version 1.1.0
* MESHND version 1.1.1
* SSMULT version 2.0.0
* MATLAB_Tools no specific version number
* SuiteSparseQR version 1.1.2
*
* Other package dependencies:
* BLAS required by CHOLMOD and UMFPACK
* LAPACK required by CHOLMOD
* METIS 4.0.1 required by CHOLMOD (optional) and KLU (optional)
*/
#define SUITESPARSE_DATE "May 20, 2009"
#define SUITESPARSE_VER_CODE(main,sub) ((main) * 1000 + (sub))
#define SUITESPARSE_MAIN_VERSION 3
#define SUITESPARSE_SUB_VERSION 4
#define SUITESPARSE_SUBSUB_VERSION 0
#define SUITESPARSE_VERSION \
SUITESPARSE_VER_CODE(SUITESPARSE_MAIN_VERSION,SUITESPARSE_SUB_VERSION)
#ifdef __cplusplus
}
#endif
#endif

View File

@@ -1,255 +0,0 @@
/* ========================================================================== */
/* === colamd/symamd prototypes and definitions ============================= */
/* ========================================================================== */
/* COLAMD / SYMAMD include file
You must include this file (colamd.h) in any routine that uses colamd,
symamd, or the related macros and definitions.
Authors:
The authors of the code itself are Stefan I. Larimore and Timothy A.
Davis (davis at cise.ufl.edu), University of Florida. The algorithm was
developed in collaboration with John Gilbert, Xerox PARC, and Esmond
Ng, Oak Ridge National Laboratory.
Acknowledgements:
This work was supported by the National Science Foundation, under
grants DMS-9504974 and DMS-9803599.
Notice:
Copyright (c) 1998-2007, Timothy A. Davis, All Rights Reserved.
THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY
EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
Permission is hereby granted to use, copy, modify, and/or distribute
this program, provided that the Copyright, this License, and the
Availability of the original version is retained on all copies and made
accessible to the end-user of any code or package that includes COLAMD
or any modified version of COLAMD.
Availability:
The colamd/symamd library is available at
http://www.cise.ufl.edu/research/sparse/colamd/
This is the http://www.cise.ufl.edu/research/sparse/colamd/colamd.h
file. It is required by the colamd.c, colamdmex.c, and symamdmex.c
files, and by any C code that calls the routines whose prototypes are
listed below, or that uses the colamd/symamd definitions listed below.
*/
#ifndef COLAMD_H
#define COLAMD_H
/* make it easy for C++ programs to include COLAMD */
#ifdef __cplusplus
extern "C" {
#endif
/* ========================================================================== */
/* === Include files ======================================================== */
/* ========================================================================== */
#include <stdlib.h>
/* ========================================================================== */
/* === COLAMD version ======================================================= */
/* ========================================================================== */
/* COLAMD Version 2.4 and later will include the following definitions.
* As an example, to test if the version you are using is 2.4 or later:
*
* #ifdef COLAMD_VERSION
* if (COLAMD_VERSION >= COLAMD_VERSION_CODE (2,4)) ...
* #endif
*
* This also works during compile-time:
*
* #if defined(COLAMD_VERSION) && (COLAMD_VERSION >= COLAMD_VERSION_CODE (2,4))
* printf ("This is version 2.4 or later\n") ;
* #else
* printf ("This is an early version\n") ;
* #endif
*
* Versions 2.3 and earlier of COLAMD do not include a #define'd version number.
*/
#define COLAMD_DATE "Nov 1, 2007"
#define COLAMD_VERSION_CODE(main,sub) ((main) * 1000 + (sub))
#define COLAMD_MAIN_VERSION 2
#define COLAMD_SUB_VERSION 7
#define COLAMD_SUBSUB_VERSION 1
#define COLAMD_VERSION \
COLAMD_VERSION_CODE(COLAMD_MAIN_VERSION,COLAMD_SUB_VERSION)
/* ========================================================================== */
/* === Knob and statistics definitions ====================================== */
/* ========================================================================== */
/* size of the knobs [ ] array. Only knobs [0..1] are currently used. */
#define COLAMD_KNOBS 20
/* number of output statistics. Only stats [0..6] are currently used. */
#define COLAMD_STATS 20
/* knobs [0] and stats [0]: dense row knob and output statistic. */
#define COLAMD_DENSE_ROW 0
/* knobs [1] and stats [1]: dense column knob and output statistic. */
#define COLAMD_DENSE_COL 1
/* knobs [2]: aggressive absorption */
#define COLAMD_AGGRESSIVE 2
/* stats [2]: memory defragmentation count output statistic */
#define COLAMD_DEFRAG_COUNT 2
/* stats [3]: colamd status: zero OK, > 0 warning or notice, < 0 error */
#define COLAMD_STATUS 3
/* stats [4..6]: error info, or info on jumbled columns */
#define COLAMD_INFO1 4
#define COLAMD_INFO2 5
#define COLAMD_INFO3 6
/* error codes returned in stats [3]: */
#define COLAMD_OK (0)
#define COLAMD_OK_BUT_JUMBLED (1)
#define COLAMD_ERROR_A_not_present (-1)
#define COLAMD_ERROR_p_not_present (-2)
#define COLAMD_ERROR_nrow_negative (-3)
#define COLAMD_ERROR_ncol_negative (-4)
#define COLAMD_ERROR_nnz_negative (-5)
#define COLAMD_ERROR_p0_nonzero (-6)
#define COLAMD_ERROR_A_too_small (-7)
#define COLAMD_ERROR_col_length_negative (-8)
#define COLAMD_ERROR_row_index_out_of_bounds (-9)
#define COLAMD_ERROR_out_of_memory (-10)
#define COLAMD_ERROR_internal_error (-999)
/* ========================================================================== */
/* === Prototypes of user-callable routines ================================= */
/* ========================================================================== */
/* define UF_long */
#include "UFconfig.h"
size_t colamd_recommended /* returns recommended value of Alen, */
/* or 0 if input arguments are erroneous */
(
int nnz, /* nonzeros in A */
int n_row, /* number of rows in A */
int n_col /* number of columns in A */
) ;
size_t colamd_l_recommended /* returns recommended value of Alen, */
/* or 0 if input arguments are erroneous */
(
UF_long nnz, /* nonzeros in A */
UF_long n_row, /* number of rows in A */
UF_long n_col /* number of columns in A */
) ;
void colamd_set_defaults /* sets default parameters */
( /* knobs argument is modified on output */
double knobs [COLAMD_KNOBS] /* parameter settings for colamd */
) ;
void colamd_l_set_defaults /* sets default parameters */
( /* knobs argument is modified on output */
double knobs [COLAMD_KNOBS] /* parameter settings for colamd */
) ;
int colamd /* returns (1) if successful, (0) otherwise*/
( /* A and p arguments are modified on output */
int n_row, /* number of rows in A */
int n_col, /* number of columns in A */
int Alen, /* size of the array A */
int A [], /* row indices of A, of size Alen */
int p [], /* column pointers of A, of size n_col+1 */
double knobs [COLAMD_KNOBS],/* parameter settings for colamd */
int stats [COLAMD_STATS] /* colamd output statistics and error codes */
) ;
UF_long colamd_l /* returns (1) if successful, (0) otherwise*/
( /* A and p arguments are modified on output */
UF_long n_row, /* number of rows in A */
UF_long n_col, /* number of columns in A */
UF_long Alen, /* size of the array A */
UF_long A [], /* row indices of A, of size Alen */
UF_long p [], /* column pointers of A, of size n_col+1 */
double knobs [COLAMD_KNOBS],/* parameter settings for colamd */
UF_long stats [COLAMD_STATS]/* colamd output statistics and error codes */
) ;
int symamd /* return (1) if OK, (0) otherwise */
(
int n, /* number of rows and columns of A */
int A [], /* row indices of A */
int p [], /* column pointers of A */
int perm [], /* output permutation, size n_col+1 */
double knobs [COLAMD_KNOBS], /* parameters (uses defaults if NULL) */
int stats [COLAMD_STATS], /* output statistics and error codes */
void * (*allocate) (size_t, size_t),
/* pointer to calloc (ANSI C) or */
/* mxCalloc (for MATLAB mexFunction) */
void (*release) (void *)
/* pointer to free (ANSI C) or */
/* mxFree (for MATLAB mexFunction) */
) ;
UF_long symamd_l /* return (1) if OK, (0) otherwise */
(
UF_long n, /* number of rows and columns of A */
UF_long A [], /* row indices of A */
UF_long p [], /* column pointers of A */
UF_long perm [], /* output permutation, size n_col+1 */
double knobs [COLAMD_KNOBS], /* parameters (uses defaults if NULL) */
UF_long stats [COLAMD_STATS], /* output statistics and error codes */
void * (*allocate) (size_t, size_t),
/* pointer to calloc (ANSI C) or */
/* mxCalloc (for MATLAB mexFunction) */
void (*release) (void *)
/* pointer to free (ANSI C) or */
/* mxFree (for MATLAB mexFunction) */
) ;
void colamd_report
(
int stats [COLAMD_STATS]
) ;
void colamd_l_report
(
UF_long stats [COLAMD_STATS]
) ;
void symamd_report
(
int stats [COLAMD_STATS]
) ;
void symamd_l_report
(
UF_long stats [COLAMD_STATS]
) ;
#ifndef EXTERN
#define EXTERN extern
#endif
EXTERN int (*colamd_printf) (const char *, ...) ;
#ifdef __cplusplus
}
#endif
#endif /* COLAMD_H */

View File

@@ -1,127 +0,0 @@
The COLAMD ordering method - Version 2.7
-------------------------------------------------------------------------------
The COLAMD column approximate minimum degree ordering algorithm computes
a permutation vector P such that the LU factorization of A (:,P)
tends to be sparser than that of A. The Cholesky factorization of
(A (:,P))'*(A (:,P)) will also tend to be sparser than that of A'*A.
SYMAMD is a symmetric minimum degree ordering method based on COLAMD,
available as a MATLAB-callable function. It constructs a matrix M such
that M'*M has the same pattern as A, and then uses COLAMD to compute a column
ordering of M. Colamd and symamd tend to be faster and generate better
orderings than their MATLAB counterparts, colmmd and symmmd.
To compile and test the colamd m-files and mexFunctions, just unpack the
COLAMD/ directory from the COLAMD.tar.gz file, and run MATLAB from
within that directory. Next, type colamd_test to compile and test colamd
and symamd. This will work on any computer with MATLAB (Unix, PC, or Mac).
Alternatively, type "make" (in Unix) to compile and run a simple example C
code, without using MATLAB.
To compile and install the colamd m-files and mexFunctions, just cd to
COLAMD/MATLAB and type colamd_install in the MATLAB command window.
A short demo will run. Optionally, type colamd_test to run an extensive tests.
Type "make" in Unix in the COLAMD directory to compile the C-callable
library and to run a short demo.
If you have MATLAB 7.2 or earlier, you must first edit UFconfig/UFconfig.h to
remove the "-largeArrayDims" option from the MEX command (or just use
colamd_make.m inside MATLAB).
Colamd is a built-in routine in MATLAB, available from The
Mathworks, Inc. Under most cases, the compiled COLAMD from Versions 2.0 to the
current version do not differ. Colamd Versions 2.2 and 2.3 differ only in their
mexFunction interaces to MATLAB. v2.4 fixes a bug in the symamd routine in
v2.3. The bug (in v2.3 and earlier) has no effect on the MATLAB symamd
mexFunction. v2.5 adds additional checks for integer overflow, so that
the "int" version can be safely used with 64-bit pointers. Refer to the
ChangeLog for more details.
To use colamd and symamd within an application written in C, all you need are
colamd.c, colamd_global.c, and colamd.h, which are the C-callable
colamd/symamd codes. See colamd.c for more information on how to call
colamd from a C program.
Requires UFconfig, in the ../UFconfig directory relative to this directory.
Copyright (c) 1998-2007, Timothy A. Davis, All Rights Reserved.
See http://www.cise.ufl.edu/research/sparse/colamd (the colamd.c
file) for the License.
Related papers:
T. A. Davis, J. R. Gilbert, S. Larimore, E. Ng, An approximate column
minimum degree ordering algorithm, ACM Transactions on Mathematical
Software, vol. 30, no. 3., pp. 353-376, 2004.
T. A. Davis, J. R. Gilbert, S. Larimore, E. Ng, Algorithm 836: COLAMD,
an approximate column minimum degree ordering algorithm, ACM
Transactions on Mathematical Software, vol. 30, no. 3., pp. 377-380,
2004.
"An approximate minimum degree column ordering algorithm",
S. I. Larimore, MS Thesis, Dept. of Computer and Information
Science and Engineering, University of Florida, Gainesville, FL,
1998. CISE Tech Report TR-98-016. Available at
ftp://ftp.cise.ufl.edu/cis/tech-reports/tr98/tr98-016.ps
via anonymous ftp.
Approximate Deficiency for Ordering the Columns of a Matrix,
J. L. Kern, Senior Thesis, Dept. of Computer and Information
Science and Engineering, University of Florida, Gainesville, FL,
1999. Available at http://www.cise.ufl.edu/~davis/Kern/kern.ps
Authors: Stefan I. Larimore and Timothy A. Davis, University of Florida,
in collaboration with John Gilbert, Xerox PARC (now at UC Santa Barbara),
and Esmong Ng, Lawrence Berkeley National Laboratory (much of this work
he did while at Oak Ridge National Laboratory).
COLAMD files:
Demo simple demo
Doc additional documentation (see colamd.c for more)
Include include file
Lib compiled C-callable library
Makefile primary Unix Makefile
MATLAB MATLAB functions
README.txt this file
Source C source code
./Demo:
colamd_example.c simple example
colamd_example.out output of colamd_example.c
colamd_l_example.c simple example, long integers
colamd_l_example.out output of colamd_l_example.c
Makefile Makefile for C demos
./Doc:
ChangeLog change log
lesser.txt license
./Include:
colamd.h include file
./Lib:
Makefile Makefile for C-callable library
./MATLAB:
colamd2.m MATLAB interface for colamd2
colamd_demo.m simple demo
colamd_install.m compile and install colamd2 and symamd2
colamd_make.m compile colamd2 and symamd2
colamdmex.ca MATLAB mexFunction for colamd2
colamd_test.m extensive test
colamdtestmex.c test function for colamd
Contents.m contents of the MATLAB directory
luflops.m test code
Makefile Makefile for MATLAB functions
symamd2.m MATLAB interface for symamd2
symamdmex.c MATLAB mexFunction for symamd2
symamdtestmex.c test function for symamd
./Source:
colamd.c primary source code
colamd_global.c globally defined function pointers (malloc, free, ...)

View File

@@ -1,14 +0,0 @@
#!/usr/bin/python
import sys
import os
Import('env')
defs = ''
cflags = []
src = env.Glob('Source/*.c')
incs = './Include'
env.BlenderLib ( libname = 'extern_colamd', sources=src, includes=Split(incs), defines=Split(defs), libtype=['extern', 'player'], priority=[20,137], compileflags=cflags )

View File

@@ -1,3611 +0,0 @@
/* ========================================================================== */
/* === colamd/symamd - a sparse matrix column ordering algorithm ============ */
/* ========================================================================== */
/* COLAMD / SYMAMD
colamd: an approximate minimum degree column ordering algorithm,
for LU factorization of symmetric or unsymmetric matrices,
QR factorization, least squares, interior point methods for
linear programming problems, and other related problems.
symamd: an approximate minimum degree ordering algorithm for Cholesky
factorization of symmetric matrices.
Purpose:
Colamd computes a permutation Q such that the Cholesky factorization of
(AQ)'(AQ) has less fill-in and requires fewer floating point operations
than A'A. This also provides a good ordering for sparse partial
pivoting methods, P(AQ) = LU, where Q is computed prior to numerical
factorization, and P is computed during numerical factorization via
conventional partial pivoting with row interchanges. Colamd is the
column ordering method used in SuperLU, part of the ScaLAPACK library.
It is also available as built-in function in MATLAB Version 6,
available from MathWorks, Inc. (http://www.mathworks.com). This
routine can be used in place of colmmd in MATLAB.
Symamd computes a permutation P of a symmetric matrix A such that the
Cholesky factorization of PAP' has less fill-in and requires fewer
floating point operations than A. Symamd constructs a matrix M such
that M'M has the same nonzero pattern of A, and then orders the columns
of M using colmmd. The column ordering of M is then returned as the
row and column ordering P of A.
Authors:
The authors of the code itself are Stefan I. Larimore and Timothy A.
Davis (davis at cise.ufl.edu), University of Florida. The algorithm was
developed in collaboration with John Gilbert, Xerox PARC, and Esmond
Ng, Oak Ridge National Laboratory.
Acknowledgements:
This work was supported by the National Science Foundation, under
grants DMS-9504974 and DMS-9803599.
Copyright and License:
Copyright (c) 1998-2007, Timothy A. Davis, All Rights Reserved.
COLAMD is also available under alternate licenses, contact T. Davis
for details.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301
USA
Permission is hereby granted to use or copy this program under the
terms of the GNU LGPL, provided that the Copyright, this License,
and the Availability of the original version is retained on all copies.
User documentation of any code that uses this code or any modified
version of this code must cite the Copyright, this License, the
Availability note, and "Used by permission." Permission to modify
the code and to distribute modified code is granted, provided the
Copyright, this License, and the Availability note are retained,
and a notice that the code was modified is included.
Availability:
The colamd/symamd library is available at
http://www.cise.ufl.edu/research/sparse/colamd/
This is the http://www.cise.ufl.edu/research/sparse/colamd/colamd.c
file. It requires the colamd.h file. It is required by the colamdmex.c
and symamdmex.c files, for the MATLAB interface to colamd and symamd.
Appears as ACM Algorithm 836.
See the ChangeLog file for changes since Version 1.0.
References:
T. A. Davis, J. R. Gilbert, S. Larimore, E. Ng, An approximate column
minimum degree ordering algorithm, ACM Transactions on Mathematical
Software, vol. 30, no. 3., pp. 353-376, 2004.
T. A. Davis, J. R. Gilbert, S. Larimore, E. Ng, Algorithm 836: COLAMD,
an approximate column minimum degree ordering algorithm, ACM
Transactions on Mathematical Software, vol. 30, no. 3., pp. 377-380,
2004.
*/
/* ========================================================================== */
/* === Description of user-callable routines ================================ */
/* ========================================================================== */
/* COLAMD includes both int and UF_long versions of all its routines. The
* description below is for the int version. For UF_long, all int arguments
* become UF_long. UF_long is normally defined as long, except for WIN64.
----------------------------------------------------------------------------
colamd_recommended:
----------------------------------------------------------------------------
C syntax:
#include "colamd.h"
size_t colamd_recommended (int nnz, int n_row, int n_col) ;
size_t colamd_l_recommended (UF_long nnz, UF_long n_row,
UF_long n_col) ;
Purpose:
Returns recommended value of Alen for use by colamd. Returns 0
if any input argument is negative. The use of this routine
is optional. Not needed for symamd, which dynamically allocates
its own memory.
Note that in v2.4 and earlier, these routines returned int or long.
They now return a value of type size_t.
Arguments (all input arguments):
int nnz ; Number of nonzeros in the matrix A. This must
be the same value as p [n_col] in the call to
colamd - otherwise you will get a wrong value
of the recommended memory to use.
int n_row ; Number of rows in the matrix A.
int n_col ; Number of columns in the matrix A.
----------------------------------------------------------------------------
colamd_set_defaults:
----------------------------------------------------------------------------
C syntax:
#include "colamd.h"
colamd_set_defaults (double knobs [COLAMD_KNOBS]) ;
colamd_l_set_defaults (double knobs [COLAMD_KNOBS]) ;
Purpose:
Sets the default parameters. The use of this routine is optional.
Arguments:
double knobs [COLAMD_KNOBS] ; Output only.
NOTE: the meaning of the dense row/col knobs has changed in v2.4
knobs [0] and knobs [1] control dense row and col detection:
Colamd: rows with more than
max (16, knobs [COLAMD_DENSE_ROW] * sqrt (n_col))
entries are removed prior to ordering. Columns with more than
max (16, knobs [COLAMD_DENSE_COL] * sqrt (MIN (n_row,n_col)))
entries are removed prior to
ordering, and placed last in the output column ordering.
Symamd: uses only knobs [COLAMD_DENSE_ROW], which is knobs [0].
Rows and columns with more than
max (16, knobs [COLAMD_DENSE_ROW] * sqrt (n))
entries are removed prior to ordering, and placed last in the
output ordering.
COLAMD_DENSE_ROW and COLAMD_DENSE_COL are defined as 0 and 1,
respectively, in colamd.h. Default values of these two knobs
are both 10. Currently, only knobs [0] and knobs [1] are
used, but future versions may use more knobs. If so, they will
be properly set to their defaults by the future version of
colamd_set_defaults, so that the code that calls colamd will
not need to change, assuming that you either use
colamd_set_defaults, or pass a (double *) NULL pointer as the
knobs array to colamd or symamd.
knobs [2]: aggressive absorption
knobs [COLAMD_AGGRESSIVE] controls whether or not to do
aggressive absorption during the ordering. Default is TRUE.
----------------------------------------------------------------------------
colamd:
----------------------------------------------------------------------------
C syntax:
#include "colamd.h"
int colamd (int n_row, int n_col, int Alen, int *A, int *p,
double knobs [COLAMD_KNOBS], int stats [COLAMD_STATS]) ;
UF_long colamd_l (UF_long n_row, UF_long n_col, UF_long Alen,
UF_long *A, UF_long *p, double knobs [COLAMD_KNOBS],
UF_long stats [COLAMD_STATS]) ;
Purpose:
Computes a column ordering (Q) of A such that P(AQ)=LU or
(AQ)'AQ=LL' have less fill-in and require fewer floating point
operations than factorizing the unpermuted matrix A or A'A,
respectively.
Returns:
TRUE (1) if successful, FALSE (0) otherwise.
Arguments:
int n_row ; Input argument.
Number of rows in the matrix A.
Restriction: n_row >= 0.
Colamd returns FALSE if n_row is negative.
int n_col ; Input argument.
Number of columns in the matrix A.
Restriction: n_col >= 0.
Colamd returns FALSE if n_col is negative.
int Alen ; Input argument.
Restriction (see note):
Alen >= 2*nnz + 6*(n_col+1) + 4*(n_row+1) + n_col
Colamd returns FALSE if these conditions are not met.
Note: this restriction makes an modest assumption regarding
the size of the two typedef's structures in colamd.h.
We do, however, guarantee that
Alen >= colamd_recommended (nnz, n_row, n_col)
will be sufficient. Note: the macro version does not check
for integer overflow, and thus is not recommended. Use
the colamd_recommended routine instead.
int A [Alen] ; Input argument, undefined on output.
A is an integer array of size Alen. Alen must be at least as
large as the bare minimum value given above, but this is very
low, and can result in excessive run time. For best
performance, we recommend that Alen be greater than or equal to
colamd_recommended (nnz, n_row, n_col), which adds
nnz/5 to the bare minimum value given above.
On input, the row indices of the entries in column c of the
matrix are held in A [(p [c]) ... (p [c+1]-1)]. The row indices
in a given column c need not be in ascending order, and
duplicate row indices may be be present. However, colamd will
work a little faster if both of these conditions are met
(Colamd puts the matrix into this format, if it finds that the
the conditions are not met).
The matrix is 0-based. That is, rows are in the range 0 to
n_row-1, and columns are in the range 0 to n_col-1. Colamd
returns FALSE if any row index is out of range.
The contents of A are modified during ordering, and are
undefined on output.
int p [n_col+1] ; Both input and output argument.
p is an integer array of size n_col+1. On input, it holds the
"pointers" for the column form of the matrix A. Column c of
the matrix A is held in A [(p [c]) ... (p [c+1]-1)]. The first
entry, p [0], must be zero, and p [c] <= p [c+1] must hold
for all c in the range 0 to n_col-1. The value p [n_col] is
thus the total number of entries in the pattern of the matrix A.
Colamd returns FALSE if these conditions are not met.
On output, if colamd returns TRUE, the array p holds the column
permutation (Q, for P(AQ)=LU or (AQ)'(AQ)=LL'), where p [0] is
the first column index in the new ordering, and p [n_col-1] is
the last. That is, p [k] = j means that column j of A is the
kth pivot column, in AQ, where k is in the range 0 to n_col-1
(p [0] = j means that column j of A is the first column in AQ).
If colamd returns FALSE, then no permutation is returned, and
p is undefined on output.
double knobs [COLAMD_KNOBS] ; Input argument.
See colamd_set_defaults for a description.
int stats [COLAMD_STATS] ; Output argument.
Statistics on the ordering, and error status.
See colamd.h for related definitions.
Colamd returns FALSE if stats is not present.
stats [0]: number of dense or empty rows ignored.
stats [1]: number of dense or empty columns ignored (and
ordered last in the output permutation p)
Note that a row can become "empty" if it
contains only "dense" and/or "empty" columns,
and similarly a column can become "empty" if it
only contains "dense" and/or "empty" rows.
stats [2]: number of garbage collections performed.
This can be excessively high if Alen is close
to the minimum required value.
stats [3]: status code. < 0 is an error code.
> 1 is a warning or notice.
0 OK. Each column of the input matrix contained
row indices in increasing order, with no
duplicates.
1 OK, but columns of input matrix were jumbled
(unsorted columns or duplicate entries). Colamd
had to do some extra work to sort the matrix
first and remove duplicate entries, but it
still was able to return a valid permutation
(return value of colamd was TRUE).
stats [4]: highest numbered column that
is unsorted or has duplicate
entries.
stats [5]: last seen duplicate or
unsorted row index.
stats [6]: number of duplicate or
unsorted row indices.
-1 A is a null pointer
-2 p is a null pointer
-3 n_row is negative
stats [4]: n_row
-4 n_col is negative
stats [4]: n_col
-5 number of nonzeros in matrix is negative
stats [4]: number of nonzeros, p [n_col]
-6 p [0] is nonzero
stats [4]: p [0]
-7 A is too small
stats [4]: required size
stats [5]: actual size (Alen)
-8 a column has a negative number of entries
stats [4]: column with < 0 entries
stats [5]: number of entries in col
-9 a row index is out of bounds
stats [4]: column with bad row index
stats [5]: bad row index
stats [6]: n_row, # of rows of matrx
-10 (unused; see symamd.c)
-999 (unused; see symamd.c)
Future versions may return more statistics in the stats array.
Example:
See http://www.cise.ufl.edu/research/sparse/colamd/example.c
for a complete example.
To order the columns of a 5-by-4 matrix with 11 nonzero entries in
the following nonzero pattern
x 0 x 0
x 0 x x
0 x x 0
0 0 x x
x x 0 0
with default knobs and no output statistics, do the following:
#include "colamd.h"
#define ALEN 100
int A [ALEN] = {0, 1, 4, 2, 4, 0, 1, 2, 3, 1, 3} ;
int p [ ] = {0, 3, 5, 9, 11} ;
int stats [COLAMD_STATS] ;
colamd (5, 4, ALEN, A, p, (double *) NULL, stats) ;
The permutation is returned in the array p, and A is destroyed.
----------------------------------------------------------------------------
symamd:
----------------------------------------------------------------------------
C syntax:
#include "colamd.h"
int symamd (int n, int *A, int *p, int *perm,
double knobs [COLAMD_KNOBS], int stats [COLAMD_STATS],
void (*allocate) (size_t, size_t), void (*release) (void *)) ;
UF_long symamd_l (UF_long n, UF_long *A, UF_long *p, UF_long *perm,
double knobs [COLAMD_KNOBS], UF_long stats [COLAMD_STATS],
void (*allocate) (size_t, size_t), void (*release) (void *)) ;
Purpose:
The symamd routine computes an ordering P of a symmetric sparse
matrix A such that the Cholesky factorization PAP' = LL' remains
sparse. It is based on a column ordering of a matrix M constructed
so that the nonzero pattern of M'M is the same as A. The matrix A
is assumed to be symmetric; only the strictly lower triangular part
is accessed. You must pass your selected memory allocator (usually
calloc/free or mxCalloc/mxFree) to symamd, for it to allocate
memory for the temporary matrix M.
Returns:
TRUE (1) if successful, FALSE (0) otherwise.
Arguments:
int n ; Input argument.
Number of rows and columns in the symmetrix matrix A.
Restriction: n >= 0.
Symamd returns FALSE if n is negative.
int A [nnz] ; Input argument.
A is an integer array of size nnz, where nnz = p [n].
The row indices of the entries in column c of the matrix are
held in A [(p [c]) ... (p [c+1]-1)]. The row indices in a
given column c need not be in ascending order, and duplicate
row indices may be present. However, symamd will run faster
if the columns are in sorted order with no duplicate entries.
The matrix is 0-based. That is, rows are in the range 0 to
n-1, and columns are in the range 0 to n-1. Symamd
returns FALSE if any row index is out of range.
The contents of A are not modified.
int p [n+1] ; Input argument.
p is an integer array of size n+1. On input, it holds the
"pointers" for the column form of the matrix A. Column c of
the matrix A is held in A [(p [c]) ... (p [c+1]-1)]. The first
entry, p [0], must be zero, and p [c] <= p [c+1] must hold
for all c in the range 0 to n-1. The value p [n] is
thus the total number of entries in the pattern of the matrix A.
Symamd returns FALSE if these conditions are not met.
The contents of p are not modified.
int perm [n+1] ; Output argument.
On output, if symamd returns TRUE, the array perm holds the
permutation P, where perm [0] is the first index in the new
ordering, and perm [n-1] is the last. That is, perm [k] = j
means that row and column j of A is the kth column in PAP',
where k is in the range 0 to n-1 (perm [0] = j means
that row and column j of A are the first row and column in
PAP'). The array is used as a workspace during the ordering,
which is why it must be of length n+1, not just n.
double knobs [COLAMD_KNOBS] ; Input argument.
See colamd_set_defaults for a description.
int stats [COLAMD_STATS] ; Output argument.
Statistics on the ordering, and error status.
See colamd.h for related definitions.
Symamd returns FALSE if stats is not present.
stats [0]: number of dense or empty row and columns ignored
(and ordered last in the output permutation
perm). Note that a row/column can become
"empty" if it contains only "dense" and/or
"empty" columns/rows.
stats [1]: (same as stats [0])
stats [2]: number of garbage collections performed.
stats [3]: status code. < 0 is an error code.
> 1 is a warning or notice.
0 OK. Each column of the input matrix contained
row indices in increasing order, with no
duplicates.
1 OK, but columns of input matrix were jumbled
(unsorted columns or duplicate entries). Symamd
had to do some extra work to sort the matrix
first and remove duplicate entries, but it
still was able to return a valid permutation
(return value of symamd was TRUE).
stats [4]: highest numbered column that
is unsorted or has duplicate
entries.
stats [5]: last seen duplicate or
unsorted row index.
stats [6]: number of duplicate or
unsorted row indices.
-1 A is a null pointer
-2 p is a null pointer
-3 (unused, see colamd.c)
-4 n is negative
stats [4]: n
-5 number of nonzeros in matrix is negative
stats [4]: # of nonzeros (p [n]).
-6 p [0] is nonzero
stats [4]: p [0]
-7 (unused)
-8 a column has a negative number of entries
stats [4]: column with < 0 entries
stats [5]: number of entries in col
-9 a row index is out of bounds
stats [4]: column with bad row index
stats [5]: bad row index
stats [6]: n_row, # of rows of matrx
-10 out of memory (unable to allocate temporary
workspace for M or count arrays using the
"allocate" routine passed into symamd).
Future versions may return more statistics in the stats array.
void * (*allocate) (size_t, size_t)
A pointer to a function providing memory allocation. The
allocated memory must be returned initialized to zero. For a
C application, this argument should normally be a pointer to
calloc. For a MATLAB mexFunction, the routine mxCalloc is
passed instead.
void (*release) (size_t, size_t)
A pointer to a function that frees memory allocated by the
memory allocation routine above. For a C application, this
argument should normally be a pointer to free. For a MATLAB
mexFunction, the routine mxFree is passed instead.
----------------------------------------------------------------------------
colamd_report:
----------------------------------------------------------------------------
C syntax:
#include "colamd.h"
colamd_report (int stats [COLAMD_STATS]) ;
colamd_l_report (UF_long stats [COLAMD_STATS]) ;
Purpose:
Prints the error status and statistics recorded in the stats
array on the standard error output (for a standard C routine)
or on the MATLAB output (for a mexFunction).
Arguments:
int stats [COLAMD_STATS] ; Input only. Statistics from colamd.
----------------------------------------------------------------------------
symamd_report:
----------------------------------------------------------------------------
C syntax:
#include "colamd.h"
symamd_report (int stats [COLAMD_STATS]) ;
symamd_l_report (UF_long stats [COLAMD_STATS]) ;
Purpose:
Prints the error status and statistics recorded in the stats
array on the standard error output (for a standard C routine)
or on the MATLAB output (for a mexFunction).
Arguments:
int stats [COLAMD_STATS] ; Input only. Statistics from symamd.
*/
/* ========================================================================== */
/* === Scaffolding code definitions ======================================== */
/* ========================================================================== */
/* Ensure that debugging is turned off: */
#ifndef NDEBUG
#define NDEBUG
#endif
/* turn on debugging by uncommenting the following line
#undef NDEBUG
*/
/*
Our "scaffolding code" philosophy: In our opinion, well-written library
code should keep its "debugging" code, and just normally have it turned off
by the compiler so as not to interfere with performance. This serves
several purposes:
(1) assertions act as comments to the reader, telling you what the code
expects at that point. All assertions will always be true (unless
there really is a bug, of course).
(2) leaving in the scaffolding code assists anyone who would like to modify
the code, or understand the algorithm (by reading the debugging output,
one can get a glimpse into what the code is doing).
(3) (gasp!) for actually finding bugs. This code has been heavily tested
and "should" be fully functional and bug-free ... but you never know...
The code will become outrageously slow when debugging is
enabled. To control the level of debugging output, set an environment
variable D to 0 (little), 1 (some), 2, 3, or 4 (lots). When debugging,
you should see the following message on the standard output:
colamd: debug version, D = 1 (THIS WILL BE SLOW!)
or a similar message for symamd. If you don't, then debugging has not
been enabled.
*/
/* ========================================================================== */
/* === Include files ======================================================== */
/* ========================================================================== */
#include "colamd.h"
#include <limits.h>
#include <math.h>
#ifdef MATLAB_MEX_FILE
#include "mex.h"
#include "matrix.h"
#endif /* MATLAB_MEX_FILE */
#if !defined (NPRINT) || !defined (NDEBUG)
#include <stdio.h>
#endif
#ifndef NULL
#define NULL ((void *) 0)
#endif
/* ========================================================================== */
/* === int or UF_long ======================================================= */
/* ========================================================================== */
/* define UF_long */
#include "UFconfig.h"
#ifdef DLONG
#define Int UF_long
#define ID UF_long_id
#define Int_MAX UF_long_max
#define COLAMD_recommended colamd_l_recommended
#define COLAMD_set_defaults colamd_l_set_defaults
#define COLAMD_MAIN colamd_l
#define SYMAMD_MAIN symamd_l
#define COLAMD_report colamd_l_report
#define SYMAMD_report symamd_l_report
#else
#define Int int
#define ID "%d"
#define Int_MAX INT_MAX
#define COLAMD_recommended colamd_recommended
#define COLAMD_set_defaults colamd_set_defaults
#define COLAMD_MAIN colamd
#define SYMAMD_MAIN symamd
#define COLAMD_report colamd_report
#define SYMAMD_report symamd_report
#endif
/* ========================================================================== */
/* === Row and Column structures ============================================ */
/* ========================================================================== */
/* User code that makes use of the colamd/symamd routines need not directly */
/* reference these structures. They are used only for colamd_recommended. */
typedef struct Colamd_Col_struct
{
Int start ; /* index for A of first row in this column, or DEAD */
/* if column is dead */
Int length ; /* number of rows in this column */
union
{
Int thickness ; /* number of original columns represented by this */
/* col, if the column is alive */
Int parent ; /* parent in parent tree super-column structure, if */
/* the column is dead */
} shared1 ;
union
{
Int score ; /* the score used to maintain heap, if col is alive */
Int order ; /* pivot ordering of this column, if col is dead */
} shared2 ;
union
{
Int headhash ; /* head of a hash bucket, if col is at the head of */
/* a degree list */
Int hash ; /* hash value, if col is not in a degree list */
Int prev ; /* previous column in degree list, if col is in a */
/* degree list (but not at the head of a degree list) */
} shared3 ;
union
{
Int degree_next ; /* next column, if col is in a degree list */
Int hash_next ; /* next column, if col is in a hash list */
} shared4 ;
} Colamd_Col ;
typedef struct Colamd_Row_struct
{
Int start ; /* index for A of first col in this row */
Int length ; /* number of principal columns in this row */
union
{
Int degree ; /* number of principal & non-principal columns in row */
Int p ; /* used as a row pointer in init_rows_cols () */
} shared1 ;
union
{
Int mark ; /* for computing set differences and marking dead rows*/
Int first_column ;/* first column in row (used in garbage collection) */
} shared2 ;
} Colamd_Row ;
/* ========================================================================== */
/* === Definitions ========================================================== */
/* ========================================================================== */
/* Routines are either PUBLIC (user-callable) or PRIVATE (not user-callable) */
#define PUBLIC
#define PRIVATE static
#define DENSE_DEGREE(alpha,n) \
((Int) MAX (16.0, (alpha) * sqrt ((double) (n))))
#define MAX(a,b) (((a) > (b)) ? (a) : (b))
#define MIN(a,b) (((a) < (b)) ? (a) : (b))
#define ONES_COMPLEMENT(r) (-(r)-1)
/* -------------------------------------------------------------------------- */
/* Change for version 2.1: define TRUE and FALSE only if not yet defined */
/* -------------------------------------------------------------------------- */
#ifndef TRUE
#define TRUE (1)
#endif
#ifndef FALSE
#define FALSE (0)
#endif
/* -------------------------------------------------------------------------- */
#define EMPTY (-1)
/* Row and column status */
#define ALIVE (0)
#define DEAD (-1)
/* Column status */
#define DEAD_PRINCIPAL (-1)
#define DEAD_NON_PRINCIPAL (-2)
/* Macros for row and column status update and checking. */
#define ROW_IS_DEAD(r) ROW_IS_MARKED_DEAD (Row[r].shared2.mark)
#define ROW_IS_MARKED_DEAD(row_mark) (row_mark < ALIVE)
#define ROW_IS_ALIVE(r) (Row [r].shared2.mark >= ALIVE)
#define COL_IS_DEAD(c) (Col [c].start < ALIVE)
#define COL_IS_ALIVE(c) (Col [c].start >= ALIVE)
#define COL_IS_DEAD_PRINCIPAL(c) (Col [c].start == DEAD_PRINCIPAL)
#define KILL_ROW(r) { Row [r].shared2.mark = DEAD ; }
#define KILL_PRINCIPAL_COL(c) { Col [c].start = DEAD_PRINCIPAL ; }
#define KILL_NON_PRINCIPAL_COL(c) { Col [c].start = DEAD_NON_PRINCIPAL ; }
/* ========================================================================== */
/* === Colamd reporting mechanism =========================================== */
/* ========================================================================== */
#if defined (MATLAB_MEX_FILE) || defined (MATHWORKS)
/* In MATLAB, matrices are 1-based to the user, but 0-based internally */
#define INDEX(i) ((i)+1)
#else
/* In C, matrices are 0-based and indices are reported as such in *_report */
#define INDEX(i) (i)
#endif
/* All output goes through the PRINTF macro. */
#define PRINTF(params) { if (colamd_printf != NULL) (void) colamd_printf params ; }
/* ========================================================================== */
/* === Prototypes of PRIVATE routines ======================================= */
/* ========================================================================== */
PRIVATE Int init_rows_cols
(
Int n_row,
Int n_col,
Colamd_Row Row [],
Colamd_Col Col [],
Int A [],
Int p [],
Int stats [COLAMD_STATS]
) ;
PRIVATE void init_scoring
(
Int n_row,
Int n_col,
Colamd_Row Row [],
Colamd_Col Col [],
Int A [],
Int head [],
double knobs [COLAMD_KNOBS],
Int *p_n_row2,
Int *p_n_col2,
Int *p_max_deg
) ;
PRIVATE Int find_ordering
(
Int n_row,
Int n_col,
Int Alen,
Colamd_Row Row [],
Colamd_Col Col [],
Int A [],
Int head [],
Int n_col2,
Int max_deg,
Int pfree,
Int aggressive
) ;
PRIVATE void order_children
(
Int n_col,
Colamd_Col Col [],
Int p []
) ;
PRIVATE void detect_super_cols
(
#ifndef NDEBUG
Int n_col,
Colamd_Row Row [],
#endif /* NDEBUG */
Colamd_Col Col [],
Int A [],
Int head [],
Int row_start,
Int row_length
) ;
PRIVATE Int garbage_collection
(
Int n_row,
Int n_col,
Colamd_Row Row [],
Colamd_Col Col [],
Int A [],
Int *pfree
) ;
PRIVATE Int clear_mark
(
Int tag_mark,
Int max_mark,
Int n_row,
Colamd_Row Row []
) ;
PRIVATE void print_report
(
char *method,
Int stats [COLAMD_STATS]
) ;
/* ========================================================================== */
/* === Debugging prototypes and definitions ================================= */
/* ========================================================================== */
#ifndef NDEBUG
#include <assert.h>
/* colamd_debug is the *ONLY* global variable, and is only */
/* present when debugging */
PRIVATE Int colamd_debug = 0 ; /* debug print level */
#define DEBUG0(params) { PRINTF (params) ; }
#define DEBUG1(params) { if (colamd_debug >= 1) PRINTF (params) ; }
#define DEBUG2(params) { if (colamd_debug >= 2) PRINTF (params) ; }
#define DEBUG3(params) { if (colamd_debug >= 3) PRINTF (params) ; }
#define DEBUG4(params) { if (colamd_debug >= 4) PRINTF (params) ; }
#ifdef MATLAB_MEX_FILE
#define ASSERT(expression) (mxAssert ((expression), ""))
#else
#define ASSERT(expression) (assert (expression))
#endif /* MATLAB_MEX_FILE */
PRIVATE void colamd_get_debug /* gets the debug print level from getenv */
(
char *method
) ;
PRIVATE void debug_deg_lists
(
Int n_row,
Int n_col,
Colamd_Row Row [],
Colamd_Col Col [],
Int head [],
Int min_score,
Int should,
Int max_deg
) ;
PRIVATE void debug_mark
(
Int n_row,
Colamd_Row Row [],
Int tag_mark,
Int max_mark
) ;
PRIVATE void debug_matrix
(
Int n_row,
Int n_col,
Colamd_Row Row [],
Colamd_Col Col [],
Int A []
) ;
PRIVATE void debug_structures
(
Int n_row,
Int n_col,
Colamd_Row Row [],
Colamd_Col Col [],
Int A [],
Int n_col2
) ;
#else /* NDEBUG */
/* === No debugging ========================================================= */
#define DEBUG0(params) ;
#define DEBUG1(params) ;
#define DEBUG2(params) ;
#define DEBUG3(params) ;
#define DEBUG4(params) ;
#define ASSERT(expression)
#endif /* NDEBUG */
/* ========================================================================== */
/* === USER-CALLABLE ROUTINES: ============================================== */
/* ========================================================================== */
/* ========================================================================== */
/* === colamd_recommended =================================================== */
/* ========================================================================== */
/*
The colamd_recommended routine returns the suggested size for Alen. This
value has been determined to provide good balance between the number of
garbage collections and the memory requirements for colamd. If any
argument is negative, or if integer overflow occurs, a 0 is returned as an
error condition. 2*nnz space is required for the row and column
indices of the matrix. COLAMD_C (n_col) + COLAMD_R (n_row) space is
required for the Col and Row arrays, respectively, which are internal to
colamd (roughly 6*n_col + 4*n_row). An additional n_col space is the
minimal amount of "elbow room", and nnz/5 more space is recommended for
run time efficiency.
Alen is approximately 2.2*nnz + 7*n_col + 4*n_row + 10.
This function is not needed when using symamd.
*/
/* add two values of type size_t, and check for integer overflow */
static size_t t_add (size_t a, size_t b, int *ok)
{
(*ok) = (*ok) && ((a + b) >= MAX (a,b)) ;
return ((*ok) ? (a + b) : 0) ;
}
/* compute a*k where k is a small integer, and check for integer overflow */
static size_t t_mult (size_t a, size_t k, int *ok)
{
size_t i, s = 0 ;
for (i = 0 ; i < k ; i++)
{
s = t_add (s, a, ok) ;
}
return (s) ;
}
/* size of the Col and Row structures */
#define COLAMD_C(n_col,ok) \
((t_mult (t_add (n_col, 1, ok), sizeof (Colamd_Col), ok) / sizeof (Int)))
#define COLAMD_R(n_row,ok) \
((t_mult (t_add (n_row, 1, ok), sizeof (Colamd_Row), ok) / sizeof (Int)))
PUBLIC size_t COLAMD_recommended /* returns recommended value of Alen. */
(
/* === Parameters ======================================================= */
Int nnz, /* number of nonzeros in A */
Int n_row, /* number of rows in A */
Int n_col /* number of columns in A */
)
{
size_t s, c, r ;
int ok = TRUE ;
if (nnz < 0 || n_row < 0 || n_col < 0)
{
return (0) ;
}
s = t_mult (nnz, 2, &ok) ; /* 2*nnz */
c = COLAMD_C (n_col, &ok) ; /* size of column structures */
r = COLAMD_R (n_row, &ok) ; /* size of row structures */
s = t_add (s, c, &ok) ;
s = t_add (s, r, &ok) ;
s = t_add (s, n_col, &ok) ; /* elbow room */
s = t_add (s, nnz/5, &ok) ; /* elbow room */
ok = ok && (s < Int_MAX) ;
return (ok ? s : 0) ;
}
/* ========================================================================== */
/* === colamd_set_defaults ================================================== */
/* ========================================================================== */
/*
The colamd_set_defaults routine sets the default values of the user-
controllable parameters for colamd and symamd:
Colamd: rows with more than max (16, knobs [0] * sqrt (n_col))
entries are removed prior to ordering. Columns with more than
max (16, knobs [1] * sqrt (MIN (n_row,n_col))) entries are removed
prior to ordering, and placed last in the output column ordering.
Symamd: Rows and columns with more than max (16, knobs [0] * sqrt (n))
entries are removed prior to ordering, and placed last in the
output ordering.
knobs [0] dense row control
knobs [1] dense column control
knobs [2] if nonzero, do aggresive absorption
knobs [3..19] unused, but future versions might use this
*/
PUBLIC void COLAMD_set_defaults
(
/* === Parameters ======================================================= */
double knobs [COLAMD_KNOBS] /* knob array */
)
{
/* === Local variables ================================================== */
Int i ;
if (!knobs)
{
return ; /* no knobs to initialize */
}
for (i = 0 ; i < COLAMD_KNOBS ; i++)
{
knobs [i] = 0 ;
}
knobs [COLAMD_DENSE_ROW] = 10 ;
knobs [COLAMD_DENSE_COL] = 10 ;
knobs [COLAMD_AGGRESSIVE] = TRUE ; /* default: do aggressive absorption*/
}
/* ========================================================================== */
/* === symamd =============================================================== */
/* ========================================================================== */
PUBLIC Int SYMAMD_MAIN /* return TRUE if OK, FALSE otherwise */
(
/* === Parameters ======================================================= */
Int n, /* number of rows and columns of A */
Int A [], /* row indices of A */
Int p [], /* column pointers of A */
Int perm [], /* output permutation, size n+1 */
double knobs [COLAMD_KNOBS], /* parameters (uses defaults if NULL) */
Int stats [COLAMD_STATS], /* output statistics and error codes */
void * (*allocate) (size_t, size_t),
/* pointer to calloc (ANSI C) or */
/* mxCalloc (for MATLAB mexFunction) */
void (*release) (void *)
/* pointer to free (ANSI C) or */
/* mxFree (for MATLAB mexFunction) */
)
{
/* === Local variables ================================================== */
Int *count ; /* length of each column of M, and col pointer*/
Int *mark ; /* mark array for finding duplicate entries */
Int *M ; /* row indices of matrix M */
size_t Mlen ; /* length of M */
Int n_row ; /* number of rows in M */
Int nnz ; /* number of entries in A */
Int i ; /* row index of A */
Int j ; /* column index of A */
Int k ; /* row index of M */
Int mnz ; /* number of nonzeros in M */
Int pp ; /* index into a column of A */
Int last_row ; /* last row seen in the current column */
Int length ; /* number of nonzeros in a column */
double cknobs [COLAMD_KNOBS] ; /* knobs for colamd */
double default_knobs [COLAMD_KNOBS] ; /* default knobs for colamd */
#ifndef NDEBUG
colamd_get_debug ("symamd") ;
#endif /* NDEBUG */
/* === Check the input arguments ======================================== */
if (!stats)
{
DEBUG0 (("symamd: stats not present\n")) ;
return (FALSE) ;
}
for (i = 0 ; i < COLAMD_STATS ; i++)
{
stats [i] = 0 ;
}
stats [COLAMD_STATUS] = COLAMD_OK ;
stats [COLAMD_INFO1] = -1 ;
stats [COLAMD_INFO2] = -1 ;
if (!A)
{
stats [COLAMD_STATUS] = COLAMD_ERROR_A_not_present ;
DEBUG0 (("symamd: A not present\n")) ;
return (FALSE) ;
}
if (!p) /* p is not present */
{
stats [COLAMD_STATUS] = COLAMD_ERROR_p_not_present ;
DEBUG0 (("symamd: p not present\n")) ;
return (FALSE) ;
}
if (n < 0) /* n must be >= 0 */
{
stats [COLAMD_STATUS] = COLAMD_ERROR_ncol_negative ;
stats [COLAMD_INFO1] = n ;
DEBUG0 (("symamd: n negative %d\n", n)) ;
return (FALSE) ;
}
nnz = p [n] ;
if (nnz < 0) /* nnz must be >= 0 */
{
stats [COLAMD_STATUS] = COLAMD_ERROR_nnz_negative ;
stats [COLAMD_INFO1] = nnz ;
DEBUG0 (("symamd: number of entries negative %d\n", nnz)) ;
return (FALSE) ;
}
if (p [0] != 0)
{
stats [COLAMD_STATUS] = COLAMD_ERROR_p0_nonzero ;
stats [COLAMD_INFO1] = p [0] ;
DEBUG0 (("symamd: p[0] not zero %d\n", p [0])) ;
return (FALSE) ;
}
/* === If no knobs, set default knobs =================================== */
if (!knobs)
{
COLAMD_set_defaults (default_knobs) ;
knobs = default_knobs ;
}
/* === Allocate count and mark ========================================== */
count = (Int *) ((*allocate) (n+1, sizeof (Int))) ;
if (!count)
{
stats [COLAMD_STATUS] = COLAMD_ERROR_out_of_memory ;
DEBUG0 (("symamd: allocate count (size %d) failed\n", n+1)) ;
return (FALSE) ;
}
mark = (Int *) ((*allocate) (n+1, sizeof (Int))) ;
if (!mark)
{
stats [COLAMD_STATUS] = COLAMD_ERROR_out_of_memory ;
(*release) ((void *) count) ;
DEBUG0 (("symamd: allocate mark (size %d) failed\n", n+1)) ;
return (FALSE) ;
}
/* === Compute column counts of M, check if A is valid ================== */
stats [COLAMD_INFO3] = 0 ; /* number of duplicate or unsorted row indices*/
for (i = 0 ; i < n ; i++)
{
mark [i] = -1 ;
}
for (j = 0 ; j < n ; j++)
{
last_row = -1 ;
length = p [j+1] - p [j] ;
if (length < 0)
{
/* column pointers must be non-decreasing */
stats [COLAMD_STATUS] = COLAMD_ERROR_col_length_negative ;
stats [COLAMD_INFO1] = j ;
stats [COLAMD_INFO2] = length ;
(*release) ((void *) count) ;
(*release) ((void *) mark) ;
DEBUG0 (("symamd: col %d negative length %d\n", j, length)) ;
return (FALSE) ;
}
for (pp = p [j] ; pp < p [j+1] ; pp++)
{
i = A [pp] ;
if (i < 0 || i >= n)
{
/* row index i, in column j, is out of bounds */
stats [COLAMD_STATUS] = COLAMD_ERROR_row_index_out_of_bounds ;
stats [COLAMD_INFO1] = j ;
stats [COLAMD_INFO2] = i ;
stats [COLAMD_INFO3] = n ;
(*release) ((void *) count) ;
(*release) ((void *) mark) ;
DEBUG0 (("symamd: row %d col %d out of bounds\n", i, j)) ;
return (FALSE) ;
}
if (i <= last_row || mark [i] == j)
{
/* row index is unsorted or repeated (or both), thus col */
/* is jumbled. This is a notice, not an error condition. */
stats [COLAMD_STATUS] = COLAMD_OK_BUT_JUMBLED ;
stats [COLAMD_INFO1] = j ;
stats [COLAMD_INFO2] = i ;
(stats [COLAMD_INFO3]) ++ ;
DEBUG1 (("symamd: row %d col %d unsorted/duplicate\n", i, j)) ;
}
if (i > j && mark [i] != j)
{
/* row k of M will contain column indices i and j */
count [i]++ ;
count [j]++ ;
}
/* mark the row as having been seen in this column */
mark [i] = j ;
last_row = i ;
}
}
/* v2.4: removed free(mark) */
/* === Compute column pointers of M ===================================== */
/* use output permutation, perm, for column pointers of M */
perm [0] = 0 ;
for (j = 1 ; j <= n ; j++)
{
perm [j] = perm [j-1] + count [j-1] ;
}
for (j = 0 ; j < n ; j++)
{
count [j] = perm [j] ;
}
/* === Construct M ====================================================== */
mnz = perm [n] ;
n_row = mnz / 2 ;
Mlen = COLAMD_recommended (mnz, n_row, n) ;
M = (Int *) ((*allocate) (Mlen, sizeof (Int))) ;
DEBUG0 (("symamd: M is %d-by-%d with %d entries, Mlen = %g\n",
n_row, n, mnz, (double) Mlen)) ;
if (!M)
{
stats [COLAMD_STATUS] = COLAMD_ERROR_out_of_memory ;
(*release) ((void *) count) ;
(*release) ((void *) mark) ;
DEBUG0 (("symamd: allocate M (size %g) failed\n", (double) Mlen)) ;
return (FALSE) ;
}
k = 0 ;
if (stats [COLAMD_STATUS] == COLAMD_OK)
{
/* Matrix is OK */
for (j = 0 ; j < n ; j++)
{
ASSERT (p [j+1] - p [j] >= 0) ;
for (pp = p [j] ; pp < p [j+1] ; pp++)
{
i = A [pp] ;
ASSERT (i >= 0 && i < n) ;
if (i > j)
{
/* row k of M contains column indices i and j */
M [count [i]++] = k ;
M [count [j]++] = k ;
k++ ;
}
}
}
}
else
{
/* Matrix is jumbled. Do not add duplicates to M. Unsorted cols OK. */
DEBUG0 (("symamd: Duplicates in A.\n")) ;
for (i = 0 ; i < n ; i++)
{
mark [i] = -1 ;
}
for (j = 0 ; j < n ; j++)
{
ASSERT (p [j+1] - p [j] >= 0) ;
for (pp = p [j] ; pp < p [j+1] ; pp++)
{
i = A [pp] ;
ASSERT (i >= 0 && i < n) ;
if (i > j && mark [i] != j)
{
/* row k of M contains column indices i and j */
M [count [i]++] = k ;
M [count [j]++] = k ;
k++ ;
mark [i] = j ;
}
}
}
/* v2.4: free(mark) moved below */
}
/* count and mark no longer needed */
(*release) ((void *) count) ;
(*release) ((void *) mark) ; /* v2.4: free (mark) moved here */
ASSERT (k == n_row) ;
/* === Adjust the knobs for M =========================================== */
for (i = 0 ; i < COLAMD_KNOBS ; i++)
{
cknobs [i] = knobs [i] ;
}
/* there are no dense rows in M */
cknobs [COLAMD_DENSE_ROW] = -1 ;
cknobs [COLAMD_DENSE_COL] = knobs [COLAMD_DENSE_ROW] ;
/* === Order the columns of M =========================================== */
/* v2.4: colamd cannot fail here, so the error check is removed */
(void) COLAMD_MAIN (n_row, n, (Int) Mlen, M, perm, cknobs, stats) ;
/* Note that the output permutation is now in perm */
/* === get the statistics for symamd from colamd ======================== */
/* a dense column in colamd means a dense row and col in symamd */
stats [COLAMD_DENSE_ROW] = stats [COLAMD_DENSE_COL] ;
/* === Free M =========================================================== */
(*release) ((void *) M) ;
DEBUG0 (("symamd: done.\n")) ;
return (TRUE) ;
}
/* ========================================================================== */
/* === colamd =============================================================== */
/* ========================================================================== */
/*
The colamd routine computes a column ordering Q of a sparse matrix
A such that the LU factorization P(AQ) = LU remains sparse, where P is
selected via partial pivoting. The routine can also be viewed as
providing a permutation Q such that the Cholesky factorization
(AQ)'(AQ) = LL' remains sparse.
*/
PUBLIC Int COLAMD_MAIN /* returns TRUE if successful, FALSE otherwise*/
(
/* === Parameters ======================================================= */
Int n_row, /* number of rows in A */
Int n_col, /* number of columns in A */
Int Alen, /* length of A */
Int A [], /* row indices of A */
Int p [], /* pointers to columns in A */
double knobs [COLAMD_KNOBS],/* parameters (uses defaults if NULL) */
Int stats [COLAMD_STATS] /* output statistics and error codes */
)
{
/* === Local variables ================================================== */
Int i ; /* loop index */
Int nnz ; /* nonzeros in A */
size_t Row_size ; /* size of Row [], in integers */
size_t Col_size ; /* size of Col [], in integers */
size_t need ; /* minimum required length of A */
Colamd_Row *Row ; /* pointer into A of Row [0..n_row] array */
Colamd_Col *Col ; /* pointer into A of Col [0..n_col] array */
Int n_col2 ; /* number of non-dense, non-empty columns */
Int n_row2 ; /* number of non-dense, non-empty rows */
Int ngarbage ; /* number of garbage collections performed */
Int max_deg ; /* maximum row degree */
double default_knobs [COLAMD_KNOBS] ; /* default knobs array */
Int aggressive ; /* do aggressive absorption */
int ok ;
#ifndef NDEBUG
colamd_get_debug ("colamd") ;
#endif /* NDEBUG */
/* === Check the input arguments ======================================== */
if (!stats)
{
DEBUG0 (("colamd: stats not present\n")) ;
return (FALSE) ;
}
for (i = 0 ; i < COLAMD_STATS ; i++)
{
stats [i] = 0 ;
}
stats [COLAMD_STATUS] = COLAMD_OK ;
stats [COLAMD_INFO1] = -1 ;
stats [COLAMD_INFO2] = -1 ;
if (!A) /* A is not present */
{
stats [COLAMD_STATUS] = COLAMD_ERROR_A_not_present ;
DEBUG0 (("colamd: A not present\n")) ;
return (FALSE) ;
}
if (!p) /* p is not present */
{
stats [COLAMD_STATUS] = COLAMD_ERROR_p_not_present ;
DEBUG0 (("colamd: p not present\n")) ;
return (FALSE) ;
}
if (n_row < 0) /* n_row must be >= 0 */
{
stats [COLAMD_STATUS] = COLAMD_ERROR_nrow_negative ;
stats [COLAMD_INFO1] = n_row ;
DEBUG0 (("colamd: nrow negative %d\n", n_row)) ;
return (FALSE) ;
}
if (n_col < 0) /* n_col must be >= 0 */
{
stats [COLAMD_STATUS] = COLAMD_ERROR_ncol_negative ;
stats [COLAMD_INFO1] = n_col ;
DEBUG0 (("colamd: ncol negative %d\n", n_col)) ;
return (FALSE) ;
}
nnz = p [n_col] ;
if (nnz < 0) /* nnz must be >= 0 */
{
stats [COLAMD_STATUS] = COLAMD_ERROR_nnz_negative ;
stats [COLAMD_INFO1] = nnz ;
DEBUG0 (("colamd: number of entries negative %d\n", nnz)) ;
return (FALSE) ;
}
if (p [0] != 0)
{
stats [COLAMD_STATUS] = COLAMD_ERROR_p0_nonzero ;
stats [COLAMD_INFO1] = p [0] ;
DEBUG0 (("colamd: p[0] not zero %d\n", p [0])) ;
return (FALSE) ;
}
/* === If no knobs, set default knobs =================================== */
if (!knobs)
{
COLAMD_set_defaults (default_knobs) ;
knobs = default_knobs ;
}
aggressive = (knobs [COLAMD_AGGRESSIVE] != FALSE) ;
/* === Allocate the Row and Col arrays from array A ===================== */
ok = TRUE ;
Col_size = COLAMD_C (n_col, &ok) ; /* size of Col array of structs */
Row_size = COLAMD_R (n_row, &ok) ; /* size of Row array of structs */
/* need = 2*nnz + n_col + Col_size + Row_size ; */
need = t_mult (nnz, 2, &ok) ;
need = t_add (need, n_col, &ok) ;
need = t_add (need, Col_size, &ok) ;
need = t_add (need, Row_size, &ok) ;
if (!ok || need > (size_t) Alen || need > Int_MAX)
{
/* not enough space in array A to perform the ordering */
stats [COLAMD_STATUS] = COLAMD_ERROR_A_too_small ;
stats [COLAMD_INFO1] = need ;
stats [COLAMD_INFO2] = Alen ;
DEBUG0 (("colamd: Need Alen >= %d, given only Alen = %d\n", need,Alen));
return (FALSE) ;
}
Alen -= Col_size + Row_size ;
Col = (Colamd_Col *) &A [Alen] ;
Row = (Colamd_Row *) &A [Alen + Col_size] ;
/* === Construct the row and column data structures ===================== */
if (!init_rows_cols (n_row, n_col, Row, Col, A, p, stats))
{
/* input matrix is invalid */
DEBUG0 (("colamd: Matrix invalid\n")) ;
return (FALSE) ;
}
/* === Initialize scores, kill dense rows/columns ======================= */
init_scoring (n_row, n_col, Row, Col, A, p, knobs,
&n_row2, &n_col2, &max_deg) ;
/* === Order the supercolumns =========================================== */
ngarbage = find_ordering (n_row, n_col, Alen, Row, Col, A, p,
n_col2, max_deg, 2*nnz, aggressive) ;
/* === Order the non-principal columns ================================== */
order_children (n_col, Col, p) ;
/* === Return statistics in stats ======================================= */
stats [COLAMD_DENSE_ROW] = n_row - n_row2 ;
stats [COLAMD_DENSE_COL] = n_col - n_col2 ;
stats [COLAMD_DEFRAG_COUNT] = ngarbage ;
DEBUG0 (("colamd: done.\n")) ;
return (TRUE) ;
}
/* ========================================================================== */
/* === colamd_report ======================================================== */
/* ========================================================================== */
PUBLIC void COLAMD_report
(
Int stats [COLAMD_STATS]
)
{
print_report ("colamd", stats) ;
}
/* ========================================================================== */
/* === symamd_report ======================================================== */
/* ========================================================================== */
PUBLIC void SYMAMD_report
(
Int stats [COLAMD_STATS]
)
{
print_report ("symamd", stats) ;
}
/* ========================================================================== */
/* === NON-USER-CALLABLE ROUTINES: ========================================== */
/* ========================================================================== */
/* There are no user-callable routines beyond this point in the file */
/* ========================================================================== */
/* === init_rows_cols ======================================================= */
/* ========================================================================== */
/*
Takes the column form of the matrix in A and creates the row form of the
matrix. Also, row and column attributes are stored in the Col and Row
structs. If the columns are un-sorted or contain duplicate row indices,
this routine will also sort and remove duplicate row indices from the
column form of the matrix. Returns FALSE if the matrix is invalid,
TRUE otherwise. Not user-callable.
*/
PRIVATE Int init_rows_cols /* returns TRUE if OK, or FALSE otherwise */
(
/* === Parameters ======================================================= */
Int n_row, /* number of rows of A */
Int n_col, /* number of columns of A */
Colamd_Row Row [], /* of size n_row+1 */
Colamd_Col Col [], /* of size n_col+1 */
Int A [], /* row indices of A, of size Alen */
Int p [], /* pointers to columns in A, of size n_col+1 */
Int stats [COLAMD_STATS] /* colamd statistics */
)
{
/* === Local variables ================================================== */
Int col ; /* a column index */
Int row ; /* a row index */
Int *cp ; /* a column pointer */
Int *cp_end ; /* a pointer to the end of a column */
Int *rp ; /* a row pointer */
Int *rp_end ; /* a pointer to the end of a row */
Int last_row ; /* previous row */
/* === Initialize columns, and check column pointers ==================== */
for (col = 0 ; col < n_col ; col++)
{
Col [col].start = p [col] ;
Col [col].length = p [col+1] - p [col] ;
if (Col [col].length < 0)
{
/* column pointers must be non-decreasing */
stats [COLAMD_STATUS] = COLAMD_ERROR_col_length_negative ;
stats [COLAMD_INFO1] = col ;
stats [COLAMD_INFO2] = Col [col].length ;
DEBUG0 (("colamd: col %d length %d < 0\n", col, Col [col].length)) ;
return (FALSE) ;
}
Col [col].shared1.thickness = 1 ;
Col [col].shared2.score = 0 ;
Col [col].shared3.prev = EMPTY ;
Col [col].shared4.degree_next = EMPTY ;
}
/* p [0..n_col] no longer needed, used as "head" in subsequent routines */
/* === Scan columns, compute row degrees, and check row indices ========= */
stats [COLAMD_INFO3] = 0 ; /* number of duplicate or unsorted row indices*/
for (row = 0 ; row < n_row ; row++)
{
Row [row].length = 0 ;
Row [row].shared2.mark = -1 ;
}
for (col = 0 ; col < n_col ; col++)
{
last_row = -1 ;
cp = &A [p [col]] ;
cp_end = &A [p [col+1]] ;
while (cp < cp_end)
{
row = *cp++ ;
/* make sure row indices within range */
if (row < 0 || row >= n_row)
{
stats [COLAMD_STATUS] = COLAMD_ERROR_row_index_out_of_bounds ;
stats [COLAMD_INFO1] = col ;
stats [COLAMD_INFO2] = row ;
stats [COLAMD_INFO3] = n_row ;
DEBUG0 (("colamd: row %d col %d out of bounds\n", row, col)) ;
return (FALSE) ;
}
if (row <= last_row || Row [row].shared2.mark == col)
{
/* row index are unsorted or repeated (or both), thus col */
/* is jumbled. This is a notice, not an error condition. */
stats [COLAMD_STATUS] = COLAMD_OK_BUT_JUMBLED ;
stats [COLAMD_INFO1] = col ;
stats [COLAMD_INFO2] = row ;
(stats [COLAMD_INFO3]) ++ ;
DEBUG1 (("colamd: row %d col %d unsorted/duplicate\n",row,col));
}
if (Row [row].shared2.mark != col)
{
Row [row].length++ ;
}
else
{
/* this is a repeated entry in the column, */
/* it will be removed */
Col [col].length-- ;
}
/* mark the row as having been seen in this column */
Row [row].shared2.mark = col ;
last_row = row ;
}
}
/* === Compute row pointers ============================================= */
/* row form of the matrix starts directly after the column */
/* form of matrix in A */
Row [0].start = p [n_col] ;
Row [0].shared1.p = Row [0].start ;
Row [0].shared2.mark = -1 ;
for (row = 1 ; row < n_row ; row++)
{
Row [row].start = Row [row-1].start + Row [row-1].length ;
Row [row].shared1.p = Row [row].start ;
Row [row].shared2.mark = -1 ;
}
/* === Create row form ================================================== */
if (stats [COLAMD_STATUS] == COLAMD_OK_BUT_JUMBLED)
{
/* if cols jumbled, watch for repeated row indices */
for (col = 0 ; col < n_col ; col++)
{
cp = &A [p [col]] ;
cp_end = &A [p [col+1]] ;
while (cp < cp_end)
{
row = *cp++ ;
if (Row [row].shared2.mark != col)
{
A [(Row [row].shared1.p)++] = col ;
Row [row].shared2.mark = col ;
}
}
}
}
else
{
/* if cols not jumbled, we don't need the mark (this is faster) */
for (col = 0 ; col < n_col ; col++)
{
cp = &A [p [col]] ;
cp_end = &A [p [col+1]] ;
while (cp < cp_end)
{
A [(Row [*cp++].shared1.p)++] = col ;
}
}
}
/* === Clear the row marks and set row degrees ========================== */
for (row = 0 ; row < n_row ; row++)
{
Row [row].shared2.mark = 0 ;
Row [row].shared1.degree = Row [row].length ;
}
/* === See if we need to re-create columns ============================== */
if (stats [COLAMD_STATUS] == COLAMD_OK_BUT_JUMBLED)
{
DEBUG0 (("colamd: reconstructing column form, matrix jumbled\n")) ;
#ifndef NDEBUG
/* make sure column lengths are correct */
for (col = 0 ; col < n_col ; col++)
{
p [col] = Col [col].length ;
}
for (row = 0 ; row < n_row ; row++)
{
rp = &A [Row [row].start] ;
rp_end = rp + Row [row].length ;
while (rp < rp_end)
{
p [*rp++]-- ;
}
}
for (col = 0 ; col < n_col ; col++)
{
ASSERT (p [col] == 0) ;
}
/* now p is all zero (different than when debugging is turned off) */
#endif /* NDEBUG */
/* === Compute col pointers ========================================= */
/* col form of the matrix starts at A [0]. */
/* Note, we may have a gap between the col form and the row */
/* form if there were duplicate entries, if so, it will be */
/* removed upon the first garbage collection */
Col [0].start = 0 ;
p [0] = Col [0].start ;
for (col = 1 ; col < n_col ; col++)
{
/* note that the lengths here are for pruned columns, i.e. */
/* no duplicate row indices will exist for these columns */
Col [col].start = Col [col-1].start + Col [col-1].length ;
p [col] = Col [col].start ;
}
/* === Re-create col form =========================================== */
for (row = 0 ; row < n_row ; row++)
{
rp = &A [Row [row].start] ;
rp_end = rp + Row [row].length ;
while (rp < rp_end)
{
A [(p [*rp++])++] = row ;
}
}
}
/* === Done. Matrix is not (or no longer) jumbled ====================== */
return (TRUE) ;
}
/* ========================================================================== */
/* === init_scoring ========================================================= */
/* ========================================================================== */
/*
Kills dense or empty columns and rows, calculates an initial score for
each column, and places all columns in the degree lists. Not user-callable.
*/
PRIVATE void init_scoring
(
/* === Parameters ======================================================= */
Int n_row, /* number of rows of A */
Int n_col, /* number of columns of A */
Colamd_Row Row [], /* of size n_row+1 */
Colamd_Col Col [], /* of size n_col+1 */
Int A [], /* column form and row form of A */
Int head [], /* of size n_col+1 */
double knobs [COLAMD_KNOBS],/* parameters */
Int *p_n_row2, /* number of non-dense, non-empty rows */
Int *p_n_col2, /* number of non-dense, non-empty columns */
Int *p_max_deg /* maximum row degree */
)
{
/* === Local variables ================================================== */
Int c ; /* a column index */
Int r, row ; /* a row index */
Int *cp ; /* a column pointer */
Int deg ; /* degree of a row or column */
Int *cp_end ; /* a pointer to the end of a column */
Int *new_cp ; /* new column pointer */
Int col_length ; /* length of pruned column */
Int score ; /* current column score */
Int n_col2 ; /* number of non-dense, non-empty columns */
Int n_row2 ; /* number of non-dense, non-empty rows */
Int dense_row_count ; /* remove rows with more entries than this */
Int dense_col_count ; /* remove cols with more entries than this */
Int min_score ; /* smallest column score */
Int max_deg ; /* maximum row degree */
Int next_col ; /* Used to add to degree list.*/
#ifndef NDEBUG
Int debug_count ; /* debug only. */
#endif /* NDEBUG */
/* === Extract knobs ==================================================== */
/* Note: if knobs contains a NaN, this is undefined: */
if (knobs [COLAMD_DENSE_ROW] < 0)
{
/* only remove completely dense rows */
dense_row_count = n_col-1 ;
}
else
{
dense_row_count = DENSE_DEGREE (knobs [COLAMD_DENSE_ROW], n_col) ;
}
if (knobs [COLAMD_DENSE_COL] < 0)
{
/* only remove completely dense columns */
dense_col_count = n_row-1 ;
}
else
{
dense_col_count =
DENSE_DEGREE (knobs [COLAMD_DENSE_COL], MIN (n_row, n_col)) ;
}
DEBUG1 (("colamd: densecount: %d %d\n", dense_row_count, dense_col_count)) ;
max_deg = 0 ;
n_col2 = n_col ;
n_row2 = n_row ;
/* === Kill empty columns =============================================== */
/* Put the empty columns at the end in their natural order, so that LU */
/* factorization can proceed as far as possible. */
for (c = n_col-1 ; c >= 0 ; c--)
{
deg = Col [c].length ;
if (deg == 0)
{
/* this is a empty column, kill and order it last */
Col [c].shared2.order = --n_col2 ;
KILL_PRINCIPAL_COL (c) ;
}
}
DEBUG1 (("colamd: null columns killed: %d\n", n_col - n_col2)) ;
/* === Kill dense columns =============================================== */
/* Put the dense columns at the end, in their natural order */
for (c = n_col-1 ; c >= 0 ; c--)
{
/* skip any dead columns */
if (COL_IS_DEAD (c))
{
continue ;
}
deg = Col [c].length ;
if (deg > dense_col_count)
{
/* this is a dense column, kill and order it last */
Col [c].shared2.order = --n_col2 ;
/* decrement the row degrees */
cp = &A [Col [c].start] ;
cp_end = cp + Col [c].length ;
while (cp < cp_end)
{
Row [*cp++].shared1.degree-- ;
}
KILL_PRINCIPAL_COL (c) ;
}
}
DEBUG1 (("colamd: Dense and null columns killed: %d\n", n_col - n_col2)) ;
/* === Kill dense and empty rows ======================================== */
for (r = 0 ; r < n_row ; r++)
{
deg = Row [r].shared1.degree ;
ASSERT (deg >= 0 && deg <= n_col) ;
if (deg > dense_row_count || deg == 0)
{
/* kill a dense or empty row */
KILL_ROW (r) ;
--n_row2 ;
}
else
{
/* keep track of max degree of remaining rows */
max_deg = MAX (max_deg, deg) ;
}
}
DEBUG1 (("colamd: Dense and null rows killed: %d\n", n_row - n_row2)) ;
/* === Compute initial column scores ==================================== */
/* At this point the row degrees are accurate. They reflect the number */
/* of "live" (non-dense) columns in each row. No empty rows exist. */
/* Some "live" columns may contain only dead rows, however. These are */
/* pruned in the code below. */
/* now find the initial matlab score for each column */
for (c = n_col-1 ; c >= 0 ; c--)
{
/* skip dead column */
if (COL_IS_DEAD (c))
{
continue ;
}
score = 0 ;
cp = &A [Col [c].start] ;
new_cp = cp ;
cp_end = cp + Col [c].length ;
while (cp < cp_end)
{
/* get a row */
row = *cp++ ;
/* skip if dead */
if (ROW_IS_DEAD (row))
{
continue ;
}
/* compact the column */
*new_cp++ = row ;
/* add row's external degree */
score += Row [row].shared1.degree - 1 ;
/* guard against integer overflow */
score = MIN (score, n_col) ;
}
/* determine pruned column length */
col_length = (Int) (new_cp - &A [Col [c].start]) ;
if (col_length == 0)
{
/* a newly-made null column (all rows in this col are "dense" */
/* and have already been killed) */
DEBUG2 (("Newly null killed: %d\n", c)) ;
Col [c].shared2.order = --n_col2 ;
KILL_PRINCIPAL_COL (c) ;
}
else
{
/* set column length and set score */
ASSERT (score >= 0) ;
ASSERT (score <= n_col) ;
Col [c].length = col_length ;
Col [c].shared2.score = score ;
}
}
DEBUG1 (("colamd: Dense, null, and newly-null columns killed: %d\n",
n_col-n_col2)) ;
/* At this point, all empty rows and columns are dead. All live columns */
/* are "clean" (containing no dead rows) and simplicial (no supercolumns */
/* yet). Rows may contain dead columns, but all live rows contain at */
/* least one live column. */
#ifndef NDEBUG
debug_structures (n_row, n_col, Row, Col, A, n_col2) ;
#endif /* NDEBUG */
/* === Initialize degree lists ========================================== */
#ifndef NDEBUG
debug_count = 0 ;
#endif /* NDEBUG */
/* clear the hash buckets */
for (c = 0 ; c <= n_col ; c++)
{
head [c] = EMPTY ;
}
min_score = n_col ;
/* place in reverse order, so low column indices are at the front */
/* of the lists. This is to encourage natural tie-breaking */
for (c = n_col-1 ; c >= 0 ; c--)
{
/* only add principal columns to degree lists */
if (COL_IS_ALIVE (c))
{
DEBUG4 (("place %d score %d minscore %d ncol %d\n",
c, Col [c].shared2.score, min_score, n_col)) ;
/* === Add columns score to DList =============================== */
score = Col [c].shared2.score ;
ASSERT (min_score >= 0) ;
ASSERT (min_score <= n_col) ;
ASSERT (score >= 0) ;
ASSERT (score <= n_col) ;
ASSERT (head [score] >= EMPTY) ;
/* now add this column to dList at proper score location */
next_col = head [score] ;
Col [c].shared3.prev = EMPTY ;
Col [c].shared4.degree_next = next_col ;
/* if there already was a column with the same score, set its */
/* previous pointer to this new column */
if (next_col != EMPTY)
{
Col [next_col].shared3.prev = c ;
}
head [score] = c ;
/* see if this score is less than current min */
min_score = MIN (min_score, score) ;
#ifndef NDEBUG
debug_count++ ;
#endif /* NDEBUG */
}
}
#ifndef NDEBUG
DEBUG1 (("colamd: Live cols %d out of %d, non-princ: %d\n",
debug_count, n_col, n_col-debug_count)) ;
ASSERT (debug_count == n_col2) ;
debug_deg_lists (n_row, n_col, Row, Col, head, min_score, n_col2, max_deg) ;
#endif /* NDEBUG */
/* === Return number of remaining columns, and max row degree =========== */
*p_n_col2 = n_col2 ;
*p_n_row2 = n_row2 ;
*p_max_deg = max_deg ;
}
/* ========================================================================== */
/* === find_ordering ======================================================== */
/* ========================================================================== */
/*
Order the principal columns of the supercolumn form of the matrix
(no supercolumns on input). Uses a minimum approximate column minimum
degree ordering method. Not user-callable.
*/
PRIVATE Int find_ordering /* return the number of garbage collections */
(
/* === Parameters ======================================================= */
Int n_row, /* number of rows of A */
Int n_col, /* number of columns of A */
Int Alen, /* size of A, 2*nnz + n_col or larger */
Colamd_Row Row [], /* of size n_row+1 */
Colamd_Col Col [], /* of size n_col+1 */
Int A [], /* column form and row form of A */
Int head [], /* of size n_col+1 */
Int n_col2, /* Remaining columns to order */
Int max_deg, /* Maximum row degree */
Int pfree, /* index of first free slot (2*nnz on entry) */
Int aggressive
)
{
/* === Local variables ================================================== */
Int k ; /* current pivot ordering step */
Int pivot_col ; /* current pivot column */
Int *cp ; /* a column pointer */
Int *rp ; /* a row pointer */
Int pivot_row ; /* current pivot row */
Int *new_cp ; /* modified column pointer */
Int *new_rp ; /* modified row pointer */
Int pivot_row_start ; /* pointer to start of pivot row */
Int pivot_row_degree ; /* number of columns in pivot row */
Int pivot_row_length ; /* number of supercolumns in pivot row */
Int pivot_col_score ; /* score of pivot column */
Int needed_memory ; /* free space needed for pivot row */
Int *cp_end ; /* pointer to the end of a column */
Int *rp_end ; /* pointer to the end of a row */
Int row ; /* a row index */
Int col ; /* a column index */
Int max_score ; /* maximum possible score */
Int cur_score ; /* score of current column */
unsigned Int hash ; /* hash value for supernode detection */
Int head_column ; /* head of hash bucket */
Int first_col ; /* first column in hash bucket */
Int tag_mark ; /* marker value for mark array */
Int row_mark ; /* Row [row].shared2.mark */
Int set_difference ; /* set difference size of row with pivot row */
Int min_score ; /* smallest column score */
Int col_thickness ; /* "thickness" (no. of columns in a supercol) */
Int max_mark ; /* maximum value of tag_mark */
Int pivot_col_thickness ; /* number of columns represented by pivot col */
Int prev_col ; /* Used by Dlist operations. */
Int next_col ; /* Used by Dlist operations. */
Int ngarbage ; /* number of garbage collections performed */
#ifndef NDEBUG
Int debug_d ; /* debug loop counter */
Int debug_step = 0 ; /* debug loop counter */
#endif /* NDEBUG */
/* === Initialization and clear mark ==================================== */
max_mark = INT_MAX - n_col ; /* INT_MAX defined in <limits.h> */
tag_mark = clear_mark (0, max_mark, n_row, Row) ;
min_score = 0 ;
ngarbage = 0 ;
DEBUG1 (("colamd: Ordering, n_col2=%d\n", n_col2)) ;
/* === Order the columns ================================================ */
for (k = 0 ; k < n_col2 ; /* 'k' is incremented below */)
{
#ifndef NDEBUG
if (debug_step % 100 == 0)
{
DEBUG2 (("\n... Step k: %d out of n_col2: %d\n", k, n_col2)) ;
}
else
{
DEBUG3 (("\n----------Step k: %d out of n_col2: %d\n", k, n_col2)) ;
}
debug_step++ ;
debug_deg_lists (n_row, n_col, Row, Col, head,
min_score, n_col2-k, max_deg) ;
debug_matrix (n_row, n_col, Row, Col, A) ;
#endif /* NDEBUG */
/* === Select pivot column, and order it ============================ */
/* make sure degree list isn't empty */
ASSERT (min_score >= 0) ;
ASSERT (min_score <= n_col) ;
ASSERT (head [min_score] >= EMPTY) ;
#ifndef NDEBUG
for (debug_d = 0 ; debug_d < min_score ; debug_d++)
{
ASSERT (head [debug_d] == EMPTY) ;
}
#endif /* NDEBUG */
/* get pivot column from head of minimum degree list */
while (head [min_score] == EMPTY && min_score < n_col)
{
min_score++ ;
}
pivot_col = head [min_score] ;
ASSERT (pivot_col >= 0 && pivot_col <= n_col) ;
next_col = Col [pivot_col].shared4.degree_next ;
head [min_score] = next_col ;
if (next_col != EMPTY)
{
Col [next_col].shared3.prev = EMPTY ;
}
ASSERT (COL_IS_ALIVE (pivot_col)) ;
/* remember score for defrag check */
pivot_col_score = Col [pivot_col].shared2.score ;
/* the pivot column is the kth column in the pivot order */
Col [pivot_col].shared2.order = k ;
/* increment order count by column thickness */
pivot_col_thickness = Col [pivot_col].shared1.thickness ;
k += pivot_col_thickness ;
ASSERT (pivot_col_thickness > 0) ;
DEBUG3 (("Pivot col: %d thick %d\n", pivot_col, pivot_col_thickness)) ;
/* === Garbage_collection, if necessary ============================= */
needed_memory = MIN (pivot_col_score, n_col - k) ;
if (pfree + needed_memory >= Alen)
{
pfree = garbage_collection (n_row, n_col, Row, Col, A, &A [pfree]) ;
ngarbage++ ;
/* after garbage collection we will have enough */
ASSERT (pfree + needed_memory < Alen) ;
/* garbage collection has wiped out the Row[].shared2.mark array */
tag_mark = clear_mark (0, max_mark, n_row, Row) ;
#ifndef NDEBUG
debug_matrix (n_row, n_col, Row, Col, A) ;
#endif /* NDEBUG */
}
/* === Compute pivot row pattern ==================================== */
/* get starting location for this new merged row */
pivot_row_start = pfree ;
/* initialize new row counts to zero */
pivot_row_degree = 0 ;
/* tag pivot column as having been visited so it isn't included */
/* in merged pivot row */
Col [pivot_col].shared1.thickness = -pivot_col_thickness ;
/* pivot row is the union of all rows in the pivot column pattern */
cp = &A [Col [pivot_col].start] ;
cp_end = cp + Col [pivot_col].length ;
while (cp < cp_end)
{
/* get a row */
row = *cp++ ;
DEBUG4 (("Pivot col pattern %d %d\n", ROW_IS_ALIVE (row), row)) ;
/* skip if row is dead */
if (ROW_IS_ALIVE (row))
{
rp = &A [Row [row].start] ;
rp_end = rp + Row [row].length ;
while (rp < rp_end)
{
/* get a column */
col = *rp++ ;
/* add the column, if alive and untagged */
col_thickness = Col [col].shared1.thickness ;
if (col_thickness > 0 && COL_IS_ALIVE (col))
{
/* tag column in pivot row */
Col [col].shared1.thickness = -col_thickness ;
ASSERT (pfree < Alen) ;
/* place column in pivot row */
A [pfree++] = col ;
pivot_row_degree += col_thickness ;
}
}
}
}
/* clear tag on pivot column */
Col [pivot_col].shared1.thickness = pivot_col_thickness ;
max_deg = MAX (max_deg, pivot_row_degree) ;
#ifndef NDEBUG
DEBUG3 (("check2\n")) ;
debug_mark (n_row, Row, tag_mark, max_mark) ;
#endif /* NDEBUG */
/* === Kill all rows used to construct pivot row ==================== */
/* also kill pivot row, temporarily */
cp = &A [Col [pivot_col].start] ;
cp_end = cp + Col [pivot_col].length ;
while (cp < cp_end)
{
/* may be killing an already dead row */
row = *cp++ ;
DEBUG3 (("Kill row in pivot col: %d\n", row)) ;
KILL_ROW (row) ;
}
/* === Select a row index to use as the new pivot row =============== */
pivot_row_length = pfree - pivot_row_start ;
if (pivot_row_length > 0)
{
/* pick the "pivot" row arbitrarily (first row in col) */
pivot_row = A [Col [pivot_col].start] ;
DEBUG3 (("Pivotal row is %d\n", pivot_row)) ;
}
else
{
/* there is no pivot row, since it is of zero length */
pivot_row = EMPTY ;
ASSERT (pivot_row_length == 0) ;
}
ASSERT (Col [pivot_col].length > 0 || pivot_row_length == 0) ;
/* === Approximate degree computation =============================== */
/* Here begins the computation of the approximate degree. The column */
/* score is the sum of the pivot row "length", plus the size of the */
/* set differences of each row in the column minus the pattern of the */
/* pivot row itself. The column ("thickness") itself is also */
/* excluded from the column score (we thus use an approximate */
/* external degree). */
/* The time taken by the following code (compute set differences, and */
/* add them up) is proportional to the size of the data structure */
/* being scanned - that is, the sum of the sizes of each column in */
/* the pivot row. Thus, the amortized time to compute a column score */
/* is proportional to the size of that column (where size, in this */
/* context, is the column "length", or the number of row indices */
/* in that column). The number of row indices in a column is */
/* monotonically non-decreasing, from the length of the original */
/* column on input to colamd. */
/* === Compute set differences ====================================== */
DEBUG3 (("** Computing set differences phase. **\n")) ;
/* pivot row is currently dead - it will be revived later. */
DEBUG3 (("Pivot row: ")) ;
/* for each column in pivot row */
rp = &A [pivot_row_start] ;
rp_end = rp + pivot_row_length ;
while (rp < rp_end)
{
col = *rp++ ;
ASSERT (COL_IS_ALIVE (col) && col != pivot_col) ;
DEBUG3 (("Col: %d\n", col)) ;
/* clear tags used to construct pivot row pattern */
col_thickness = -Col [col].shared1.thickness ;
ASSERT (col_thickness > 0) ;
Col [col].shared1.thickness = col_thickness ;
/* === Remove column from degree list =========================== */
cur_score = Col [col].shared2.score ;
prev_col = Col [col].shared3.prev ;
next_col = Col [col].shared4.degree_next ;
ASSERT (cur_score >= 0) ;
ASSERT (cur_score <= n_col) ;
ASSERT (cur_score >= EMPTY) ;
if (prev_col == EMPTY)
{
head [cur_score] = next_col ;
}
else
{
Col [prev_col].shared4.degree_next = next_col ;
}
if (next_col != EMPTY)
{
Col [next_col].shared3.prev = prev_col ;
}
/* === Scan the column ========================================== */
cp = &A [Col [col].start] ;
cp_end = cp + Col [col].length ;
while (cp < cp_end)
{
/* get a row */
row = *cp++ ;
row_mark = Row [row].shared2.mark ;
/* skip if dead */
if (ROW_IS_MARKED_DEAD (row_mark))
{
continue ;
}
ASSERT (row != pivot_row) ;
set_difference = row_mark - tag_mark ;
/* check if the row has been seen yet */
if (set_difference < 0)
{
ASSERT (Row [row].shared1.degree <= max_deg) ;
set_difference = Row [row].shared1.degree ;
}
/* subtract column thickness from this row's set difference */
set_difference -= col_thickness ;
ASSERT (set_difference >= 0) ;
/* absorb this row if the set difference becomes zero */
if (set_difference == 0 && aggressive)
{
DEBUG3 (("aggressive absorption. Row: %d\n", row)) ;
KILL_ROW (row) ;
}
else
{
/* save the new mark */
Row [row].shared2.mark = set_difference + tag_mark ;
}
}
}
#ifndef NDEBUG
debug_deg_lists (n_row, n_col, Row, Col, head,
min_score, n_col2-k-pivot_row_degree, max_deg) ;
#endif /* NDEBUG */
/* === Add up set differences for each column ======================= */
DEBUG3 (("** Adding set differences phase. **\n")) ;
/* for each column in pivot row */
rp = &A [pivot_row_start] ;
rp_end = rp + pivot_row_length ;
while (rp < rp_end)
{
/* get a column */
col = *rp++ ;
ASSERT (COL_IS_ALIVE (col) && col != pivot_col) ;
hash = 0 ;
cur_score = 0 ;
cp = &A [Col [col].start] ;
/* compact the column */
new_cp = cp ;
cp_end = cp + Col [col].length ;
DEBUG4 (("Adding set diffs for Col: %d.\n", col)) ;
while (cp < cp_end)
{
/* get a row */
row = *cp++ ;
ASSERT(row >= 0 && row < n_row) ;
row_mark = Row [row].shared2.mark ;
/* skip if dead */
if (ROW_IS_MARKED_DEAD (row_mark))
{
DEBUG4 ((" Row %d, dead\n", row)) ;
continue ;
}
DEBUG4 ((" Row %d, set diff %d\n", row, row_mark-tag_mark));
ASSERT (row_mark >= tag_mark) ;
/* compact the column */
*new_cp++ = row ;
/* compute hash function */
hash += row ;
/* add set difference */
cur_score += row_mark - tag_mark ;
/* integer overflow... */
cur_score = MIN (cur_score, n_col) ;
}
/* recompute the column's length */
Col [col].length = (Int) (new_cp - &A [Col [col].start]) ;
/* === Further mass elimination ================================= */
if (Col [col].length == 0)
{
DEBUG4 (("further mass elimination. Col: %d\n", col)) ;
/* nothing left but the pivot row in this column */
KILL_PRINCIPAL_COL (col) ;
pivot_row_degree -= Col [col].shared1.thickness ;
ASSERT (pivot_row_degree >= 0) ;
/* order it */
Col [col].shared2.order = k ;
/* increment order count by column thickness */
k += Col [col].shared1.thickness ;
}
else
{
/* === Prepare for supercolumn detection ==================== */
DEBUG4 (("Preparing supercol detection for Col: %d.\n", col)) ;
/* save score so far */
Col [col].shared2.score = cur_score ;
/* add column to hash table, for supercolumn detection */
hash %= n_col + 1 ;
DEBUG4 ((" Hash = %d, n_col = %d.\n", hash, n_col)) ;
ASSERT (((Int) hash) <= n_col) ;
head_column = head [hash] ;
if (head_column > EMPTY)
{
/* degree list "hash" is non-empty, use prev (shared3) of */
/* first column in degree list as head of hash bucket */
first_col = Col [head_column].shared3.headhash ;
Col [head_column].shared3.headhash = col ;
}
else
{
/* degree list "hash" is empty, use head as hash bucket */
first_col = - (head_column + 2) ;
head [hash] = - (col + 2) ;
}
Col [col].shared4.hash_next = first_col ;
/* save hash function in Col [col].shared3.hash */
Col [col].shared3.hash = (Int) hash ;
ASSERT (COL_IS_ALIVE (col)) ;
}
}
/* The approximate external column degree is now computed. */
/* === Supercolumn detection ======================================== */
DEBUG3 (("** Supercolumn detection phase. **\n")) ;
detect_super_cols (
#ifndef NDEBUG
n_col, Row,
#endif /* NDEBUG */
Col, A, head, pivot_row_start, pivot_row_length) ;
/* === Kill the pivotal column ====================================== */
KILL_PRINCIPAL_COL (pivot_col) ;
/* === Clear mark =================================================== */
tag_mark = clear_mark (tag_mark+max_deg+1, max_mark, n_row, Row) ;
#ifndef NDEBUG
DEBUG3 (("check3\n")) ;
debug_mark (n_row, Row, tag_mark, max_mark) ;
#endif /* NDEBUG */
/* === Finalize the new pivot row, and column scores ================ */
DEBUG3 (("** Finalize scores phase. **\n")) ;
/* for each column in pivot row */
rp = &A [pivot_row_start] ;
/* compact the pivot row */
new_rp = rp ;
rp_end = rp + pivot_row_length ;
while (rp < rp_end)
{
col = *rp++ ;
/* skip dead columns */
if (COL_IS_DEAD (col))
{
continue ;
}
*new_rp++ = col ;
/* add new pivot row to column */
A [Col [col].start + (Col [col].length++)] = pivot_row ;
/* retrieve score so far and add on pivot row's degree. */
/* (we wait until here for this in case the pivot */
/* row's degree was reduced due to mass elimination). */
cur_score = Col [col].shared2.score + pivot_row_degree ;
/* calculate the max possible score as the number of */
/* external columns minus the 'k' value minus the */
/* columns thickness */
max_score = n_col - k - Col [col].shared1.thickness ;
/* make the score the external degree of the union-of-rows */
cur_score -= Col [col].shared1.thickness ;
/* make sure score is less or equal than the max score */
cur_score = MIN (cur_score, max_score) ;
ASSERT (cur_score >= 0) ;
/* store updated score */
Col [col].shared2.score = cur_score ;
/* === Place column back in degree list ========================= */
ASSERT (min_score >= 0) ;
ASSERT (min_score <= n_col) ;
ASSERT (cur_score >= 0) ;
ASSERT (cur_score <= n_col) ;
ASSERT (head [cur_score] >= EMPTY) ;
next_col = head [cur_score] ;
Col [col].shared4.degree_next = next_col ;
Col [col].shared3.prev = EMPTY ;
if (next_col != EMPTY)
{
Col [next_col].shared3.prev = col ;
}
head [cur_score] = col ;
/* see if this score is less than current min */
min_score = MIN (min_score, cur_score) ;
}
#ifndef NDEBUG
debug_deg_lists (n_row, n_col, Row, Col, head,
min_score, n_col2-k, max_deg) ;
#endif /* NDEBUG */
/* === Resurrect the new pivot row ================================== */
if (pivot_row_degree > 0)
{
/* update pivot row length to reflect any cols that were killed */
/* during super-col detection and mass elimination */
Row [pivot_row].start = pivot_row_start ;
Row [pivot_row].length = (Int) (new_rp - &A[pivot_row_start]) ;
ASSERT (Row [pivot_row].length > 0) ;
Row [pivot_row].shared1.degree = pivot_row_degree ;
Row [pivot_row].shared2.mark = 0 ;
/* pivot row is no longer dead */
DEBUG1 (("Resurrect Pivot_row %d deg: %d\n",
pivot_row, pivot_row_degree)) ;
}
}
/* === All principal columns have now been ordered ====================== */
return (ngarbage) ;
}
/* ========================================================================== */
/* === order_children ======================================================= */
/* ========================================================================== */
/*
The find_ordering routine has ordered all of the principal columns (the
representatives of the supercolumns). The non-principal columns have not
yet been ordered. This routine orders those columns by walking up the
parent tree (a column is a child of the column which absorbed it). The
final permutation vector is then placed in p [0 ... n_col-1], with p [0]
being the first column, and p [n_col-1] being the last. It doesn't look
like it at first glance, but be assured that this routine takes time linear
in the number of columns. Although not immediately obvious, the time
taken by this routine is O (n_col), that is, linear in the number of
columns. Not user-callable.
*/
PRIVATE void order_children
(
/* === Parameters ======================================================= */
Int n_col, /* number of columns of A */
Colamd_Col Col [], /* of size n_col+1 */
Int p [] /* p [0 ... n_col-1] is the column permutation*/
)
{
/* === Local variables ================================================== */
Int i ; /* loop counter for all columns */
Int c ; /* column index */
Int parent ; /* index of column's parent */
Int order ; /* column's order */
/* === Order each non-principal column ================================== */
for (i = 0 ; i < n_col ; i++)
{
/* find an un-ordered non-principal column */
ASSERT (COL_IS_DEAD (i)) ;
if (!COL_IS_DEAD_PRINCIPAL (i) && Col [i].shared2.order == EMPTY)
{
parent = i ;
/* once found, find its principal parent */
do
{
parent = Col [parent].shared1.parent ;
} while (!COL_IS_DEAD_PRINCIPAL (parent)) ;
/* now, order all un-ordered non-principal columns along path */
/* to this parent. collapse tree at the same time */
c = i ;
/* get order of parent */
order = Col [parent].shared2.order ;
do
{
ASSERT (Col [c].shared2.order == EMPTY) ;
/* order this column */
Col [c].shared2.order = order++ ;
/* collaps tree */
Col [c].shared1.parent = parent ;
/* get immediate parent of this column */
c = Col [c].shared1.parent ;
/* continue until we hit an ordered column. There are */
/* guarranteed not to be anymore unordered columns */
/* above an ordered column */
} while (Col [c].shared2.order == EMPTY) ;
/* re-order the super_col parent to largest order for this group */
Col [parent].shared2.order = order ;
}
}
/* === Generate the permutation ========================================= */
for (c = 0 ; c < n_col ; c++)
{
p [Col [c].shared2.order] = c ;
}
}
/* ========================================================================== */
/* === detect_super_cols ==================================================== */
/* ========================================================================== */
/*
Detects supercolumns by finding matches between columns in the hash buckets.
Check amongst columns in the set A [row_start ... row_start + row_length-1].
The columns under consideration are currently *not* in the degree lists,
and have already been placed in the hash buckets.
The hash bucket for columns whose hash function is equal to h is stored
as follows:
if head [h] is >= 0, then head [h] contains a degree list, so:
head [h] is the first column in degree bucket h.
Col [head [h]].headhash gives the first column in hash bucket h.
otherwise, the degree list is empty, and:
-(head [h] + 2) is the first column in hash bucket h.
For a column c in a hash bucket, Col [c].shared3.prev is NOT a "previous
column" pointer. Col [c].shared3.hash is used instead as the hash number
for that column. The value of Col [c].shared4.hash_next is the next column
in the same hash bucket.
Assuming no, or "few" hash collisions, the time taken by this routine is
linear in the sum of the sizes (lengths) of each column whose score has
just been computed in the approximate degree computation.
Not user-callable.
*/
PRIVATE void detect_super_cols
(
/* === Parameters ======================================================= */
#ifndef NDEBUG
/* these two parameters are only needed when debugging is enabled: */
Int n_col, /* number of columns of A */
Colamd_Row Row [], /* of size n_row+1 */
#endif /* NDEBUG */
Colamd_Col Col [], /* of size n_col+1 */
Int A [], /* row indices of A */
Int head [], /* head of degree lists and hash buckets */
Int row_start, /* pointer to set of columns to check */
Int row_length /* number of columns to check */
)
{
/* === Local variables ================================================== */
Int hash ; /* hash value for a column */
Int *rp ; /* pointer to a row */
Int c ; /* a column index */
Int super_c ; /* column index of the column to absorb into */
Int *cp1 ; /* column pointer for column super_c */
Int *cp2 ; /* column pointer for column c */
Int length ; /* length of column super_c */
Int prev_c ; /* column preceding c in hash bucket */
Int i ; /* loop counter */
Int *rp_end ; /* pointer to the end of the row */
Int col ; /* a column index in the row to check */
Int head_column ; /* first column in hash bucket or degree list */
Int first_col ; /* first column in hash bucket */
/* === Consider each column in the row ================================== */
rp = &A [row_start] ;
rp_end = rp + row_length ;
while (rp < rp_end)
{
col = *rp++ ;
if (COL_IS_DEAD (col))
{
continue ;
}
/* get hash number for this column */
hash = Col [col].shared3.hash ;
ASSERT (hash <= n_col) ;
/* === Get the first column in this hash bucket ===================== */
head_column = head [hash] ;
if (head_column > EMPTY)
{
first_col = Col [head_column].shared3.headhash ;
}
else
{
first_col = - (head_column + 2) ;
}
/* === Consider each column in the hash bucket ====================== */
for (super_c = first_col ; super_c != EMPTY ;
super_c = Col [super_c].shared4.hash_next)
{
ASSERT (COL_IS_ALIVE (super_c)) ;
ASSERT (Col [super_c].shared3.hash == hash) ;
length = Col [super_c].length ;
/* prev_c is the column preceding column c in the hash bucket */
prev_c = super_c ;
/* === Compare super_c with all columns after it ================ */
for (c = Col [super_c].shared4.hash_next ;
c != EMPTY ; c = Col [c].shared4.hash_next)
{
ASSERT (c != super_c) ;
ASSERT (COL_IS_ALIVE (c)) ;
ASSERT (Col [c].shared3.hash == hash) ;
/* not identical if lengths or scores are different */
if (Col [c].length != length ||
Col [c].shared2.score != Col [super_c].shared2.score)
{
prev_c = c ;
continue ;
}
/* compare the two columns */
cp1 = &A [Col [super_c].start] ;
cp2 = &A [Col [c].start] ;
for (i = 0 ; i < length ; i++)
{
/* the columns are "clean" (no dead rows) */
ASSERT (ROW_IS_ALIVE (*cp1)) ;
ASSERT (ROW_IS_ALIVE (*cp2)) ;
/* row indices will same order for both supercols, */
/* no gather scatter nessasary */
if (*cp1++ != *cp2++)
{
break ;
}
}
/* the two columns are different if the for-loop "broke" */
if (i != length)
{
prev_c = c ;
continue ;
}
/* === Got it! two columns are identical =================== */
ASSERT (Col [c].shared2.score == Col [super_c].shared2.score) ;
Col [super_c].shared1.thickness += Col [c].shared1.thickness ;
Col [c].shared1.parent = super_c ;
KILL_NON_PRINCIPAL_COL (c) ;
/* order c later, in order_children() */
Col [c].shared2.order = EMPTY ;
/* remove c from hash bucket */
Col [prev_c].shared4.hash_next = Col [c].shared4.hash_next ;
}
}
/* === Empty this hash bucket ======================================= */
if (head_column > EMPTY)
{
/* corresponding degree list "hash" is not empty */
Col [head_column].shared3.headhash = EMPTY ;
}
else
{
/* corresponding degree list "hash" is empty */
head [hash] = EMPTY ;
}
}
}
/* ========================================================================== */
/* === garbage_collection =================================================== */
/* ========================================================================== */
/*
Defragments and compacts columns and rows in the workspace A. Used when
all avaliable memory has been used while performing row merging. Returns
the index of the first free position in A, after garbage collection. The
time taken by this routine is linear is the size of the array A, which is
itself linear in the number of nonzeros in the input matrix.
Not user-callable.
*/
PRIVATE Int garbage_collection /* returns the new value of pfree */
(
/* === Parameters ======================================================= */
Int n_row, /* number of rows */
Int n_col, /* number of columns */
Colamd_Row Row [], /* row info */
Colamd_Col Col [], /* column info */
Int A [], /* A [0 ... Alen-1] holds the matrix */
Int *pfree /* &A [0] ... pfree is in use */
)
{
/* === Local variables ================================================== */
Int *psrc ; /* source pointer */
Int *pdest ; /* destination pointer */
Int j ; /* counter */
Int r ; /* a row index */
Int c ; /* a column index */
Int length ; /* length of a row or column */
#ifndef NDEBUG
Int debug_rows ;
DEBUG2 (("Defrag..\n")) ;
for (psrc = &A[0] ; psrc < pfree ; psrc++) ASSERT (*psrc >= 0) ;
debug_rows = 0 ;
#endif /* NDEBUG */
/* === Defragment the columns =========================================== */
pdest = &A[0] ;
for (c = 0 ; c < n_col ; c++)
{
if (COL_IS_ALIVE (c))
{
psrc = &A [Col [c].start] ;
/* move and compact the column */
ASSERT (pdest <= psrc) ;
Col [c].start = (Int) (pdest - &A [0]) ;
length = Col [c].length ;
for (j = 0 ; j < length ; j++)
{
r = *psrc++ ;
if (ROW_IS_ALIVE (r))
{
*pdest++ = r ;
}
}
Col [c].length = (Int) (pdest - &A [Col [c].start]) ;
}
}
/* === Prepare to defragment the rows =================================== */
for (r = 0 ; r < n_row ; r++)
{
if (ROW_IS_DEAD (r) || (Row [r].length == 0))
{
/* This row is already dead, or is of zero length. Cannot compact
* a row of zero length, so kill it. NOTE: in the current version,
* there are no zero-length live rows. Kill the row (for the first
* time, or again) just to be safe. */
KILL_ROW (r) ;
}
else
{
/* save first column index in Row [r].shared2.first_column */
psrc = &A [Row [r].start] ;
Row [r].shared2.first_column = *psrc ;
ASSERT (ROW_IS_ALIVE (r)) ;
/* flag the start of the row with the one's complement of row */
*psrc = ONES_COMPLEMENT (r) ;
#ifndef NDEBUG
debug_rows++ ;
#endif /* NDEBUG */
}
}
/* === Defragment the rows ============================================== */
psrc = pdest ;
while (psrc < pfree)
{
/* find a negative number ... the start of a row */
if (*psrc++ < 0)
{
psrc-- ;
/* get the row index */
r = ONES_COMPLEMENT (*psrc) ;
ASSERT (r >= 0 && r < n_row) ;
/* restore first column index */
*psrc = Row [r].shared2.first_column ;
ASSERT (ROW_IS_ALIVE (r)) ;
ASSERT (Row [r].length > 0) ;
/* move and compact the row */
ASSERT (pdest <= psrc) ;
Row [r].start = (Int) (pdest - &A [0]) ;
length = Row [r].length ;
for (j = 0 ; j < length ; j++)
{
c = *psrc++ ;
if (COL_IS_ALIVE (c))
{
*pdest++ = c ;
}
}
Row [r].length = (Int) (pdest - &A [Row [r].start]) ;
ASSERT (Row [r].length > 0) ;
#ifndef NDEBUG
debug_rows-- ;
#endif /* NDEBUG */
}
}
/* ensure we found all the rows */
ASSERT (debug_rows == 0) ;
/* === Return the new value of pfree ==================================== */
return ((Int) (pdest - &A [0])) ;
}
/* ========================================================================== */
/* === clear_mark =========================================================== */
/* ========================================================================== */
/*
Clears the Row [].shared2.mark array, and returns the new tag_mark.
Return value is the new tag_mark. Not user-callable.
*/
PRIVATE Int clear_mark /* return the new value for tag_mark */
(
/* === Parameters ======================================================= */
Int tag_mark, /* new value of tag_mark */
Int max_mark, /* max allowed value of tag_mark */
Int n_row, /* number of rows in A */
Colamd_Row Row [] /* Row [0 ... n_row-1].shared2.mark is set to zero */
)
{
/* === Local variables ================================================== */
Int r ;
if (tag_mark <= 0 || tag_mark >= max_mark)
{
for (r = 0 ; r < n_row ; r++)
{
if (ROW_IS_ALIVE (r))
{
Row [r].shared2.mark = 0 ;
}
}
tag_mark = 1 ;
}
return (tag_mark) ;
}
/* ========================================================================== */
/* === print_report ========================================================= */
/* ========================================================================== */
PRIVATE void print_report
(
char *method,
Int stats [COLAMD_STATS]
)
{
Int i1, i2, i3 ;
PRINTF (("\n%s version %d.%d, %s: ", method,
COLAMD_MAIN_VERSION, COLAMD_SUB_VERSION, COLAMD_DATE)) ;
if (!stats)
{
PRINTF (("No statistics available.\n")) ;
return ;
}
i1 = stats [COLAMD_INFO1] ;
i2 = stats [COLAMD_INFO2] ;
i3 = stats [COLAMD_INFO3] ;
if (stats [COLAMD_STATUS] >= 0)
{
PRINTF (("OK. ")) ;
}
else
{
PRINTF (("ERROR. ")) ;
}
switch (stats [COLAMD_STATUS])
{
case COLAMD_OK_BUT_JUMBLED:
PRINTF(("Matrix has unsorted or duplicate row indices.\n")) ;
PRINTF(("%s: number of duplicate or out-of-order row indices: %d\n",
method, i3)) ;
PRINTF(("%s: last seen duplicate or out-of-order row index: %d\n",
method, INDEX (i2))) ;
PRINTF(("%s: last seen in column: %d",
method, INDEX (i1))) ;
/* no break - fall through to next case instead */
case COLAMD_OK:
PRINTF(("\n")) ;
PRINTF(("%s: number of dense or empty rows ignored: %d\n",
method, stats [COLAMD_DENSE_ROW])) ;
PRINTF(("%s: number of dense or empty columns ignored: %d\n",
method, stats [COLAMD_DENSE_COL])) ;
PRINTF(("%s: number of garbage collections performed: %d\n",
method, stats [COLAMD_DEFRAG_COUNT])) ;
break ;
case COLAMD_ERROR_A_not_present:
PRINTF(("Array A (row indices of matrix) not present.\n")) ;
break ;
case COLAMD_ERROR_p_not_present:
PRINTF(("Array p (column pointers for matrix) not present.\n")) ;
break ;
case COLAMD_ERROR_nrow_negative:
PRINTF(("Invalid number of rows (%d).\n", i1)) ;
break ;
case COLAMD_ERROR_ncol_negative:
PRINTF(("Invalid number of columns (%d).\n", i1)) ;
break ;
case COLAMD_ERROR_nnz_negative:
PRINTF(("Invalid number of nonzero entries (%d).\n", i1)) ;
break ;
case COLAMD_ERROR_p0_nonzero:
PRINTF(("Invalid column pointer, p [0] = %d, must be zero.\n", i1));
break ;
case COLAMD_ERROR_A_too_small:
PRINTF(("Array A too small.\n")) ;
PRINTF((" Need Alen >= %d, but given only Alen = %d.\n",
i1, i2)) ;
break ;
case COLAMD_ERROR_col_length_negative:
PRINTF
(("Column %d has a negative number of nonzero entries (%d).\n",
INDEX (i1), i2)) ;
break ;
case COLAMD_ERROR_row_index_out_of_bounds:
PRINTF
(("Row index (row %d) out of bounds (%d to %d) in column %d.\n",
INDEX (i2), INDEX (0), INDEX (i3-1), INDEX (i1))) ;
break ;
case COLAMD_ERROR_out_of_memory:
PRINTF(("Out of memory.\n")) ;
break ;
/* v2.4: internal-error case deleted */
}
}
/* ========================================================================== */
/* === colamd debugging routines ============================================ */
/* ========================================================================== */
/* When debugging is disabled, the remainder of this file is ignored. */
#ifndef NDEBUG
/* ========================================================================== */
/* === debug_structures ===================================================== */
/* ========================================================================== */
/*
At this point, all empty rows and columns are dead. All live columns
are "clean" (containing no dead rows) and simplicial (no supercolumns
yet). Rows may contain dead columns, but all live rows contain at
least one live column.
*/
PRIVATE void debug_structures
(
/* === Parameters ======================================================= */
Int n_row,
Int n_col,
Colamd_Row Row [],
Colamd_Col Col [],
Int A [],
Int n_col2
)
{
/* === Local variables ================================================== */
Int i ;
Int c ;
Int *cp ;
Int *cp_end ;
Int len ;
Int score ;
Int r ;
Int *rp ;
Int *rp_end ;
Int deg ;
/* === Check A, Row, and Col ============================================ */
for (c = 0 ; c < n_col ; c++)
{
if (COL_IS_ALIVE (c))
{
len = Col [c].length ;
score = Col [c].shared2.score ;
DEBUG4 (("initial live col %5d %5d %5d\n", c, len, score)) ;
ASSERT (len > 0) ;
ASSERT (score >= 0) ;
ASSERT (Col [c].shared1.thickness == 1) ;
cp = &A [Col [c].start] ;
cp_end = cp + len ;
while (cp < cp_end)
{
r = *cp++ ;
ASSERT (ROW_IS_ALIVE (r)) ;
}
}
else
{
i = Col [c].shared2.order ;
ASSERT (i >= n_col2 && i < n_col) ;
}
}
for (r = 0 ; r < n_row ; r++)
{
if (ROW_IS_ALIVE (r))
{
i = 0 ;
len = Row [r].length ;
deg = Row [r].shared1.degree ;
ASSERT (len > 0) ;
ASSERT (deg > 0) ;
rp = &A [Row [r].start] ;
rp_end = rp + len ;
while (rp < rp_end)
{
c = *rp++ ;
if (COL_IS_ALIVE (c))
{
i++ ;
}
}
ASSERT (i > 0) ;
}
}
}
/* ========================================================================== */
/* === debug_deg_lists ====================================================== */
/* ========================================================================== */
/*
Prints the contents of the degree lists. Counts the number of columns
in the degree list and compares it to the total it should have. Also
checks the row degrees.
*/
PRIVATE void debug_deg_lists
(
/* === Parameters ======================================================= */
Int n_row,
Int n_col,
Colamd_Row Row [],
Colamd_Col Col [],
Int head [],
Int min_score,
Int should,
Int max_deg
)
{
/* === Local variables ================================================== */
Int deg ;
Int col ;
Int have ;
Int row ;
/* === Check the degree lists =========================================== */
if (n_col > 10000 && colamd_debug <= 0)
{
return ;
}
have = 0 ;
DEBUG4 (("Degree lists: %d\n", min_score)) ;
for (deg = 0 ; deg <= n_col ; deg++)
{
col = head [deg] ;
if (col == EMPTY)
{
continue ;
}
DEBUG4 (("%d:", deg)) ;
while (col != EMPTY)
{
DEBUG4 ((" %d", col)) ;
have += Col [col].shared1.thickness ;
ASSERT (COL_IS_ALIVE (col)) ;
col = Col [col].shared4.degree_next ;
}
DEBUG4 (("\n")) ;
}
DEBUG4 (("should %d have %d\n", should, have)) ;
ASSERT (should == have) ;
/* === Check the row degrees ============================================ */
if (n_row > 10000 && colamd_debug <= 0)
{
return ;
}
for (row = 0 ; row < n_row ; row++)
{
if (ROW_IS_ALIVE (row))
{
ASSERT (Row [row].shared1.degree <= max_deg) ;
}
}
}
/* ========================================================================== */
/* === debug_mark =========================================================== */
/* ========================================================================== */
/*
Ensures that the tag_mark is less that the maximum and also ensures that
each entry in the mark array is less than the tag mark.
*/
PRIVATE void debug_mark
(
/* === Parameters ======================================================= */
Int n_row,
Colamd_Row Row [],
Int tag_mark,
Int max_mark
)
{
/* === Local variables ================================================== */
Int r ;
/* === Check the Row marks ============================================== */
ASSERT (tag_mark > 0 && tag_mark <= max_mark) ;
if (n_row > 10000 && colamd_debug <= 0)
{
return ;
}
for (r = 0 ; r < n_row ; r++)
{
ASSERT (Row [r].shared2.mark < tag_mark) ;
}
}
/* ========================================================================== */
/* === debug_matrix ========================================================= */
/* ========================================================================== */
/*
Prints out the contents of the columns and the rows.
*/
PRIVATE void debug_matrix
(
/* === Parameters ======================================================= */
Int n_row,
Int n_col,
Colamd_Row Row [],
Colamd_Col Col [],
Int A []
)
{
/* === Local variables ================================================== */
Int r ;
Int c ;
Int *rp ;
Int *rp_end ;
Int *cp ;
Int *cp_end ;
/* === Dump the rows and columns of the matrix ========================== */
if (colamd_debug < 3)
{
return ;
}
DEBUG3 (("DUMP MATRIX:\n")) ;
for (r = 0 ; r < n_row ; r++)
{
DEBUG3 (("Row %d alive? %d\n", r, ROW_IS_ALIVE (r))) ;
if (ROW_IS_DEAD (r))
{
continue ;
}
DEBUG3 (("start %d length %d degree %d\n",
Row [r].start, Row [r].length, Row [r].shared1.degree)) ;
rp = &A [Row [r].start] ;
rp_end = rp + Row [r].length ;
while (rp < rp_end)
{
c = *rp++ ;
DEBUG4 ((" %d col %d\n", COL_IS_ALIVE (c), c)) ;
}
}
for (c = 0 ; c < n_col ; c++)
{
DEBUG3 (("Col %d alive? %d\n", c, COL_IS_ALIVE (c))) ;
if (COL_IS_DEAD (c))
{
continue ;
}
DEBUG3 (("start %d length %d shared1 %d shared2 %d\n",
Col [c].start, Col [c].length,
Col [c].shared1.thickness, Col [c].shared2.score)) ;
cp = &A [Col [c].start] ;
cp_end = cp + Col [c].length ;
while (cp < cp_end)
{
r = *cp++ ;
DEBUG4 ((" %d row %d\n", ROW_IS_ALIVE (r), r)) ;
}
}
}
PRIVATE void colamd_get_debug
(
char *method
)
{
FILE *f ;
colamd_debug = 0 ; /* no debug printing */
f = fopen ("debug", "r") ;
if (f == (FILE *) NULL)
{
colamd_debug = 0 ;
}
else
{
fscanf (f, "%d", &colamd_debug) ;
fclose (f) ;
}
DEBUG0 (("%s: debug version, D = %d (THIS WILL BE SLOW!)\n",
method, colamd_debug)) ;
}
#endif /* NDEBUG */

View File

@@ -1,24 +0,0 @@
/* ========================================================================== */
/* === colamd_global.c ====================================================== */
/* ========================================================================== */
/* ----------------------------------------------------------------------------
* COLAMD, Copyright (C) 2007, Timothy A. Davis.
* See License.txt for the Version 2.1 of the GNU Lesser General Public License
* http://www.cise.ufl.edu/research/sparse
* -------------------------------------------------------------------------- */
/* Global variables for COLAMD */
#ifndef NPRINT
#ifdef MATLAB_MEX_FILE
#include "mex.h"
int (*colamd_printf) (const char *, ...) = mexPrintf ;
#else
#include <stdio.h>
int (*colamd_printf) (const char *, ...) = printf ;
#endif
#else
int (*colamd_printf) (const char *, ...) = ((void *) 0) ;
#endif

View File

@@ -74,10 +74,6 @@ if(WITH_BULLET)
add_subdirectory(rigidbody)
endif()
if(WITH_OPENNL)
add_subdirectory(opennl)
endif()
if(WITH_OPENSUBDIV)
add_subdirectory(opensubdiv)
endif()

View File

@@ -37,7 +37,6 @@ SConscript(['string/SConscript',
'itasc/SConscript',
'eigen/SConscript',
'opencolorio/SConscript',
'opennl/SConscript',
'mikktspace/SConscript',
'smoke/SConscript',
'raskter/SConscript'])

View File

@@ -35,9 +35,11 @@ set(SRC
eigen_capi.h
intern/eigenvalues.cc
intern/linear_solver.cc
intern/svd.cc
intern/eigenvalues.h
intern/linear_solver.h
intern/svd.h
)

View File

@@ -28,6 +28,7 @@
#define __EIGEN_C_API_H__
#include "intern/eigenvalues.h"
#include "intern/linear_solver.h"
#include "intern/svd.h"
#endif /* __EIGEN_C_API_H__ */

View File

@@ -45,7 +45,7 @@ using Eigen::Map;
using Eigen::Success;
bool EG3_self_adjoint_eigen_solve(const int size, const float *matrix, float *r_eigen_values, float *r_eigen_vectors)
bool EIG_self_adjoint_eigen_solve(const int size, const float *matrix, float *r_eigen_values, float *r_eigen_vectors)
{
SelfAdjointEigenSolver<MatrixXf> eigen_solver;

View File

@@ -31,7 +31,7 @@
extern "C" {
#endif
bool EG3_self_adjoint_eigen_solve(const int size, const float *matrix, float *r_eigen_values, float *r_eigen_vectors);
bool EIG_self_adjoint_eigen_solve(const int size, const float *matrix, float *r_eigen_values, float *r_eigen_vectors);
#ifdef __cplusplus
}

View File

@@ -0,0 +1,354 @@
/*
* Sparse linear solver.
* Copyright (C) 2004 Bruno Levy
* Copyright (C) 2005-2015 Blender Foundation
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*
* If you modify this software, you should include a notice giving the
* name of the person performing the modification, the date of modification,
* and the reason for such modification.
*/
#include "linear_solver.h"
#include <Eigen/Sparse>
#include <algorithm>
#include <cassert>
#include <cstdlib>
#include <iostream>
#include <vector>
/* Eigen data structures */
typedef Eigen::SparseMatrix<double, Eigen::ColMajor> EigenSparseMatrix;
typedef Eigen::SparseLU<EigenSparseMatrix> EigenSparseLU;
typedef Eigen::VectorXd EigenVectorX;
typedef Eigen::Triplet<double> EigenTriplet;
/* Linear Solver data structure */
struct LinearSolver
{
struct Coeff
{
Coeff()
{
index = 0;
value = 0.0;
}
int index;
double value;
};
struct Variable
{
Variable()
{
memset(value, 0, sizeof(value));
locked = false;
index = 0;
}
double value[4];
bool locked;
int index;
std::vector<Coeff> a;
};
enum State
{
STATE_VARIABLES_CONSTRUCT,
STATE_MATRIX_CONSTRUCT,
STATE_MATRIX_SOLVED
};
LinearSolver(int num_rows_, int num_variables_, int num_rhs_, bool lsq_)
{
assert(num_variables_ > 0);
assert(num_rhs_ <= 4);
state = STATE_VARIABLES_CONSTRUCT;
m = 0;
n = 0;
sparseLU = NULL;
num_variables = num_variables_;
num_rhs = num_rhs_;
num_rows = num_rows_;
least_squares = lsq_;
variable.resize(num_variables);
}
~LinearSolver()
{
delete sparseLU;
}
State state;
int n;
int m;
std::vector<EigenTriplet> Mtriplets;
EigenSparseMatrix M;
EigenSparseMatrix MtM;
std::vector<EigenVectorX> b;
std::vector<EigenVectorX> x;
EigenSparseLU *sparseLU;
int num_variables;
std::vector<Variable> variable;
int num_rows;
int num_rhs;
bool least_squares;
};
LinearSolver *EIG_linear_solver_new(int num_rows, int num_columns, int num_rhs)
{
return new LinearSolver(num_rows, num_columns, num_rhs, false);
}
LinearSolver *EIG_linear_least_squares_solver_new(int num_rows, int num_columns, int num_rhs)
{
return new LinearSolver(num_rows, num_columns, num_rhs, true);
}
void EIG_linear_solver_delete(LinearSolver *solver)
{
delete solver;
}
/* Variables */
void EIG_linear_solver_variable_set(LinearSolver *solver, int rhs, int index, double value)
{
solver->variable[index].value[rhs] = value;
}
double EIG_linear_solver_variable_get(LinearSolver *solver, int rhs, int index)
{
return solver->variable[index].value[rhs];
}
void EIG_linear_solver_variable_lock(LinearSolver *solver, int index)
{
if (!solver->variable[index].locked) {
assert(solver->state == LinearSolver::STATE_VARIABLES_CONSTRUCT);
solver->variable[index].locked = true;
}
}
static void linear_solver_variables_to_vector(LinearSolver *solver)
{
int num_rhs = solver->num_rhs;
for (int i = 0; i < solver->num_variables; i++) {
LinearSolver::Variable* v = &solver->variable[i];
if (!v->locked) {
for (int j = 0; j < num_rhs; j++)
solver->x[j][v->index] = v->value[j];
}
}
}
static void linear_solver_vector_to_variables(LinearSolver *solver)
{
int num_rhs = solver->num_rhs;
for (int i = 0; i < solver->num_variables; i++) {
LinearSolver::Variable* v = &solver->variable[i];
if (!v->locked) {
for (int j = 0; j < num_rhs; j++)
v->value[j] = solver->x[j][v->index];
}
}
}
/* Matrix */
static void linear_solver_ensure_matrix_construct(LinearSolver *solver)
{
/* transition to matrix construction if necessary */
if (solver->state == LinearSolver::STATE_VARIABLES_CONSTRUCT) {
int n = 0;
for (int i = 0; i < solver->num_variables; i++) {
if (solver->variable[i].locked)
solver->variable[i].index = ~0;
else
solver->variable[i].index = n++;
}
int m = (solver->num_rows == 0)? n: solver->num_rows;
solver->m = m;
solver->n = n;
assert(solver->least_squares || m == n);
/* reserve reasonable estimate */
solver->Mtriplets.clear();
solver->Mtriplets.reserve(std::max(m, n)*3);
solver->b.resize(solver->num_rhs);
solver->x.resize(solver->num_rhs);
for (int i = 0; i < solver->num_rhs; i++) {
solver->b[i].setZero(m);
solver->x[i].setZero(n);
}
linear_solver_variables_to_vector(solver);
solver->state = LinearSolver::STATE_MATRIX_CONSTRUCT;
}
}
void EIG_linear_solver_matrix_add(LinearSolver *solver, int row, int col, double value)
{
if (solver->state == LinearSolver::STATE_MATRIX_SOLVED)
return;
linear_solver_ensure_matrix_construct(solver);
if (!solver->least_squares && solver->variable[row].locked);
else if (solver->variable[col].locked) {
if (!solver->least_squares)
row = solver->variable[row].index;
LinearSolver::Coeff coeff;
coeff.index = row;
coeff.value = value;
solver->variable[col].a.push_back(coeff);
}
else {
if (!solver->least_squares)
row = solver->variable[row].index;
col = solver->variable[col].index;
/* direct insert into matrix is too slow, so use triplets */
EigenTriplet triplet(row, col, value);
solver->Mtriplets.push_back(triplet);
}
}
/* Right hand side */
void EIG_linear_solver_right_hand_side_add(LinearSolver *solver, int rhs, int index, double value)
{
linear_solver_ensure_matrix_construct(solver);
if (solver->least_squares) {
solver->b[rhs][index] += value;
}
else if (!solver->variable[index].locked) {
index = solver->variable[index].index;
solver->b[rhs][index] += value;
}
}
/* Solve */
bool EIG_linear_solver_solve(LinearSolver *solver)
{
bool result = true;
assert(solver->state != LinearSolver::STATE_VARIABLES_CONSTRUCT);
if (solver->state == LinearSolver::STATE_MATRIX_CONSTRUCT) {
/* create matrix from triplets */
solver->M.resize(solver->m, solver->n);
solver->M.setFromTriplets(solver->Mtriplets.begin(), solver->Mtriplets.end());
solver->Mtriplets.clear();
/* create least squares matrix */
if (solver->least_squares)
solver->MtM = solver->M.transpose() * solver->M;
/* convert M to compressed column format */
EigenSparseMatrix& M = (solver->least_squares)? solver->MtM: solver->M;
M.makeCompressed();
/* perform sparse LU factorization */
EigenSparseLU *sparseLU = new EigenSparseLU();
solver->sparseLU = sparseLU;
sparseLU->compute(M);
result = (sparseLU->info() == Eigen::Success);
solver->state = LinearSolver::STATE_MATRIX_SOLVED;
}
if (result) {
/* solve for each right hand side */
for (int rhs = 0; rhs < solver->num_rhs; rhs++) {
/* modify for locked variables */
EigenVectorX& b = solver->b[rhs];
for (int i = 0; i < solver->num_variables; i++) {
LinearSolver::Variable *variable = &solver->variable[i];
if (variable->locked) {
std::vector<LinearSolver::Coeff>& a = variable->a;
for (int j = 0; j < a.size(); j++)
b[a[j].index] -= a[j].value*variable->value[rhs];
}
}
/* solve */
if (solver->least_squares) {
EigenVectorX Mtb = solver->M.transpose() * b;
solver->x[rhs] = solver->sparseLU->solve(Mtb);
}
else {
EigenVectorX& b = solver->b[rhs];
solver->x[rhs] = solver->sparseLU->solve(b);
}
if (solver->sparseLU->info() != Eigen::Success)
result = false;
}
if (result)
linear_solver_vector_to_variables(solver);
}
/* clear for next solve */
for (int rhs = 0; rhs < solver->num_rhs; rhs++)
solver->b[rhs].setZero(solver->m);
return result;
}
/* Debugging */
void EIG_linear_solver_print_matrix(LinearSolver *solver)
{
std::cout << "A:" << solver->M << std::endl;
for (int rhs = 0; rhs < solver->num_rhs; rhs++)
std::cout << "b " << rhs << ":" << solver->b[rhs] << std::endl;
if (solver->MtM.rows() && solver->MtM.cols())
std::cout << "AtA:" << solver->MtM << std::endl;
}

View File

@@ -0,0 +1,71 @@
/*
* Sparse linear solver.
* Copyright (C) 2004 Bruno Levy
* Copyright (C) 2005-2015 Blender Foundation
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*
* If you modify this software, you should include a notice giving the
* name of the person performing the modification, the date of modification,
* and the reason for such modification.
*/
#pragma once
#include <stdbool.h>
#ifdef __cplusplus
extern "C" {
#endif
/* Solvers for Ax = b and AtAx = Atb */
typedef struct LinearSolver LinearSolver;
LinearSolver *EIG_linear_solver_new(
int num_rows,
int num_columns,
int num_right_hand_sides);
LinearSolver *EIG_linear_least_squares_solver_new(
int num_rows,
int num_columns,
int num_right_hand_sides);
void EIG_linear_solver_delete(LinearSolver *solver);
/* Variables (x). Any locking must be done before matrix construction. */
void EIG_linear_solver_variable_set(LinearSolver *solver, int rhs, int index, double value);
double EIG_linear_solver_variable_get(LinearSolver *solver, int rhs, int index);
void EIG_linear_solver_variable_lock(LinearSolver *solver, int index);
/* Matrix (A) and right hand side (b) */
void EIG_linear_solver_matrix_add(LinearSolver *solver, int row, int col, double value);
void EIG_linear_solver_right_hand_side_add(LinearSolver *solver, int rhs, int index, double value);
/* Solve. Repeated solves are supported, by changing b between solves. */
bool EIG_linear_solver_solve(LinearSolver *solver);
/* Debugging */
void EIG_linear_solver_print_matrix(LinearSolver *solver);
#ifdef __cplusplus
}
#endif

View File

@@ -48,7 +48,7 @@ using Eigen::MatrixXf;
using Eigen::VectorXf;
using Eigen::Map;
void EG3_svd_square_matrix(const int size, const float *matrix, float *r_U, float *r_S, float *r_V)
void EIG_svd_square_matrix(const int size, const float *matrix, float *r_U, float *r_S, float *r_V)
{
/* Since our matrix is squared, we can use thinU/V. */
unsigned int flags = (r_U ? ComputeThinU : 0) | (r_V ? ComputeThinV : 0);

View File

@@ -31,7 +31,7 @@
extern "C" {
#endif
void EG3_svd_square_matrix(const int size, const float *matrix, float *r_U, float *r_S, float *r_V);
void EIG_svd_square_matrix(const int size, const float *matrix, float *r_U, float *r_S, float *r_V);
#ifdef __cplusplus
}

View File

@@ -1,58 +0,0 @@
# ***** BEGIN GPL LICENSE BLOCK *****
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
# The Original Code is Copyright (C) 2006, Blender Foundation
# All rights reserved.
#
# The Original Code is: all of this file.
#
# Contributor(s): Jacques Beaurain.
#
# ***** END GPL LICENSE BLOCK *****
# External project, better not fix warnings.
remove_strict_flags()
# remove debug flag here since this is not a blender maintained library
# and debug gives a lot of prints on UV unwrapping. developers can enable if they need to.
if(MSVC)
remove_definitions(-DDEBUG)
else()
add_definitions(-UDEBUG)
endif()
# quiet compiler warnings about undefined defines
add_definitions(
-DDEBUGlevel=0
-DPRNTlevel=0
)
set(INC
extern
)
set(INC_SYS
../../extern/colamd/Include
../../extern/Eigen3
)
set(SRC
intern/opennl.cpp
extern/ONL_opennl.h
)
blender_add_lib(bf_intern_opennl "${SRC}" "${INC}" "${INC_SYS}")

View File

@@ -1,35 +0,0 @@
#!/usr/bin/env python
#
# ***** BEGIN GPL LICENSE BLOCK *****
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
# The Original Code is Copyright (C) 2006, Blender Foundation
# All rights reserved.
#
# The Original Code is: all of this file.
#
# Contributor(s): Nathan Letwory.
#
# ***** END GPL LICENSE BLOCK *****
Import ('env')
sources = env.Glob('intern/*.cpp')
incs = 'extern ../../extern/colamd/Include ../../extern/Eigen3'
env.BlenderLib ('bf_intern_opennl', sources, Split(incs), [], libtype=['intern','player'], priority=[100,90] )

View File

@@ -1,113 +0,0 @@
/** \file opennl/extern/ONL_opennl.h
* \ingroup opennlextern
*/
/*
* OpenNL: Numerical Library
* Copyright (C) 2004 Bruno Levy
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*
* If you modify this software, you should include a notice giving the
* name of the person performing the modification, the date of modification,
* and the reason for such modification.
*
* Contact: Bruno Levy
*
* levy@loria.fr
*
* ISA Project
* LORIA, INRIA Lorraine,
* Campus Scientifique, BP 239
* 54506 VANDOEUVRE LES NANCY CEDEX
* FRANCE
*
* Note that the GNU General Public License does not permit incorporating
* the Software into proprietary programs.
*/
#ifndef nlOPENNL_H
#define nlOPENNL_H
#ifdef __cplusplus
extern "C" {
#endif
/* Datatypes */
typedef unsigned int NLenum;
typedef unsigned char NLboolean;
typedef int NLint; /* 4-byte signed */
typedef unsigned int NLuint; /* 4-byte unsigned */
typedef double NLdouble; /* double precision float */
typedef struct NLContext NLContext;
/* Constants */
#define NL_FALSE 0x0
#define NL_TRUE 0x1
/* Primitives */
#define NL_SYSTEM 0x0
#define NL_MATRIX 0x1
/* Solver Parameters */
#define NL_SOLVER 0x100
#define NL_NB_VARIABLES 0x101
#define NL_LEAST_SQUARES 0x102
#define NL_ERROR 0x108
#define NL_NB_ROWS 0x110
#define NL_NB_RIGHT_HAND_SIDES 0x112 /* 4 max */
/* Contexts */
NLContext *nlNewContext(void);
void nlDeleteContext(NLContext *context);
/* State get/set */
void nlSolverParameteri(NLContext *context, NLenum pname, NLint param);
/* Variables */
void nlSetVariable(NLContext *context, NLuint rhsindex, NLuint index, NLdouble value);
NLdouble nlGetVariable(NLContext *context, NLuint rhsindex, NLuint index);
void nlLockVariable(NLContext *context, NLuint index);
void nlUnlockVariable(NLContext *context, NLuint index);
/* Begin/End */
void nlBegin(NLContext *context, NLenum primitive);
void nlEnd(NLContext *context, NLenum primitive);
/* Setting elements in matrix/vector */
void nlMatrixAdd(NLContext *context, NLuint row, NLuint col, NLdouble value);
void nlRightHandSideAdd(NLContext *context, NLuint rhsindex, NLuint index, NLdouble value);
void nlRightHandSideSet(NLContext *context, NLuint rhsindex, NLuint index, NLdouble value);
/* Solve */
void nlPrintMatrix(NLContext *context);
NLboolean nlSolve(NLContext *context, NLboolean solveAgain);
#ifdef __cplusplus
}
#endif
#endif

View File

@@ -1,492 +0,0 @@
/** \file opennl/intern/opennl.c
* \ingroup opennlintern
*/
/*
*
* OpenNL: Numerical Library
* Copyright (C) 2004 Bruno Levy
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*
* If you modify this software, you should include a notice giving the
* name of the person performing the modification, the date of modification,
* and the reason for such modification.
*
* Contact: Bruno Levy
*
* levy@loria.fr
*
* ISA Project
* LORIA, INRIA Lorraine,
* Campus Scientifique, BP 239
* 54506 VANDOEUVRE LES NANCY CEDEX
* FRANCE
*
* Note that the GNU General Public License does not permit incorporating
* the Software into proprietary programs.
*/
#include "ONL_opennl.h"
#include <Eigen/Sparse>
#include <algorithm>
#include <cassert>
#include <cstdlib>
#include <iostream>
#include <vector>
/* Eigen data structures */
typedef Eigen::SparseMatrix<double, Eigen::ColMajor> EigenSparseMatrix;
typedef Eigen::SparseLU<EigenSparseMatrix> EigenSparseSolver;
typedef Eigen::VectorXd EigenVectorX;
typedef Eigen::Triplet<double> EigenTriplet;
/* NLContext data structure */
struct NLCoeff {
NLCoeff()
{
index = 0;
value = 0.0;
}
NLuint index;
NLdouble value;
};
struct NLVariable {
NLVariable()
{
memset(value, 0, sizeof(value));
locked = false;
index = 0;
}
NLdouble value[4];
NLboolean locked;
NLuint index;
std::vector<NLCoeff> a;
};
#define NL_STATE_INITIAL 0
#define NL_STATE_SYSTEM 1
#define NL_STATE_MATRIX 2
#define NL_STATE_MATRIX_CONSTRUCTED 3
#define NL_STATE_SYSTEM_CONSTRUCTED 4
#define NL_STATE_SYSTEM_SOLVED 5
struct NLContext {
NLContext()
{
state = NL_STATE_INITIAL;
n = 0;
m = 0;
sparse_solver = NULL;
nb_variables = 0;
nb_rhs = 1;
nb_rows = 0;
least_squares = false;
solve_again = false;
}
~NLContext()
{
delete sparse_solver;
}
NLenum state;
NLuint n;
NLuint m;
std::vector<EigenTriplet> Mtriplets;
EigenSparseMatrix M;
EigenSparseMatrix MtM;
std::vector<EigenVectorX> b;
std::vector<EigenVectorX> Mtb;
std::vector<EigenVectorX> x;
EigenSparseSolver *sparse_solver;
NLuint nb_variables;
std::vector<NLVariable> variable;
NLuint nb_rows;
NLuint nb_rhs;
NLboolean least_squares;
NLboolean solve_again;
};
NLContext *nlNewContext(void)
{
return new NLContext();
}
void nlDeleteContext(NLContext *context)
{
delete context;
}
static void __nlCheckState(NLContext *context, NLenum state)
{
assert(context->state == state);
}
static void __nlTransition(NLContext *context, NLenum from_state, NLenum to_state)
{
__nlCheckState(context, from_state);
context->state = to_state;
}
/* Get/Set parameters */
void nlSolverParameteri(NLContext *context, NLenum pname, NLint param)
{
__nlCheckState(context, NL_STATE_INITIAL);
switch(pname) {
case NL_NB_VARIABLES: {
assert(param > 0);
context->nb_variables = (NLuint)param;
} break;
case NL_NB_ROWS: {
assert(param > 0);
context->nb_rows = (NLuint)param;
} break;
case NL_LEAST_SQUARES: {
context->least_squares = (NLboolean)param;
} break;
case NL_NB_RIGHT_HAND_SIDES: {
context->nb_rhs = (NLuint)param;
} break;
default: {
assert(0);
} break;
}
}
/* Get/Set Lock/Unlock variables */
void nlSetVariable(NLContext *context, NLuint rhsindex, NLuint index, NLdouble value)
{
__nlCheckState(context, NL_STATE_SYSTEM);
context->variable[index].value[rhsindex] = value;
}
NLdouble nlGetVariable(NLContext *context, NLuint rhsindex, NLuint index)
{
assert(context->state != NL_STATE_INITIAL);
return context->variable[index].value[rhsindex];
}
void nlLockVariable(NLContext *context, NLuint index)
{
__nlCheckState(context, NL_STATE_SYSTEM);
context->variable[index].locked = true;
}
void nlUnlockVariable(NLContext *context, NLuint index)
{
__nlCheckState(context, NL_STATE_SYSTEM);
context->variable[index].locked = false;
}
/* System construction */
static void __nlVariablesToVector(NLContext *context)
{
NLuint i, j, nb_rhs;
nb_rhs= context->nb_rhs;
for(i=0; i<context->nb_variables; i++) {
NLVariable* v = &(context->variable[i]);
if(!v->locked) {
for(j=0; j<nb_rhs; j++)
context->x[j][v->index] = v->value[j];
}
}
}
static void __nlVectorToVariables(NLContext *context)
{
NLuint i, j, nb_rhs;
nb_rhs= context->nb_rhs;
for(i=0; i<context->nb_variables; i++) {
NLVariable* v = &(context->variable[i]);
if(!v->locked) {
for(j=0; j<nb_rhs; j++)
v->value[j] = context->x[j][v->index];
}
}
}
static void __nlBeginSystem(NLContext *context)
{
assert(context->nb_variables > 0);
if (context->solve_again)
__nlTransition(context, NL_STATE_SYSTEM_SOLVED, NL_STATE_SYSTEM);
else {
__nlTransition(context, NL_STATE_INITIAL, NL_STATE_SYSTEM);
context->variable.resize(context->nb_variables);
}
}
static void __nlEndSystem(NLContext *context)
{
__nlTransition(context, NL_STATE_MATRIX_CONSTRUCTED, NL_STATE_SYSTEM_CONSTRUCTED);
}
static void __nlBeginMatrix(NLContext *context)
{
NLuint i;
NLuint m = 0, n = 0;
__nlTransition(context, NL_STATE_SYSTEM, NL_STATE_MATRIX);
if (!context->solve_again) {
for(i=0; i<context->nb_variables; i++) {
if(context->variable[i].locked)
context->variable[i].index = ~0;
else
context->variable[i].index = n++;
}
m = (context->nb_rows == 0)? n: context->nb_rows;
context->m = m;
context->n = n;
/* reserve reasonable estimate */
context->Mtriplets.clear();
context->Mtriplets.reserve(std::max(m, n)*3);
context->b.resize(context->nb_rhs);
context->x.resize(context->nb_rhs);
for (i=0; i<context->nb_rhs; i++) {
context->b[i].setZero(m);
context->x[i].setZero(n);
}
}
else {
/* need to recompute b only, A is not constructed anymore */
for (i=0; i<context->nb_rhs; i++)
context->b[i].setZero(context->m);
}
__nlVariablesToVector(context);
}
static void __nlEndMatrixRHS(NLContext *context, NLuint rhs)
{
NLVariable *variable;
NLuint i, j;
EigenVectorX& b = context->b[rhs];
for(i=0; i<context->nb_variables; i++) {
variable = &(context->variable[i]);
if(variable->locked) {
std::vector<NLCoeff>& a = variable->a;
for(j=0; j<a.size(); j++) {
b[a[j].index] -= a[j].value*variable->value[rhs];
}
}
}
if(context->least_squares)
context->Mtb[rhs] = context->M.transpose() * b;
}
static void __nlEndMatrix(NLContext *context)
{
__nlTransition(context, NL_STATE_MATRIX, NL_STATE_MATRIX_CONSTRUCTED);
if(!context->solve_again) {
context->M.resize(context->m, context->n);
context->M.setFromTriplets(context->Mtriplets.begin(), context->Mtriplets.end());
context->Mtriplets.clear();
if(context->least_squares) {
context->MtM = context->M.transpose() * context->M;
context->Mtb.resize(context->nb_rhs);
for (NLuint rhs=0; rhs<context->nb_rhs; rhs++)
context->Mtb[rhs].setZero(context->n);
}
}
for (NLuint rhs=0; rhs<context->nb_rhs; rhs++)
__nlEndMatrixRHS(context, rhs);
}
void nlMatrixAdd(NLContext *context, NLuint row, NLuint col, NLdouble value)
{
__nlCheckState(context, NL_STATE_MATRIX);
if(context->solve_again)
return;
if (!context->least_squares && context->variable[row].locked);
else if (context->variable[col].locked) {
if(!context->least_squares)
row = context->variable[row].index;
NLCoeff coeff;
coeff.index = row;
coeff.value = value;
context->variable[col].a.push_back(coeff);
}
else {
if(!context->least_squares)
row = context->variable[row].index;
col = context->variable[col].index;
// direct insert into matrix is too slow, so use triplets
EigenTriplet triplet(row, col, value);
context->Mtriplets.push_back(triplet);
}
}
void nlRightHandSideAdd(NLContext *context, NLuint rhsindex, NLuint index, NLdouble value)
{
__nlCheckState(context, NL_STATE_MATRIX);
if(context->least_squares) {
context->b[rhsindex][index] += value;
}
else {
if(!context->variable[index].locked) {
index = context->variable[index].index;
context->b[rhsindex][index] += value;
}
}
}
void nlRightHandSideSet(NLContext *context, NLuint rhsindex, NLuint index, NLdouble value)
{
__nlCheckState(context, NL_STATE_MATRIX);
if(context->least_squares) {
context->b[rhsindex][index] = value;
}
else {
if(!context->variable[index].locked) {
index = context->variable[index].index;
context->b[rhsindex][index] = value;
}
}
}
void nlBegin(NLContext *context, NLenum prim)
{
switch(prim) {
case NL_SYSTEM: {
__nlBeginSystem(context);
} break;
case NL_MATRIX: {
__nlBeginMatrix(context);
} break;
default: {
assert(0);
}
}
}
void nlEnd(NLContext *context, NLenum prim)
{
switch(prim) {
case NL_SYSTEM: {
__nlEndSystem(context);
} break;
case NL_MATRIX: {
__nlEndMatrix(context);
} break;
default: {
assert(0);
}
}
}
void nlPrintMatrix(NLContext *context)
{
std::cout << "A:" << context->M << std::endl;
for(NLuint rhs=0; rhs<context->nb_rhs; rhs++)
std::cout << "b " << rhs << ":" << context->b[rhs] << std::endl;
if (context->MtM.rows() && context->MtM.cols())
std::cout << "AtA:" << context->MtM << std::endl;
}
/* Solving */
NLboolean nlSolve(NLContext *context, NLboolean solveAgain)
{
NLboolean result = true;
__nlCheckState(context, NL_STATE_SYSTEM_CONSTRUCTED);
if (!context->solve_again) {
EigenSparseMatrix& M = (context->least_squares)? context->MtM: context->M;
assert(M.rows() == M.cols());
/* Convert M to compressed column format */
M.makeCompressed();
/* Perform sparse LU factorization */
EigenSparseSolver *sparse_solver = new EigenSparseSolver();
context->sparse_solver = sparse_solver;
sparse_solver->analyzePattern(M);
sparse_solver->factorize(M);
result = (sparse_solver->info() == Eigen::Success);
/* Free M, don't need it anymore at this point */
M.resize(0, 0);
}
if (result) {
/* Solve each right hand side */
for(NLuint rhs=0; rhs<context->nb_rhs; rhs++) {
EigenVectorX& b = (context->least_squares)? context->Mtb[rhs]: context->b[rhs];
context->x[rhs] = context->sparse_solver->solve(b);
if (context->sparse_solver->info() != Eigen::Success)
result = false;
}
if (result) {
__nlVectorToVariables(context);
if (solveAgain)
context->solve_again = true;
__nlTransition(context, NL_STATE_SYSTEM_CONSTRUCTED, NL_STATE_SYSTEM_SOLVED);
}
}
return result;
}

View File

@@ -81,7 +81,6 @@ variables on the UI for now
#include "BKE_scene.h"
#include "PIL_time.h"
// #include "ONL_opennl.h" remove linking to ONL for now
/* callbacks for errors and interrupts and some goo */
static int (*SB_localInterruptCallBack)(void) = NULL;
@@ -1811,14 +1810,14 @@ static void dfdx_spring(int ia, int ic, int op, float dir[3], float L, float len
for (j=0;j<3;j++) {
delta_ij = (i==j ? (1.0f): (0.0f));
m=factor*(dir[i]*dir[j] + (1-L/len)*(delta_ij - dir[i]*dir[j]));
nlMatrixAdd(ia+i, op+ic+j, m);
EIG_linear_solver_matrix_add(ia+i, op+ic+j, m);
}
}
else {
for (i=0;i<3;i++)
for (j=0;j<3;j++) {
m=factor*dir[i]*dir[j];
nlMatrixAdd(ia+i, op+ic+j, m);
EIG_linear_solver_matrix_add(ia+i, op+ic+j, m);
}
}
}
@@ -1827,13 +1826,13 @@ static void dfdx_spring(int ia, int ic, int op, float dir[3], float L, float len
static void dfdx_goal(int ia, int ic, int op, float factor)
{
int i;
for (i=0;i<3;i++) nlMatrixAdd(ia+i, op+ic+i, factor);
for (i=0;i<3;i++) EIG_linear_solver_matrix_add(ia+i, op+ic+i, factor);
}
static void dfdv_goal(int ia, int ic, float factor)
{
int i;
for (i=0;i<3;i++) nlMatrixAdd(ia+i, ic+i, factor);
for (i=0;i<3;i++) EIG_linear_solver_matrix_add(ia+i, ic+i, factor);
}
*/
static void sb_spring_force(Object *ob, int bpi, BodySpring *bs, float iks, float UNUSED(forcetime))

View File

@@ -57,7 +57,7 @@ bool BLI_eigen_solve_selfadjoint_m3(const float m3[3][3], float r_eigen_values[3
}
#endif
return EG3_self_adjoint_eigen_solve(3, (const float *)m3, r_eigen_values, (float *)r_eigen_vectors);
return EIG_self_adjoint_eigen_solve(3, (const float *)m3, r_eigen_values, (float *)r_eigen_vectors);
}
/**
@@ -70,5 +70,5 @@ bool BLI_eigen_solve_selfadjoint_m3(const float m3[3][3], float r_eigen_values[3
*/
void BLI_svd_m3(const float m3[3][3], float r_U[3][3], float r_S[3], float r_V[3][3])
{
EG3_svd_square_matrix(3, (const float *)m3, (float *)r_U, (float *)r_S, (float *)r_V);
EIG_svd_square_matrix(3, (const float *)m3, (float *)r_U, (float *)r_S, (float *)r_V);
}

View File

@@ -30,6 +30,7 @@ set(INC
../blentranslation
../makesdna
../../../intern/guardedalloc
../../../intern/eigen
../../../extern/rangetree
)
@@ -176,13 +177,6 @@ if(WITH_INTERNATIONAL)
add_definitions(-DWITH_INTERNATIONAL)
endif()
if(WITH_OPENNL)
add_definitions(-DWITH_OPENNL)
list(APPEND INC_SYS
../../../intern/opennl/extern
)
endif()
if(WITH_FREESTYLE)
add_definitions(-DWITH_FREESTYLE)
endif()

View File

@@ -40,9 +40,9 @@ incs = [
'../makesdna',
'../blenkernel',
'#/intern/guardedalloc',
'#/intern/eigen',
'#/extern/bullet2/src',
'#/extern/rangetree',
'#/intern/opennl/extern'
]
defs = []

View File

@@ -28,18 +28,15 @@
#include "MEM_guardedalloc.h"
#include "BLI_math.h"
#include "eigen_capi.h"
#include "bmesh.h"
#include "intern/bmesh_operators_private.h" /* own include */
#ifdef WITH_OPENNL
#include "ONL_opennl.h"
// #define SMOOTH_LAPLACIAN_AREA_FACTOR 4.0f /* UNUSED */
// #define SMOOTH_LAPLACIAN_EDGE_FACTOR 2.0f /* UNUSED */
#define SMOOTH_LAPLACIAN_MAX_EDGE_PERCENTAGE 1.8f
@@ -59,7 +56,7 @@ struct BLaplacianSystem {
/* Pointers to data*/
BMesh *bm;
BMOperator *op;
NLContext *context;
LinearSolver *context;
/*Data*/
float min_area;
@@ -92,7 +89,7 @@ static void delete_laplacian_system(LaplacianSystem *sys)
delete_void_pointer(sys->vweights);
delete_void_pointer(sys->zerola);
if (sys->context) {
nlDeleteContext(sys->context);
EIG_linear_solver_delete(sys->context);
}
sys->bm = NULL;
sys->op = NULL;
@@ -333,9 +330,9 @@ static void fill_laplacian_matrix(LaplacianSystem *sys)
w4 = w4 / 4.0f;
if (!vert_is_boundary(vf[j]) && sys->zerola[idv1] == 0) {
nlMatrixAdd(sys->context, idv1, idv2, w2 * sys->vweights[idv1]);
nlMatrixAdd(sys->context, idv1, idv3, w3 * sys->vweights[idv1]);
nlMatrixAdd(sys->context, idv1, idv4, w4 * sys->vweights[idv1]);
EIG_linear_solver_matrix_add(sys->context, idv1, idv2, w2 * sys->vweights[idv1]);
EIG_linear_solver_matrix_add(sys->context, idv1, idv3, w3 * sys->vweights[idv1]);
EIG_linear_solver_matrix_add(sys->context, idv1, idv4, w4 * sys->vweights[idv1]);
}
}
}
@@ -346,16 +343,16 @@ static void fill_laplacian_matrix(LaplacianSystem *sys)
/* Is ring if number of faces == number of edges around vertice*/
i = BM_elem_index_get(f);
if (!vert_is_boundary(vf[0]) && sys->zerola[idv1] == 0) {
nlMatrixAdd(sys->context, idv1, idv2, sys->fweights[i][2] * sys->vweights[idv1]);
nlMatrixAdd(sys->context, idv1, idv3, sys->fweights[i][1] * sys->vweights[idv1]);
EIG_linear_solver_matrix_add(sys->context, idv1, idv2, sys->fweights[i][2] * sys->vweights[idv1]);
EIG_linear_solver_matrix_add(sys->context, idv1, idv3, sys->fweights[i][1] * sys->vweights[idv1]);
}
if (!vert_is_boundary(vf[1]) && sys->zerola[idv2] == 0) {
nlMatrixAdd(sys->context, idv2, idv1, sys->fweights[i][2] * sys->vweights[idv2]);
nlMatrixAdd(sys->context, idv2, idv3, sys->fweights[i][0] * sys->vweights[idv2]);
EIG_linear_solver_matrix_add(sys->context, idv2, idv1, sys->fweights[i][2] * sys->vweights[idv2]);
EIG_linear_solver_matrix_add(sys->context, idv2, idv3, sys->fweights[i][0] * sys->vweights[idv2]);
}
if (!vert_is_boundary(vf[2]) && sys->zerola[idv3] == 0) {
nlMatrixAdd(sys->context, idv3, idv1, sys->fweights[i][1] * sys->vweights[idv3]);
nlMatrixAdd(sys->context, idv3, idv2, sys->fweights[i][0] * sys->vweights[idv3]);
EIG_linear_solver_matrix_add(sys->context, idv3, idv1, sys->fweights[i][1] * sys->vweights[idv3]);
EIG_linear_solver_matrix_add(sys->context, idv3, idv2, sys->fweights[i][0] * sys->vweights[idv3]);
}
}
}
@@ -368,8 +365,8 @@ static void fill_laplacian_matrix(LaplacianSystem *sys)
idv2 = BM_elem_index_get(e->v2);
if (sys->zerola[idv1] == 0 && sys->zerola[idv2] == 0) {
i = BM_elem_index_get(e);
nlMatrixAdd(sys->context, idv1, idv2, sys->eweights[i] * sys->vlengths[idv1]);
nlMatrixAdd(sys->context, idv2, idv1, sys->eweights[i] * sys->vlengths[idv2]);
EIG_linear_solver_matrix_add(sys->context, idv1, idv2, sys->eweights[i] * sys->vlengths[idv1]);
EIG_linear_solver_matrix_add(sys->context, idv2, idv1, sys->eweights[i] * sys->vlengths[idv2]);
}
}
}
@@ -434,12 +431,12 @@ static void validate_solution(LaplacianSystem *sys, int usex, int usey, int usez
idv2 = BM_elem_index_get(e->v2);
vi1 = e->v1->co;
vi2 = e->v2->co;
ve1[0] = nlGetVariable(sys->context, 0, idv1);
ve1[1] = nlGetVariable(sys->context, 1, idv1);
ve1[2] = nlGetVariable(sys->context, 2, idv1);
ve2[0] = nlGetVariable(sys->context, 0, idv2);
ve2[1] = nlGetVariable(sys->context, 1, idv2);
ve2[2] = nlGetVariable(sys->context, 2, idv2);
ve1[0] = EIG_linear_solver_variable_get(sys->context, 0, idv1);
ve1[1] = EIG_linear_solver_variable_get(sys->context, 1, idv1);
ve1[2] = EIG_linear_solver_variable_get(sys->context, 2, idv1);
ve2[0] = EIG_linear_solver_variable_get(sys->context, 0, idv2);
ve2[1] = EIG_linear_solver_variable_get(sys->context, 1, idv2);
ve2[2] = EIG_linear_solver_variable_get(sys->context, 2, idv2);
leni = len_v3v3(vi1, vi2);
lene = len_v3v3(ve1, ve2);
if (lene > leni * SMOOTH_LAPLACIAN_MAX_EDGE_PERCENTAGE || lene < leni * SMOOTH_LAPLACIAN_MIN_EDGE_PERCENTAGE) {
@@ -455,13 +452,13 @@ static void validate_solution(LaplacianSystem *sys, int usex, int usey, int usez
m_vertex_id = BM_elem_index_get(v);
if (sys->zerola[m_vertex_id] == 0) {
if (usex) {
v->co[0] = nlGetVariable(sys->context, 0, m_vertex_id);
v->co[0] = EIG_linear_solver_variable_get(sys->context, 0, m_vertex_id);
}
if (usey) {
v->co[1] = nlGetVariable(sys->context, 1, m_vertex_id);
v->co[1] = EIG_linear_solver_variable_get(sys->context, 1, m_vertex_id);
}
if (usez) {
v->co[2] = nlGetVariable(sys->context, 2, m_vertex_id);
v->co[2] = EIG_linear_solver_variable_get(sys->context, 2, m_vertex_id);
}
}
}
@@ -501,32 +498,24 @@ void bmo_smooth_laplacian_vert_exec(BMesh *bm, BMOperator *op)
preserve_volume = BMO_slot_bool_get(op->slots_in, "preserve_volume");
sys->context = nlNewContext();
sys->context = EIG_linear_least_squares_solver_new(bm->totvert, bm->totvert, 3);
nlSolverParameteri(sys->context, NL_NB_VARIABLES, bm->totvert);
nlSolverParameteri(sys->context, NL_LEAST_SQUARES, NL_TRUE);
nlSolverParameteri(sys->context, NL_NB_ROWS, bm->totvert);
nlSolverParameteri(sys->context, NL_NB_RIGHT_HAND_SIDES, 3);
nlBegin(sys->context, NL_SYSTEM);
for (i = 0; i < bm->totvert; i++) {
nlLockVariable(sys->context, i);
EIG_linear_solver_variable_lock(sys->context, i);
}
BMO_ITER (v, &siter, op->slots_in, "verts", BM_VERT) {
m_vertex_id = BM_elem_index_get(v);
nlUnlockVariable(sys->context, m_vertex_id);
nlSetVariable(sys->context, 0, m_vertex_id, v->co[0]);
nlSetVariable(sys->context, 1, m_vertex_id, v->co[1]);
nlSetVariable(sys->context, 2, m_vertex_id, v->co[2]);
EIG_linear_solver_variable_set(sys->context, 0, m_vertex_id, v->co[0]);
EIG_linear_solver_variable_set(sys->context, 1, m_vertex_id, v->co[1]);
EIG_linear_solver_variable_set(sys->context, 2, m_vertex_id, v->co[2]);
}
nlBegin(sys->context, NL_MATRIX);
init_laplacian_matrix(sys);
BMO_ITER (v, &siter, op->slots_in, "verts", BM_VERT) {
m_vertex_id = BM_elem_index_get(v);
nlRightHandSideAdd(sys->context, 0, m_vertex_id, v->co[0]);
nlRightHandSideAdd(sys->context, 1, m_vertex_id, v->co[1]);
nlRightHandSideAdd(sys->context, 2, m_vertex_id, v->co[2]);
EIG_linear_solver_right_hand_side_add(sys->context, 0, m_vertex_id, v->co[0]);
EIG_linear_solver_right_hand_side_add(sys->context, 1, m_vertex_id, v->co[1]);
EIG_linear_solver_right_hand_side_add(sys->context, 2, m_vertex_id, v->co[2]);
i = m_vertex_id;
if (sys->zerola[i] == 0) {
w = sys->vweights[i] * sys->ring_areas[i];
@@ -535,34 +524,22 @@ void bmo_smooth_laplacian_vert_exec(BMesh *bm, BMOperator *op)
sys->vlengths[i] = (w == 0.0f) ? 0.0f : -lambda_border * 2.0f / w;
if (!vert_is_boundary(v)) {
nlMatrixAdd(sys->context, i, i, 1.0f + lambda_factor / (4.0f * sys->ring_areas[i]));
EIG_linear_solver_matrix_add(sys->context, i, i, 1.0f + lambda_factor / (4.0f * sys->ring_areas[i]));
}
else {
nlMatrixAdd(sys->context, i, i, 1.0f + lambda_border * 2.0f);
EIG_linear_solver_matrix_add(sys->context, i, i, 1.0f + lambda_border * 2.0f);
}
}
else {
nlMatrixAdd(sys->context, i, i, 1.0f);
EIG_linear_solver_matrix_add(sys->context, i, i, 1.0f);
}
}
fill_laplacian_matrix(sys);
nlEnd(sys->context, NL_MATRIX);
nlEnd(sys->context, NL_SYSTEM);
if (nlSolve(sys->context, NL_TRUE) ) {
if (EIG_linear_solver_solve(sys->context) ) {
validate_solution(sys, usex, usey, usez, preserve_volume);
}
delete_laplacian_system(sys);
}
#else /* WITH_OPENNL */
#ifdef __GNUC__
# pragma GCC diagnostic ignored "-Wunused-parameter"
#endif
void bmo_smooth_laplacian_vert_exec(BMesh *bm, BMOperator *op) {}
#endif /* WITH_OPENNL */

View File

@@ -28,6 +28,7 @@ set(INC
../../makesrna
../../windowmanager
../../../../intern/guardedalloc
../../../../intern/eigen
../../../../intern/glew-mx
)
@@ -68,13 +69,6 @@ if(WITH_INTERNATIONAL)
add_definitions(-DWITH_INTERNATIONAL)
endif()
if(WITH_OPENNL)
add_definitions(-DWITH_OPENNL)
list(APPEND INC_SYS
../../../../intern/opennl/extern
)
endif()
add_definitions(${GL_DEFINITIONS})
blender_add_lib(bf_editor_armature "${SRC}" "${INC}" "${INC_SYS}")

View File

@@ -31,9 +31,9 @@ sources = env.Glob('*.c')
incs = [
'#/intern/guardedalloc',
'#/intern/eigen',
env['BF_GLEW_INC'],
'#/intern/glew-mx',
'#/intern/opennl/extern',
'../include',
'../../blenkernel',
'../../blenlib',

View File

@@ -51,12 +51,10 @@
#include "ED_armature.h"
#include "ED_mesh.h"
#include "eigen_capi.h"
#include "armature_intern.h"
#ifdef WITH_OPENNL
# include "meshlaplacian.h"
#endif
#include "meshlaplacian.h"
#if 0
#include "reeb.h"
@@ -401,12 +399,8 @@ static void add_verts_to_dgroups(ReportList *reports, Scene *scene, Object *ob,
if (heat) {
const char *error = NULL;
#ifdef WITH_OPENNL
heat_bone_weighting(ob, mesh, verts, numbones, dgrouplist, dgroupflip,
root, tip, selected, &error);
#else
error = "Built without OpenNL";
#endif
if (error) {
BKE_report(reports, RPT_WARNING, error);
}

View File

@@ -46,12 +46,10 @@
#include "ED_mesh.h"
#include "ED_armature.h"
#include "eigen_capi.h"
#include "meshlaplacian.h"
#ifdef WITH_OPENNL
#include "ONL_opennl.h"
/* ************* XXX *************** */
static void waitcursor(int UNUSED(val)) {}
static void progress_bar(int UNUSED(dummy_val), const char *UNUSED(dummy)) {}
@@ -64,7 +62,7 @@ static void error(const char *str) { printf("error: %s\n", str); }
/************************** Laplacian System *****************************/
struct LaplacianSystem {
NLContext *context; /* opennl context */
LinearSolver *context; /* linear solver */
int totvert, totface;
@@ -76,7 +74,7 @@ struct LaplacianSystem {
int areaweights; /* use area in cotangent weights? */
int storeweights; /* store cotangent weights in fweights */
int nlbegun; /* nlBegin(NL_SYSTEM/NL_MATRIX) done */
bool variablesdone; /* variables set in linear system */
EdgeHash *edgehash; /* edge hash for construction */
@@ -182,18 +180,18 @@ static void laplacian_triangle_weights(LaplacianSystem *sys, int f, int i1, int
t2 = cotangent_tri_weight_v3(v2, v3, v1) / laplacian_edge_count(sys->edgehash, i3, i1);
t3 = cotangent_tri_weight_v3(v3, v1, v2) / laplacian_edge_count(sys->edgehash, i1, i2);
nlMatrixAdd(sys->context, i1, i1, (t2 + t3) * varea[i1]);
nlMatrixAdd(sys->context, i2, i2, (t1 + t3) * varea[i2]);
nlMatrixAdd(sys->context, i3, i3, (t1 + t2) * varea[i3]);
EIG_linear_solver_matrix_add(sys->context, i1, i1, (t2 + t3) * varea[i1]);
EIG_linear_solver_matrix_add(sys->context, i2, i2, (t1 + t3) * varea[i2]);
EIG_linear_solver_matrix_add(sys->context, i3, i3, (t1 + t2) * varea[i3]);
nlMatrixAdd(sys->context, i1, i2, -t3 * varea[i1]);
nlMatrixAdd(sys->context, i2, i1, -t3 * varea[i2]);
EIG_linear_solver_matrix_add(sys->context, i1, i2, -t3 * varea[i1]);
EIG_linear_solver_matrix_add(sys->context, i2, i1, -t3 * varea[i2]);
nlMatrixAdd(sys->context, i2, i3, -t1 * varea[i2]);
nlMatrixAdd(sys->context, i3, i2, -t1 * varea[i3]);
EIG_linear_solver_matrix_add(sys->context, i2, i3, -t1 * varea[i2]);
EIG_linear_solver_matrix_add(sys->context, i3, i2, -t1 * varea[i3]);
nlMatrixAdd(sys->context, i3, i1, -t2 * varea[i3]);
nlMatrixAdd(sys->context, i1, i3, -t2 * varea[i1]);
EIG_linear_solver_matrix_add(sys->context, i3, i1, -t2 * varea[i3]);
EIG_linear_solver_matrix_add(sys->context, i1, i3, -t2 * varea[i1]);
if (sys->storeweights) {
sys->fweights[f][0] = t1 * varea[i1];
@@ -218,11 +216,11 @@ static LaplacianSystem *laplacian_system_construct_begin(int totvert, int totfac
sys->areaweights = 1;
sys->storeweights = 0;
/* create opennl context */
sys->context = nlNewContext();
nlSolverParameteri(sys->context, NL_NB_VARIABLES, totvert);
/* create linear solver */
if (lsq)
nlSolverParameteri(sys->context, NL_LEAST_SQUARES, NL_TRUE);
sys->context = EIG_linear_least_squares_solver_new(0, totvert, 1);
else
sys->context = EIG_linear_solver_new(0, totvert, 1);
return sys;
}
@@ -272,7 +270,7 @@ static void laplacian_system_construct_end(LaplacianSystem *sys)
/* for heat weighting */
if (sys->heat.H)
nlMatrixAdd(sys->context, a, a, sys->heat.H[a]);
EIG_linear_solver_matrix_add(sys->context, a, a, sys->heat.H[a]);
}
if (sys->storeweights)
@@ -301,7 +299,7 @@ static void laplacian_system_delete(LaplacianSystem *sys)
if (sys->faces) MEM_freeN(sys->faces);
if (sys->fweights) MEM_freeN(sys->fweights);
nlDeleteContext(sys->context);
EIG_linear_solver_delete(sys->context);
MEM_freeN(sys);
}
@@ -309,42 +307,37 @@ void laplacian_begin_solve(LaplacianSystem *sys, int index)
{
int a;
if (!sys->nlbegun) {
nlBegin(sys->context, NL_SYSTEM);
if (!sys->variablesdone) {
if (index >= 0) {
for (a = 0; a < sys->totvert; a++) {
if (sys->vpinned[a]) {
nlSetVariable(sys->context, 0, a, sys->verts[a][index]);
nlLockVariable(sys->context, a);
EIG_linear_solver_variable_set(sys->context, 0, a, sys->verts[a][index]);
EIG_linear_solver_variable_lock(sys->context, a);
}
}
}
nlBegin(sys->context, NL_MATRIX);
sys->nlbegun = 1;
sys->variablesdone = true;
}
}
void laplacian_add_right_hand_side(LaplacianSystem *sys, int v, float value)
{
nlRightHandSideAdd(sys->context, 0, v, value);
EIG_linear_solver_right_hand_side_add(sys->context, 0, v, value);
}
int laplacian_system_solve(LaplacianSystem *sys)
{
nlEnd(sys->context, NL_MATRIX);
nlEnd(sys->context, NL_SYSTEM);
sys->nlbegun = 0;
sys->variablesdone = false;
//nlPrintMatrix(sys->context, );
//EIG_linear_solver_print_matrix(sys->context, );
return nlSolve(sys->context, NL_TRUE);
return EIG_linear_solver_solve(sys->context);
}
float laplacian_system_get_solution(LaplacianSystem *sys, int v)
{
return nlGetVariable(sys->context, 0, v);
return EIG_linear_solver_variable_get(sys->context, 0, v);
}
/************************* Heat Bone Weighting ******************************/
@@ -1284,7 +1277,7 @@ static float meshdeform_boundary_total_weight(MeshDeformBind *mdb, int x, int y,
return totweight;
}
static void meshdeform_matrix_add_cell(MeshDeformBind *mdb, NLContext *context, int x, int y, int z)
static void meshdeform_matrix_add_cell(MeshDeformBind *mdb, LinearSolver *context, int x, int y, int z)
{
MDefBoundIsect *isect;
float weight, totweight;
@@ -1294,7 +1287,7 @@ static void meshdeform_matrix_add_cell(MeshDeformBind *mdb, NLContext *context,
if (mdb->tag[acenter] == MESHDEFORM_TAG_EXTERIOR)
return;
nlMatrixAdd(context, mdb->varidx[acenter], mdb->varidx[acenter], 1.0f);
EIG_linear_solver_matrix_add(context, mdb->varidx[acenter], mdb->varidx[acenter], 1.0f);
totweight = meshdeform_boundary_total_weight(mdb, x, y, z);
for (i = 1; i <= 6; i++) {
@@ -1305,12 +1298,12 @@ static void meshdeform_matrix_add_cell(MeshDeformBind *mdb, NLContext *context,
isect = mdb->boundisect[acenter][i - 1];
if (!isect) {
weight = (1.0f / mdb->width[0]) / totweight;
nlMatrixAdd(context, mdb->varidx[acenter], mdb->varidx[a], -weight);
EIG_linear_solver_matrix_add(context, mdb->varidx[acenter], mdb->varidx[a], -weight);
}
}
}
static void meshdeform_matrix_add_rhs(MeshDeformBind *mdb, NLContext *context, int x, int y, int z, int cagevert)
static void meshdeform_matrix_add_rhs(MeshDeformBind *mdb, LinearSolver *context, int x, int y, int z, int cagevert)
{
MDefBoundIsect *isect;
float rhs, weight, totweight;
@@ -1331,7 +1324,7 @@ static void meshdeform_matrix_add_rhs(MeshDeformBind *mdb, NLContext *context, i
if (isect) {
weight = (1.0f / isect->len) / totweight;
rhs = weight * meshdeform_boundary_phi(mdb, isect, cagevert);
nlRightHandSideAdd(context, 0, mdb->varidx[acenter], rhs);
EIG_linear_solver_right_hand_side_add(context, 0, mdb->varidx[acenter], rhs);
}
}
}
@@ -1386,7 +1379,7 @@ static void meshdeform_matrix_add_exterior_phi(MeshDeformBind *mdb, int x, int y
static void meshdeform_matrix_solve(MeshDeformModifierData *mmd, MeshDeformBind *mdb)
{
NLContext *context;
LinearSolver *context;
float vec[3], gridvec[3];
int a, b, x, y, z, totvar;
char message[256];
@@ -1403,15 +1396,8 @@ static void meshdeform_matrix_solve(MeshDeformModifierData *mmd, MeshDeformBind
progress_bar(0, "Starting mesh deform solve");
/* setup opennl solver */
context = nlNewContext();
nlSolverParameteri(context, NL_NB_VARIABLES, totvar);
nlSolverParameteri(context, NL_NB_ROWS, totvar);
nlSolverParameteri(context, NL_NB_RIGHT_HAND_SIDES, 1);
nlBegin(context, NL_SYSTEM);
nlBegin(context, NL_MATRIX);
/* setup linear solver */
context = EIG_linear_solver_new(totvar, totvar, 1);
/* build matrix */
for (z = 0; z < mdb->size; z++)
@@ -1421,21 +1407,13 @@ static void meshdeform_matrix_solve(MeshDeformModifierData *mmd, MeshDeformBind
/* solve for each cage vert */
for (a = 0; a < mdb->totcagevert; a++) {
if (a != 0) {
nlBegin(context, NL_SYSTEM);
nlBegin(context, NL_MATRIX);
}
/* fill in right hand side and solve */
for (z = 0; z < mdb->size; z++)
for (y = 0; y < mdb->size; y++)
for (x = 0; x < mdb->size; x++)
meshdeform_matrix_add_rhs(mdb, context, x, y, z, a);
nlEnd(context, NL_MATRIX);
nlEnd(context, NL_SYSTEM);
if (nlSolve(context, NL_TRUE)) {
if (EIG_linear_solver_solve(context)) {
for (z = 0; z < mdb->size; z++)
for (y = 0; y < mdb->size; y++)
for (x = 0; x < mdb->size; x++)
@@ -1448,7 +1426,7 @@ static void meshdeform_matrix_solve(MeshDeformModifierData *mmd, MeshDeformBind
for (b = 0; b < mdb->size3; b++) {
if (mdb->tag[b] != MESHDEFORM_TAG_EXTERIOR)
mdb->phi[b] = nlGetVariable(context, 0, mdb->varidx[b]);
mdb->phi[b] = EIG_linear_solver_variable_get(context, 0, mdb->varidx[b]);
mdb->totalphi[b] += mdb->phi[b];
}
@@ -1502,7 +1480,7 @@ static void meshdeform_matrix_solve(MeshDeformModifierData *mmd, MeshDeformBind
/* free */
MEM_freeN(mdb->varidx);
nlDeleteContext(context);
EIG_linear_solver_delete(context);
}
static void harmonic_coordinates_bind(Scene *UNUSED(scene), MeshDeformModifierData *mmd, MeshDeformBind *mdb)
@@ -1705,13 +1683,3 @@ void mesh_deform_bind(Scene *scene, MeshDeformModifierData *mmd, float *vertexco
waitcursor(0);
}
#else /* WITH_OPENNL */
#ifdef __GNUC__
# pragma GCC diagnostic ignored "-Wunused-parameter"
#endif
void mesh_deform_bind(Scene *scene, MeshDeformModifierData *mmd, float *vertexcos, int totvert, float cagemat[4][4]) {}
void *modifier_mdef_compact_influences_link_kludge = modifier_mdef_compact_influences;
#endif /* WITH_OPENNL */

View File

@@ -2497,7 +2497,7 @@ int weightFromLoc(EditMesh *em, int axis)
return 1;
}
static void addTriangle(NLContext *context, EditVert *v1, EditVert *v2, EditVert *v3, int e1, int e2, int e3)
static void addTriangle(LinearSolver *context, EditVert *v1, EditVert *v2, EditVert *v3, int e1, int e2, int e3)
{
/* Angle opposite e1 */
float t1 = cotangent_tri_weight_v3(v1->co, v2->co, v3->co) / e2;
@@ -2512,23 +2512,23 @@ static void addTriangle(NLContext *context, EditVert *v1, EditVert *v2, EditVert
int i2 = indexData(v2);
int i3 = indexData(v3);
nlMatrixAdd(context, i1, i1, t2 + t3);
nlMatrixAdd(context, i2, i2, t1 + t3);
nlMatrixAdd(context, i3, i3, t1 + t2);
EIG_linear_solver_matrix_add(context, i1, i1, t2 + t3);
EIG_linear_solver_matrix_add(context, i2, i2, t1 + t3);
EIG_linear_solver_matrix_add(context, i3, i3, t1 + t2);
nlMatrixAdd(context, i1, i2, -t3);
nlMatrixAdd(context, i2, i1, -t3);
EIG_linear_solver_matrix_add(context, i1, i2, -t3);
EIG_linear_solver_matrix_add(context, i2, i1, -t3);
nlMatrixAdd(context, i2, i3, -t1);
nlMatrixAdd(context, i3, i2, -t1);
EIG_linear_solver_matrix_add(context, i2, i3, -t1);
EIG_linear_solver_matrix_add(context, i3, i2, -t1);
nlMatrixAdd(context, i3, i1, -t2);
nlMatrixAdd(context, i1, i3, -t2);
EIG_linear_solver_matrix_add(context, i3, i1, -t2);
EIG_linear_solver_matrix_add(context, i1, i3, -t2);
}
int weightToHarmonic(EditMesh *em, EdgeIndex *indexed_edges)
{
NLContext *context;
LinearSolver *context;
NLboolean success;
EditVert *eve;
EditEdge *eed;
@@ -2542,14 +2542,10 @@ int weightToHarmonic(EditMesh *em, EdgeIndex *indexed_edges)
totvert++;
}
/* Solve with openNL */
/* Solve */
context = nlNewContext();
context = EIG_linear_solver_new(, 0, totvert, 1);
nlSolverParameteri(context, NL_NB_VARIABLES, totvert);
nlBegin(context, NL_SYSTEM);
/* Find local extrema */
for (index = 0, eve = em->verts.first; eve; index++, eve = eve->next) {
if (eve->h == 0) {
@@ -2583,8 +2579,8 @@ int weightToHarmonic(EditMesh *em, EdgeIndex *indexed_edges)
if (maximum || minimum) {
float w = weightData(eve);
eve->f1 = 0;
nlSetVariable(context, 0, index, w);
nlLockVariable(context, index);
EIG_linear_solver_variable_set(context, 0, index, w);
EIG_linear_solver_variable_lock(context, index);
}
else {
eve->f1 = 1;
@@ -2592,8 +2588,6 @@ int weightToHarmonic(EditMesh *em, EdgeIndex *indexed_edges)
}
}
nlBegin(context, NL_MATRIX);
/* Zero edge weight */
for (eed = em->edges.first; eed; eed = eed->next) {
eed->tmp.l = 0;
@@ -2625,23 +2619,19 @@ int weightToHarmonic(EditMesh *em, EdgeIndex *indexed_edges)
}
}
nlEnd(context, NL_MATRIX);
nlEnd(context, NL_SYSTEM);
success = nlSolve(context, NL_TRUE);
success = EIG_linear_solver_solve(context);
if (success) {
rval = 1;
for (index = 0, eve = em->verts.first; eve; index++, eve = eve->next) {
weightSetData(eve, nlGetVariable(context, 0, index));
weightSetData(eve, EIG_linear_solver_variable_get(context, 0, index));
}
}
else {
rval = 0;
}
nlDeleteContext(context);
EIG_linear_solver_delete(context);
return rval;
}

View File

@@ -29,6 +29,7 @@ set(INC
../../makesrna
../../windowmanager
../../../../intern/guardedalloc
../../../../intern/eigen
../../../../intern/glew-mx
)
@@ -52,13 +53,6 @@ if(WITH_INTERNATIONAL)
add_definitions(-DWITH_INTERNATIONAL)
endif()
if(WITH_OPENNL)
add_definitions(-DWITH_OPENNL)
list(APPEND INC_SYS
../../../../intern/opennl/extern
)
endif()
add_definitions(${GL_DEFINITIONS})
blender_add_lib(bf_editor_uvedit "${SRC}" "${INC}" "${INC_SYS}")

View File

@@ -34,9 +34,9 @@ sources = env.Glob('*.c')
incs = [
'#/intern/guardedalloc',
'#/intern/eigen',
env['BF_GLEW_INC'],
'#/intern/glew-mx',
'#/intern/opennl/extern',
'../include',
'../../blenkernel',
'../../blenlib',

View File

@@ -44,9 +44,7 @@
#include "BLI_sys_types.h" /* for intptr_t support */
#ifdef WITH_OPENNL
#include "ONL_opennl.h"
#include "eigen_capi.h"
/* Utils */
@@ -193,7 +191,7 @@ typedef struct PChart {
union PChartUnion {
struct PChartLscm {
NLContext *context;
LinearSolver *context;
float *abf_alpha;
PVert *pin1, *pin2;
} lscm;
@@ -2471,17 +2469,12 @@ static PBool p_abf_matrix_invert(PAbfSystem *sys, PChart *chart)
PEdge *e;
int i, j, ninterior = sys->ninterior, nvar = 2 * sys->ninterior;
PBool success;
NLContext *context;
LinearSolver *context;
context = nlNewContext();
nlSolverParameteri(context, NL_NB_VARIABLES, nvar);
nlBegin(context, NL_SYSTEM);
nlBegin(context, NL_MATRIX);
context = EIG_linear_solver_new(0, nvar, 1);
for (i = 0; i < nvar; i++)
nlRightHandSideAdd(context, 0, i, sys->bInterior[i]);
EIG_linear_solver_right_hand_side_add(context, 0, i, sys->bInterior[i]);
for (f = chart->faces; f; f = f->nextlink) {
float wi1, wi2, wi3, b, si, beta[3], j2[3][3], W[3][3];
@@ -2527,8 +2520,8 @@ static PBool p_abf_matrix_invert(PAbfSystem *sys, PChart *chart)
sys->J2dt[e2->u.id][0] = j2[1][0] = p_abf_compute_sin_product(sys, v1, e2->u.id) * wi2;
sys->J2dt[e3->u.id][0] = j2[2][0] = p_abf_compute_sin_product(sys, v1, e3->u.id) * wi3;
nlRightHandSideAdd(context, 0, v1->u.id, j2[0][0] * beta[0]);
nlRightHandSideAdd(context, 0, ninterior + v1->u.id, j2[1][0] * beta[1] + j2[2][0] * beta[2]);
EIG_linear_solver_right_hand_side_add(context, 0, v1->u.id, j2[0][0] * beta[0]);
EIG_linear_solver_right_hand_side_add(context, 0, ninterior + v1->u.id, j2[1][0] * beta[1] + j2[2][0] * beta[2]);
row1[0] = j2[0][0] * W[0][0];
row2[0] = j2[0][0] * W[1][0];
@@ -2547,8 +2540,8 @@ static PBool p_abf_matrix_invert(PAbfSystem *sys, PChart *chart)
sys->J2dt[e2->u.id][1] = j2[1][1] = 1.0f * wi2;
sys->J2dt[e3->u.id][1] = j2[2][1] = p_abf_compute_sin_product(sys, v2, e3->u.id) * wi3;
nlRightHandSideAdd(context, 0, v2->u.id, j2[1][1] * beta[1]);
nlRightHandSideAdd(context, 0, ninterior + v2->u.id, j2[0][1] * beta[0] + j2[2][1] * beta[2]);
EIG_linear_solver_right_hand_side_add(context, 0, v2->u.id, j2[1][1] * beta[1]);
EIG_linear_solver_right_hand_side_add(context, 0, ninterior + v2->u.id, j2[0][1] * beta[0] + j2[2][1] * beta[2]);
row1[1] = j2[1][1] * W[0][1];
row2[1] = j2[1][1] * W[1][1];
@@ -2567,8 +2560,8 @@ static PBool p_abf_matrix_invert(PAbfSystem *sys, PChart *chart)
sys->J2dt[e2->u.id][2] = j2[1][2] = p_abf_compute_sin_product(sys, v3, e2->u.id) * wi2;
sys->J2dt[e3->u.id][2] = j2[2][2] = 1.0f * wi3;
nlRightHandSideAdd(context, 0, v3->u.id, j2[2][2] * beta[2]);
nlRightHandSideAdd(context, 0, ninterior + v3->u.id, j2[0][2] * beta[0] + j2[1][2] * beta[1]);
EIG_linear_solver_right_hand_side_add(context, 0, v3->u.id, j2[2][2] * beta[2]);
EIG_linear_solver_right_hand_side_add(context, 0, ninterior + v3->u.id, j2[0][2] * beta[0] + j2[1][2] * beta[1]);
row1[2] = j2[2][2] * W[0][2];
row2[2] = j2[2][2] * W[1][2];
@@ -2592,29 +2585,25 @@ static PBool p_abf_matrix_invert(PAbfSystem *sys, PChart *chart)
continue;
if (i == 0)
nlMatrixAdd(context, r, c, j2[0][i] * row1[j]);
EIG_linear_solver_matrix_add(context, r, c, j2[0][i] * row1[j]);
else
nlMatrixAdd(context, r + ninterior, c, j2[0][i] * row1[j]);
EIG_linear_solver_matrix_add(context, r + ninterior, c, j2[0][i] * row1[j]);
if (i == 1)
nlMatrixAdd(context, r, c, j2[1][i] * row2[j]);
EIG_linear_solver_matrix_add(context, r, c, j2[1][i] * row2[j]);
else
nlMatrixAdd(context, r + ninterior, c, j2[1][i] * row2[j]);
EIG_linear_solver_matrix_add(context, r + ninterior, c, j2[1][i] * row2[j]);
if (i == 2)
nlMatrixAdd(context, r, c, j2[2][i] * row3[j]);
EIG_linear_solver_matrix_add(context, r, c, j2[2][i] * row3[j]);
else
nlMatrixAdd(context, r + ninterior, c, j2[2][i] * row3[j]);
EIG_linear_solver_matrix_add(context, r + ninterior, c, j2[2][i] * row3[j]);
}
}
}
nlEnd(context, NL_MATRIX);
nlEnd(context, NL_SYSTEM);
success = nlSolve(context, NL_FALSE);
success = EIG_linear_solver_solve(context);
if (success) {
for (f = chart->faces; f; f = f->nextlink) {
@@ -2625,24 +2614,24 @@ static PBool p_abf_matrix_invert(PAbfSystem *sys, PChart *chart)
pre[0] = pre[1] = pre[2] = 0.0;
if (v1->flag & PVERT_INTERIOR) {
float x = nlGetVariable(context, 0, v1->u.id);
float x2 = nlGetVariable(context, 0, ninterior + v1->u.id);
float x = EIG_linear_solver_variable_get(context, 0, v1->u.id);
float x2 = EIG_linear_solver_variable_get(context, 0, ninterior + v1->u.id);
pre[0] += sys->J2dt[e1->u.id][0] * x;
pre[1] += sys->J2dt[e2->u.id][0] * x2;
pre[2] += sys->J2dt[e3->u.id][0] * x2;
}
if (v2->flag & PVERT_INTERIOR) {
float x = nlGetVariable(context, 0, v2->u.id);
float x2 = nlGetVariable(context, 0, ninterior + v2->u.id);
float x = EIG_linear_solver_variable_get(context, 0, v2->u.id);
float x2 = EIG_linear_solver_variable_get(context, 0, ninterior + v2->u.id);
pre[0] += sys->J2dt[e1->u.id][1] * x2;
pre[1] += sys->J2dt[e2->u.id][1] * x;
pre[2] += sys->J2dt[e3->u.id][1] * x2;
}
if (v3->flag & PVERT_INTERIOR) {
float x = nlGetVariable(context, 0, v3->u.id);
float x2 = nlGetVariable(context, 0, ninterior + v3->u.id);
float x = EIG_linear_solver_variable_get(context, 0, v3->u.id);
float x2 = EIG_linear_solver_variable_get(context, 0, ninterior + v3->u.id);
pre[0] += sys->J2dt[e1->u.id][2] * x2;
pre[1] += sys->J2dt[e2->u.id][2] * x2;
pre[2] += sys->J2dt[e3->u.id][2] * x;
@@ -2673,12 +2662,12 @@ static PBool p_abf_matrix_invert(PAbfSystem *sys, PChart *chart)
}
for (i = 0; i < ninterior; i++) {
sys->lambdaPlanar[i] += (float)nlGetVariable(context, 0, i);
sys->lambdaLength[i] += (float)nlGetVariable(context, 0, ninterior + i);
sys->lambdaPlanar[i] += (float)EIG_linear_solver_variable_get(context, 0, i);
sys->lambdaLength[i] += (float)EIG_linear_solver_variable_get(context, 0, ninterior + i);
}
}
nlDeleteContext(context);
EIG_linear_solver_delete(context);
return success;
}
@@ -3004,12 +2993,12 @@ static void p_chart_extrema_verts(PChart *chart, PVert **pin1, PVert **pin2)
static void p_chart_lscm_load_solution(PChart *chart)
{
NLContext *context = chart->u.lscm.context;
LinearSolver *context = chart->u.lscm.context;
PVert *v;
for (v = chart->verts; v; v = v->nextlink) {
v->uv[0] = nlGetVariable(context, 0, 2 * v->u.id);
v->uv[1] = nlGetVariable(context, 0, 2 * v->u.id + 1);
v->uv[0] = EIG_linear_solver_variable_get(context, 0, 2 * v->u.id);
v->uv[1] = EIG_linear_solver_variable_get(context, 0, 2 * v->u.id + 1);
}
}
@@ -3064,16 +3053,13 @@ static void p_chart_lscm_begin(PChart *chart, PBool live, PBool abf)
for (v = chart->verts; v; v = v->nextlink)
v->u.id = id++;
chart->u.lscm.context = nlNewContext();
nlSolverParameteri(chart->u.lscm.context, NL_NB_VARIABLES, 2 * chart->nverts);
nlSolverParameteri(chart->u.lscm.context, NL_NB_ROWS, 2 * chart->nfaces);
nlSolverParameteri(chart->u.lscm.context, NL_LEAST_SQUARES, NL_TRUE);
chart->u.lscm.context = EIG_linear_least_squares_solver_new(2 * chart->nfaces, 2 * chart->nverts, 1);
}
}
static PBool p_chart_lscm_solve(PHandle *handle, PChart *chart)
{
NLContext *context = chart->u.lscm.context;
LinearSolver *context = chart->u.lscm.context;
PVert *v, *pin1 = chart->u.lscm.pin1, *pin2 = chart->u.lscm.pin2;
PFace *f;
float *alpha = chart->u.lscm.abf_alpha;
@@ -3081,8 +3067,6 @@ static PBool p_chart_lscm_solve(PHandle *handle, PChart *chart)
bool flip_faces;
int row;
nlBegin(context, NL_SYSTEM);
#if 0
/* TODO: make loading pins work for simplify/complexify. */
#endif
@@ -3092,25 +3076,25 @@ static PBool p_chart_lscm_solve(PHandle *handle, PChart *chart)
p_vert_load_pin_select_uvs(handle, v); /* reload for live */
if (chart->u.lscm.pin1) {
nlLockVariable(context, 2 * pin1->u.id);
nlLockVariable(context, 2 * pin1->u.id + 1);
nlLockVariable(context, 2 * pin2->u.id);
nlLockVariable(context, 2 * pin2->u.id + 1);
EIG_linear_solver_variable_lock(context, 2 * pin1->u.id);
EIG_linear_solver_variable_lock(context, 2 * pin1->u.id + 1);
EIG_linear_solver_variable_lock(context, 2 * pin2->u.id);
EIG_linear_solver_variable_lock(context, 2 * pin2->u.id + 1);
nlSetVariable(context, 0, 2 * pin1->u.id, pin1->uv[0]);
nlSetVariable(context, 0, 2 * pin1->u.id + 1, pin1->uv[1]);
nlSetVariable(context, 0, 2 * pin2->u.id, pin2->uv[0]);
nlSetVariable(context, 0, 2 * pin2->u.id + 1, pin2->uv[1]);
EIG_linear_solver_variable_set(context, 0, 2 * pin1->u.id, pin1->uv[0]);
EIG_linear_solver_variable_set(context, 0, 2 * pin1->u.id + 1, pin1->uv[1]);
EIG_linear_solver_variable_set(context, 0, 2 * pin2->u.id, pin2->uv[0]);
EIG_linear_solver_variable_set(context, 0, 2 * pin2->u.id + 1, pin2->uv[1]);
}
else {
/* set and lock the pins */
for (v = chart->verts; v; v = v->nextlink) {
if (v->flag & PVERT_PIN) {
nlLockVariable(context, 2 * v->u.id);
nlLockVariable(context, 2 * v->u.id + 1);
EIG_linear_solver_variable_lock(context, 2 * v->u.id);
EIG_linear_solver_variable_lock(context, 2 * v->u.id + 1);
nlSetVariable(context, 0, 2 * v->u.id, v->uv[0]);
nlSetVariable(context, 0, 2 * v->u.id + 1, v->uv[1]);
EIG_linear_solver_variable_set(context, 0, 2 * v->u.id, v->uv[0]);
EIG_linear_solver_variable_set(context, 0, 2 * v->u.id + 1, v->uv[1]);
}
}
}
@@ -3137,8 +3121,6 @@ static PBool p_chart_lscm_solve(PHandle *handle, PChart *chart)
/* construct matrix */
nlBegin(context, NL_MATRIX);
row = 0;
for (f = chart->faces; f; f = f->nextlink) {
PEdge *e1 = f->edge, *e2 = e1->next, *e3 = e2->next;
@@ -3185,26 +3167,22 @@ static PBool p_chart_lscm_solve(PHandle *handle, PChart *chart)
cosine = cosf(a1) * ratio;
sine = sina1 * ratio;
nlMatrixAdd(context, row, 2 * v1->u.id, cosine - 1.0f);
nlMatrixAdd(context, row, 2 * v1->u.id + 1, -sine);
nlMatrixAdd(context, row, 2 * v2->u.id, -cosine);
nlMatrixAdd(context, row, 2 * v2->u.id + 1, sine);
nlMatrixAdd(context, row, 2 * v3->u.id, 1.0);
EIG_linear_solver_matrix_add(context, row, 2 * v1->u.id, cosine - 1.0f);
EIG_linear_solver_matrix_add(context, row, 2 * v1->u.id + 1, -sine);
EIG_linear_solver_matrix_add(context, row, 2 * v2->u.id, -cosine);
EIG_linear_solver_matrix_add(context, row, 2 * v2->u.id + 1, sine);
EIG_linear_solver_matrix_add(context, row, 2 * v3->u.id, 1.0);
row++;
nlMatrixAdd(context, row, 2 * v1->u.id, sine);
nlMatrixAdd(context, row, 2 * v1->u.id + 1, cosine - 1.0f);
nlMatrixAdd(context, row, 2 * v2->u.id, -sine);
nlMatrixAdd(context, row, 2 * v2->u.id + 1, -cosine);
nlMatrixAdd(context, row, 2 * v3->u.id + 1, 1.0);
EIG_linear_solver_matrix_add(context, row, 2 * v1->u.id, sine);
EIG_linear_solver_matrix_add(context, row, 2 * v1->u.id + 1, cosine - 1.0f);
EIG_linear_solver_matrix_add(context, row, 2 * v2->u.id, -sine);
EIG_linear_solver_matrix_add(context, row, 2 * v2->u.id + 1, -cosine);
EIG_linear_solver_matrix_add(context, row, 2 * v3->u.id + 1, 1.0);
row++;
}
nlEnd(context, NL_MATRIX);
nlEnd(context, NL_SYSTEM);
if (nlSolve(context, NL_TRUE)) {
if (EIG_linear_solver_solve(context)) {
p_chart_lscm_load_solution(chart);
return P_TRUE;
}
@@ -3221,7 +3199,7 @@ static PBool p_chart_lscm_solve(PHandle *handle, PChart *chart)
static void p_chart_lscm_end(PChart *chart)
{
if (chart->u.lscm.context)
nlDeleteContext(chart->u.lscm.context);
EIG_linear_solver_delete(chart->u.lscm.context);
if (chart->u.lscm.abf_alpha) {
MEM_freeN(chart->u.lscm.abf_alpha);
@@ -4700,36 +4678,3 @@ void param_flush_restore(ParamHandle *handle)
}
}
#else /* WITH_OPENNL */
#ifdef __GNUC__
# pragma GCC diagnostic ignored "-Wunused-parameter"
#endif
/* stubs */
void param_face_add(ParamHandle *handle, ParamKey key, int nverts,
ParamKey *vkeys, float **co, float **uv,
ParamBool *pin, ParamBool *select, float normal[3]) {}
void param_edge_set_seam(ParamHandle *handle,
ParamKey *vkeys) {}
void param_aspect_ratio(ParamHandle *handle, float aspx, float aspy) {}
ParamHandle *param_construct_begin(void) { return NULL; }
void param_construct_end(ParamHandle *handle, ParamBool fill, ParamBool impl) {}
void param_delete(ParamHandle *handle) {}
void param_stretch_begin(ParamHandle *handle) {}
void param_stretch_blend(ParamHandle *handle, float blend) {}
void param_stretch_iter(ParamHandle *handle) {}
void param_stretch_end(ParamHandle *handle) {}
void param_pack(ParamHandle *handle, float margin, bool do_rotate) {}
void param_average(ParamHandle *handle) {}
void param_flush(ParamHandle *handle) {}
void param_flush_restore(ParamHandle *handle) {}
void param_lscm_begin(ParamHandle *handle, ParamBool live, ParamBool abf) {}
void param_lscm_solve(ParamHandle *handle) {}
void param_lscm_end(ParamHandle *handle) {}
#endif /* WITH_OPENNL */

View File

@@ -37,6 +37,7 @@ set(INC
../render/extern/include
../../../intern/elbeem/extern
../../../intern/guardedalloc
../../../intern/eigen
)
set(INC_SYS
@@ -144,13 +145,6 @@ if(WITH_INTERNATIONAL)
add_definitions(-DWITH_INTERNATIONAL)
endif()
if(WITH_OPENNL)
add_definitions(-DWITH_OPENNL)
list(APPEND INC_SYS
../../../intern/opennl/extern
)
endif()
if(WITH_OPENSUBDIV)
add_definitions(-DWITH_OPENSUBDIV)
endif()

View File

@@ -33,8 +33,8 @@ incs = [
'.',
'./intern',
'#/intern/guardedalloc',
'#/intern/eigen',
'#/intern/elbeem/extern',
'#/intern/opennl/extern',
'../render/extern/include',
'../bmesh',
'../include',

View File

@@ -42,6 +42,7 @@
#include "MOD_util.h"
#include "eigen_capi.h"
enum {
LAPDEFORM_SYSTEM_NOT_CHANGE = 0,
@@ -54,10 +55,6 @@ enum {
LAPDEFORM_SYSTEM_CHANGE_NOT_VALID_GROUP,
};
#ifdef WITH_OPENNL
#include "ONL_opennl.h"
typedef struct LaplacianSystem {
bool is_matrix_computed;
bool has_solution;
@@ -75,7 +72,7 @@ typedef struct LaplacianSystem {
int *unit_verts; /* Unit vectors of projected edges onto the plane orthogonal to n */
int *ringf_indices; /* Indices of faces per vertex */
int *ringv_indices; /* Indices of neighbors(vertex) per vertex */
NLContext *context; /* System for solve general implicit rotations */
LinearSolver *context; /* System for solve general implicit rotations */
MeshElemMap *ringf_map; /* Map of faces per vertex */
MeshElemMap *ringv_map; /* Map of vertex per vertex */
} LaplacianSystem;
@@ -134,7 +131,7 @@ static void deleteLaplacianSystem(LaplacianSystem *sys)
MEM_SAFE_FREE(sys->ringv_map);
if (sys->context) {
nlDeleteContext(sys->context);
EIG_linear_solver_delete(sys->context);
}
MEM_SAFE_FREE(sys);
}
@@ -283,9 +280,9 @@ static void initLaplacianMatrix(LaplacianSystem *sys)
sys->delta[idv[0]][1] -= v3[1] * w3;
sys->delta[idv[0]][2] -= v3[2] * w3;
nlMatrixAdd(sys->context, idv[0], idv[1], -w2);
nlMatrixAdd(sys->context, idv[0], idv[2], -w3);
nlMatrixAdd(sys->context, idv[0], idv[0], w2 + w3);
EIG_linear_solver_matrix_add(sys->context, idv[0], idv[1], -w2);
EIG_linear_solver_matrix_add(sys->context, idv[0], idv[2], -w3);
EIG_linear_solver_matrix_add(sys->context, idv[0], idv[0], w2 + w3);
}
}
}
@@ -338,9 +335,9 @@ static void rotateDifferentialCoordinates(LaplacianSystem *sys)
beta = dot_v3v3(uij, di);
gamma = dot_v3v3(e2, di);
pi[0] = nlGetVariable(sys->context, 0, i);
pi[1] = nlGetVariable(sys->context, 1, i);
pi[2] = nlGetVariable(sys->context, 2, i);
pi[0] = EIG_linear_solver_variable_get(sys->context, 0, i);
pi[1] = EIG_linear_solver_variable_get(sys->context, 1, i);
pi[2] = EIG_linear_solver_variable_get(sys->context, 2, i);
zero_v3(ni);
num_fni = 0;
num_fni = sys->ringf_map[i].count;
@@ -349,9 +346,9 @@ static void rotateDifferentialCoordinates(LaplacianSystem *sys)
fidn = sys->ringf_map[i].indices;
vin = sys->tris[fidn[fi]];
for (j = 0; j < 3; j++) {
vn[j][0] = nlGetVariable(sys->context, 0, vin[j]);
vn[j][1] = nlGetVariable(sys->context, 1, vin[j]);
vn[j][2] = nlGetVariable(sys->context, 2, vin[j]);
vn[j][0] = EIG_linear_solver_variable_get(sys->context, 0, vin[j]);
vn[j][1] = EIG_linear_solver_variable_get(sys->context, 1, vin[j]);
vn[j][2] = EIG_linear_solver_variable_get(sys->context, 2, vin[j]);
if (vin[j] == sys->unit_verts[i]) {
copy_v3_v3(pj, vn[j]);
}
@@ -372,14 +369,14 @@ static void rotateDifferentialCoordinates(LaplacianSystem *sys)
fni[2] = alpha * ni[2] + beta * uij[2] + gamma * e2[2];
if (len_squared_v3(fni) > FLT_EPSILON) {
nlRightHandSideSet(sys->context, 0, i, fni[0]);
nlRightHandSideSet(sys->context, 1, i, fni[1]);
nlRightHandSideSet(sys->context, 2, i, fni[2]);
EIG_linear_solver_right_hand_side_add(sys->context, 0, i, fni[0]);
EIG_linear_solver_right_hand_side_add(sys->context, 1, i, fni[1]);
EIG_linear_solver_right_hand_side_add(sys->context, 2, i, fni[2]);
}
else {
nlRightHandSideSet(sys->context, 0, i, sys->delta[i][0]);
nlRightHandSideSet(sys->context, 1, i, sys->delta[i][1]);
nlRightHandSideSet(sys->context, 2, i, sys->delta[i][2]);
EIG_linear_solver_right_hand_side_add(sys->context, 0, i, sys->delta[i][0]);
EIG_linear_solver_right_hand_side_add(sys->context, 1, i, sys->delta[i][1]);
EIG_linear_solver_right_hand_side_add(sys->context, 2, i, sys->delta[i][2]);
}
}
}
@@ -390,75 +387,59 @@ static void laplacianDeformPreview(LaplacianSystem *sys, float (*vertexCos)[3])
n = sys->total_verts;
na = sys->total_anchors;
#ifdef OPENNL_THREADING_HACK
modifier_opennl_lock();
#endif
if (!sys->is_matrix_computed) {
sys->context = nlNewContext();
sys->context = EIG_linear_least_squares_solver_new(n + na, n, 3);
nlSolverParameteri(sys->context, NL_NB_VARIABLES, n);
nlSolverParameteri(sys->context, NL_LEAST_SQUARES, NL_TRUE);
nlSolverParameteri(sys->context, NL_NB_ROWS, n + na);
nlSolverParameteri(sys->context, NL_NB_RIGHT_HAND_SIDES, 3);
nlBegin(sys->context, NL_SYSTEM);
for (i = 0; i < n; i++) {
nlSetVariable(sys->context, 0, i, sys->co[i][0]);
nlSetVariable(sys->context, 1, i, sys->co[i][1]);
nlSetVariable(sys->context, 2, i, sys->co[i][2]);
EIG_linear_solver_variable_set(sys->context, 0, i, sys->co[i][0]);
EIG_linear_solver_variable_set(sys->context, 1, i, sys->co[i][1]);
EIG_linear_solver_variable_set(sys->context, 2, i, sys->co[i][2]);
}
for (i = 0; i < na; i++) {
vid = sys->index_anchors[i];
nlSetVariable(sys->context, 0, vid, vertexCos[vid][0]);
nlSetVariable(sys->context, 1, vid, vertexCos[vid][1]);
nlSetVariable(sys->context, 2, vid, vertexCos[vid][2]);
EIG_linear_solver_variable_set(sys->context, 0, vid, vertexCos[vid][0]);
EIG_linear_solver_variable_set(sys->context, 1, vid, vertexCos[vid][1]);
EIG_linear_solver_variable_set(sys->context, 2, vid, vertexCos[vid][2]);
}
nlBegin(sys->context, NL_MATRIX);
initLaplacianMatrix(sys);
computeImplictRotations(sys);
for (i = 0; i < n; i++) {
nlRightHandSideSet(sys->context, 0, i, sys->delta[i][0]);
nlRightHandSideSet(sys->context, 1, i, sys->delta[i][1]);
nlRightHandSideSet(sys->context, 2, i, sys->delta[i][2]);
EIG_linear_solver_right_hand_side_add(sys->context, 0, i, sys->delta[i][0]);
EIG_linear_solver_right_hand_side_add(sys->context, 1, i, sys->delta[i][1]);
EIG_linear_solver_right_hand_side_add(sys->context, 2, i, sys->delta[i][2]);
}
for (i = 0; i < na; i++) {
vid = sys->index_anchors[i];
nlRightHandSideSet(sys->context, 0, n + i, vertexCos[vid][0]);
nlRightHandSideSet(sys->context, 1, n + i, vertexCos[vid][1]);
nlRightHandSideSet(sys->context, 2, n + i, vertexCos[vid][2]);
nlMatrixAdd(sys->context, n + i, vid, 1.0f);
EIG_linear_solver_right_hand_side_add(sys->context, 0, n + i, vertexCos[vid][0]);
EIG_linear_solver_right_hand_side_add(sys->context, 1, n + i, vertexCos[vid][1]);
EIG_linear_solver_right_hand_side_add(sys->context, 2, n + i, vertexCos[vid][2]);
EIG_linear_solver_matrix_add(sys->context, n + i, vid, 1.0f);
}
nlEnd(sys->context, NL_MATRIX);
nlEnd(sys->context, NL_SYSTEM);
if (nlSolve(sys->context, NL_TRUE)) {
if (EIG_linear_solver_solve(sys->context)) {
sys->has_solution = true;
for (j = 1; j <= sys->repeat; j++) {
nlBegin(sys->context, NL_SYSTEM);
nlBegin(sys->context, NL_MATRIX);
rotateDifferentialCoordinates(sys);
for (i = 0; i < na; i++) {
vid = sys->index_anchors[i];
nlRightHandSideSet(sys->context, 0, n + i, vertexCos[vid][0]);
nlRightHandSideSet(sys->context, 1, n + i, vertexCos[vid][1]);
nlRightHandSideSet(sys->context, 2, n + i, vertexCos[vid][2]);
EIG_linear_solver_right_hand_side_add(sys->context, 0, n + i, vertexCos[vid][0]);
EIG_linear_solver_right_hand_side_add(sys->context, 1, n + i, vertexCos[vid][1]);
EIG_linear_solver_right_hand_side_add(sys->context, 2, n + i, vertexCos[vid][2]);
}
nlEnd(sys->context, NL_MATRIX);
nlEnd(sys->context, NL_SYSTEM);
if (!nlSolve(sys->context, NL_FALSE)) {
if (!EIG_linear_solver_solve(sys->context)) {
sys->has_solution = false;
break;
}
}
if (sys->has_solution) {
for (vid = 0; vid < sys->total_verts; vid++) {
vertexCos[vid][0] = nlGetVariable(sys->context, 0, vid);
vertexCos[vid][1] = nlGetVariable(sys->context, 1, vid);
vertexCos[vid][2] = nlGetVariable(sys->context, 2, vid);
vertexCos[vid][0] = EIG_linear_solver_variable_get(sys->context, 0, vid);
vertexCos[vid][1] = EIG_linear_solver_variable_get(sys->context, 1, vid);
vertexCos[vid][2] = EIG_linear_solver_variable_get(sys->context, 2, vid);
}
}
else {
@@ -473,49 +454,40 @@ static void laplacianDeformPreview(LaplacianSystem *sys, float (*vertexCos)[3])
}
else if (sys->has_solution) {
nlBegin(sys->context, NL_SYSTEM);
nlBegin(sys->context, NL_MATRIX);
for (i = 0; i < n; i++) {
nlRightHandSideSet(sys->context, 0, i, sys->delta[i][0]);
nlRightHandSideSet(sys->context, 1, i, sys->delta[i][1]);
nlRightHandSideSet(sys->context, 2, i, sys->delta[i][2]);
EIG_linear_solver_right_hand_side_add(sys->context, 0, i, sys->delta[i][0]);
EIG_linear_solver_right_hand_side_add(sys->context, 1, i, sys->delta[i][1]);
EIG_linear_solver_right_hand_side_add(sys->context, 2, i, sys->delta[i][2]);
}
for (i = 0; i < na; i++) {
vid = sys->index_anchors[i];
nlRightHandSideSet(sys->context, 0, n + i, vertexCos[vid][0]);
nlRightHandSideSet(sys->context, 1, n + i, vertexCos[vid][1]);
nlRightHandSideSet(sys->context, 2, n + i, vertexCos[vid][2]);
nlMatrixAdd(sys->context, n + i, vid, 1.0f);
EIG_linear_solver_right_hand_side_add(sys->context, 0, n + i, vertexCos[vid][0]);
EIG_linear_solver_right_hand_side_add(sys->context, 1, n + i, vertexCos[vid][1]);
EIG_linear_solver_right_hand_side_add(sys->context, 2, n + i, vertexCos[vid][2]);
EIG_linear_solver_matrix_add(sys->context, n + i, vid, 1.0f);
}
nlEnd(sys->context, NL_MATRIX);
nlEnd(sys->context, NL_SYSTEM);
if (nlSolve(sys->context, NL_FALSE)) {
if (EIG_linear_solver_solve(sys->context)) {
sys->has_solution = true;
for (j = 1; j <= sys->repeat; j++) {
nlBegin(sys->context, NL_SYSTEM);
nlBegin(sys->context, NL_MATRIX);
rotateDifferentialCoordinates(sys);
for (i = 0; i < na; i++) {
vid = sys->index_anchors[i];
nlRightHandSideSet(sys->context, 0, n + i, vertexCos[vid][0]);
nlRightHandSideSet(sys->context, 1, n + i, vertexCos[vid][1]);
nlRightHandSideSet(sys->context, 2, n + i, vertexCos[vid][2]);
EIG_linear_solver_right_hand_side_add(sys->context, 0, n + i, vertexCos[vid][0]);
EIG_linear_solver_right_hand_side_add(sys->context, 1, n + i, vertexCos[vid][1]);
EIG_linear_solver_right_hand_side_add(sys->context, 2, n + i, vertexCos[vid][2]);
}
nlEnd(sys->context, NL_MATRIX);
nlEnd(sys->context, NL_SYSTEM);
if (!nlSolve(sys->context, NL_FALSE)) {
if (!EIG_linear_solver_solve(sys->context)) {
sys->has_solution = false;
break;
}
}
if (sys->has_solution) {
for (vid = 0; vid < sys->total_verts; vid++) {
vertexCos[vid][0] = nlGetVariable(sys->context, 0, vid);
vertexCos[vid][1] = nlGetVariable(sys->context, 1, vid);
vertexCos[vid][2] = nlGetVariable(sys->context, 2, vid);
vertexCos[vid][0] = EIG_linear_solver_variable_get(sys->context, 0, vid);
vertexCos[vid][1] = EIG_linear_solver_variable_get(sys->context, 1, vid);
vertexCos[vid][2] = EIG_linear_solver_variable_get(sys->context, 2, vid);
}
}
else {
@@ -526,10 +498,6 @@ static void laplacianDeformPreview(LaplacianSystem *sys, float (*vertexCos)[3])
sys->has_solution = false;
}
}
#ifdef OPENNL_THREADING_HACK
modifier_opennl_unlock();
#endif
}
static bool isValidVertexGroup(LaplacianDeformModifierData *lmd, Object *ob, DerivedMesh *dm)
@@ -720,15 +688,6 @@ static void LaplacianDeformModifier_do(
}
}
#else /* WITH_OPENNL */
static void LaplacianDeformModifier_do(
LaplacianDeformModifierData *lmd, Object *ob, DerivedMesh *dm,
float (*vertexCos)[3], int numVerts)
{
UNUSED_VARS(lmd, ob, dm, vertexCos, numVerts);
}
#endif /* WITH_OPENNL */
static void initData(ModifierData *md)
{
LaplacianDeformModifierData *lmd = (LaplacianDeformModifierData *)md;
@@ -792,12 +751,10 @@ static void deformVertsEM(
static void freeData(ModifierData *md)
{
LaplacianDeformModifierData *lmd = (LaplacianDeformModifierData *)md;
#ifdef WITH_OPENNL
LaplacianSystem *sys = (LaplacianSystem *)lmd->cache_system;
if (sys) {
deleteLaplacianSystem(sys);
}
#endif
MEM_SAFE_FREE(lmd->vertexco);
lmd->total_verts = 0;
}

View File

@@ -43,9 +43,7 @@
#include "MOD_util.h"
#ifdef WITH_OPENNL
#include "ONL_opennl.h"
#include "eigen_capi.h"
#if 0
#define MOD_LAPLACIANSMOOTH_MAX_EDGE_PERCENTAGE 1.8f
@@ -71,7 +69,7 @@ struct BLaplacianSystem {
const MPoly *mpoly;
const MLoop *mloop;
const MEdge *medges;
NLContext *context;
LinearSolver *context;
/*Data*/
float min_area;
@@ -104,7 +102,7 @@ static void delete_laplacian_system(LaplacianSystem *sys)
MEM_SAFE_FREE(sys->zerola);
if (sys->context) {
nlDeleteContext(sys->context);
EIG_linear_solver_delete(sys->context);
}
sys->vertexCos = NULL;
sys->mpoly = NULL;
@@ -300,16 +298,16 @@ static void fill_laplacian_matrix(LaplacianSystem *sys)
/* Is ring if number of faces == number of edges around vertice*/
if (sys->numNeEd[l_curr->v] == sys->numNeFa[l_curr->v] && sys->zerola[l_curr->v] == 0) {
nlMatrixAdd(sys->context, l_curr->v, l_next->v, sys->fweights[l_curr_index][2] * sys->vweights[l_curr->v]);
nlMatrixAdd(sys->context, l_curr->v, l_prev->v, sys->fweights[l_curr_index][1] * sys->vweights[l_curr->v]);
EIG_linear_solver_matrix_add(sys->context, l_curr->v, l_next->v, sys->fweights[l_curr_index][2] * sys->vweights[l_curr->v]);
EIG_linear_solver_matrix_add(sys->context, l_curr->v, l_prev->v, sys->fweights[l_curr_index][1] * sys->vweights[l_curr->v]);
}
if (sys->numNeEd[l_next->v] == sys->numNeFa[l_next->v] && sys->zerola[l_next->v] == 0) {
nlMatrixAdd(sys->context, l_next->v, l_curr->v, sys->fweights[l_curr_index][2] * sys->vweights[l_next->v]);
nlMatrixAdd(sys->context, l_next->v, l_prev->v, sys->fweights[l_curr_index][0] * sys->vweights[l_next->v]);
EIG_linear_solver_matrix_add(sys->context, l_next->v, l_curr->v, sys->fweights[l_curr_index][2] * sys->vweights[l_next->v]);
EIG_linear_solver_matrix_add(sys->context, l_next->v, l_prev->v, sys->fweights[l_curr_index][0] * sys->vweights[l_next->v]);
}
if (sys->numNeEd[l_prev->v] == sys->numNeFa[l_prev->v] && sys->zerola[l_prev->v] == 0) {
nlMatrixAdd(sys->context, l_prev->v, l_curr->v, sys->fweights[l_curr_index][1] * sys->vweights[l_prev->v]);
nlMatrixAdd(sys->context, l_prev->v, l_next->v, sys->fweights[l_curr_index][0] * sys->vweights[l_prev->v]);
EIG_linear_solver_matrix_add(sys->context, l_prev->v, l_curr->v, sys->fweights[l_curr_index][1] * sys->vweights[l_prev->v]);
EIG_linear_solver_matrix_add(sys->context, l_prev->v, l_next->v, sys->fweights[l_curr_index][0] * sys->vweights[l_prev->v]);
}
}
}
@@ -323,8 +321,8 @@ static void fill_laplacian_matrix(LaplacianSystem *sys)
sys->zerola[idv1] == 0 &&
sys->zerola[idv2] == 0)
{
nlMatrixAdd(sys->context, idv1, idv2, sys->eweights[i] * sys->vlengths[idv1]);
nlMatrixAdd(sys->context, idv2, idv1, sys->eweights[i] * sys->vlengths[idv2]);
EIG_linear_solver_matrix_add(sys->context, idv1, idv2, sys->eweights[i] * sys->vlengths[idv1]);
EIG_linear_solver_matrix_add(sys->context, idv2, idv1, sys->eweights[i] * sys->vlengths[idv2]);
}
}
}
@@ -342,13 +340,13 @@ static void validate_solution(LaplacianSystem *sys, short flag, float lambda, fl
if (sys->zerola[i] == 0) {
lam = sys->numNeEd[i] == sys->numNeFa[i] ? (lambda >= 0.0f ? 1.0f : -1.0f) : (lambda_border >= 0.0f ? 1.0f : -1.0f);
if (flag & MOD_LAPLACIANSMOOTH_X) {
sys->vertexCos[i][0] += lam * ((float)nlGetVariable(sys->context, 0, i) - sys->vertexCos[i][0]);
sys->vertexCos[i][0] += lam * ((float)EIG_linear_solver_variable_get(sys->context, 0, i) - sys->vertexCos[i][0]);
}
if (flag & MOD_LAPLACIANSMOOTH_Y) {
sys->vertexCos[i][1] += lam * ((float)nlGetVariable(sys->context, 1, i) - sys->vertexCos[i][1]);
sys->vertexCos[i][1] += lam * ((float)EIG_linear_solver_variable_get(sys->context, 1, i) - sys->vertexCos[i][1]);
}
if (flag & MOD_LAPLACIANSMOOTH_Z) {
sys->vertexCos[i][2] += lam * ((float)nlGetVariable(sys->context, 2, i) - sys->vertexCos[i][2]);
sys->vertexCos[i][2] += lam * ((float)EIG_linear_solver_variable_get(sys->context, 2, i) - sys->vertexCos[i][2]);
}
}
}
@@ -386,24 +384,15 @@ static void laplaciansmoothModifier_do(
sys->vert_centroid[2] = 0.0f;
memset_laplacian_system(sys, 0);
#ifdef OPENNL_THREADING_HACK
modifier_opennl_lock();
#endif
sys->context = nlNewContext();
nlSolverParameteri(sys->context, NL_NB_VARIABLES, numVerts);
nlSolverParameteri(sys->context, NL_LEAST_SQUARES, NL_TRUE);
nlSolverParameteri(sys->context, NL_NB_ROWS, numVerts);
nlSolverParameteri(sys->context, NL_NB_RIGHT_HAND_SIDES, 3);
sys->context = EIG_linear_least_squares_solver_new(numVerts, numVerts, 3);
init_laplacian_matrix(sys);
for (iter = 0; iter < smd->repeat; iter++) {
nlBegin(sys->context, NL_SYSTEM);
for (i = 0; i < numVerts; i++) {
nlSetVariable(sys->context, 0, i, vertexCos[i][0]);
nlSetVariable(sys->context, 1, i, vertexCos[i][1]);
nlSetVariable(sys->context, 2, i, vertexCos[i][2]);
EIG_linear_solver_variable_set(sys->context, 0, i, vertexCos[i][0]);
EIG_linear_solver_variable_set(sys->context, 1, i, vertexCos[i][1]);
EIG_linear_solver_variable_set(sys->context, 2, i, vertexCos[i][2]);
if (iter == 0) {
add_v3_v3(sys->vert_centroid, vertexCos[i]);
}
@@ -412,12 +401,11 @@ static void laplaciansmoothModifier_do(
mul_v3_fl(sys->vert_centroid, 1.0f / (float)numVerts);
}
nlBegin(sys->context, NL_MATRIX);
dv = dvert;
for (i = 0; i < numVerts; i++) {
nlRightHandSideSet(sys->context, 0, i, vertexCos[i][0]);
nlRightHandSideSet(sys->context, 1, i, vertexCos[i][1]);
nlRightHandSideSet(sys->context, 2, i, vertexCos[i][2]);
EIG_linear_solver_right_hand_side_add(sys->context, 0, i, vertexCos[i][0]);
EIG_linear_solver_right_hand_side_add(sys->context, 1, i, vertexCos[i][1]);
EIG_linear_solver_right_hand_side_add(sys->context, 2, i, vertexCos[i][2]);
if (iter == 0) {
if (dv) {
wpaint = defvert_find_weight(dv, defgrp_index);
@@ -434,10 +422,10 @@ static void laplaciansmoothModifier_do(
w = sys->vlengths[i];
sys->vlengths[i] = (w == 0.0f) ? 0.0f : -fabsf(smd->lambda_border) * wpaint * 2.0f / w;
if (sys->numNeEd[i] == sys->numNeFa[i]) {
nlMatrixAdd(sys->context, i, i, 1.0f + fabsf(smd->lambda) * wpaint);
EIG_linear_solver_matrix_add(sys->context, i, i, 1.0f + fabsf(smd->lambda) * wpaint);
}
else {
nlMatrixAdd(sys->context, i, i, 1.0f + fabsf(smd->lambda_border) * wpaint * 2.0f);
EIG_linear_solver_matrix_add(sys->context, i, i, 1.0f + fabsf(smd->lambda_border) * wpaint * 2.0f);
}
}
else {
@@ -447,15 +435,15 @@ static void laplaciansmoothModifier_do(
sys->vlengths[i] = (w == 0.0f) ? 0.0f : -fabsf(smd->lambda_border) * wpaint * 2.0f / w;
if (sys->numNeEd[i] == sys->numNeFa[i]) {
nlMatrixAdd(sys->context, i, i, 1.0f + fabsf(smd->lambda) * wpaint / (4.0f * sys->ring_areas[i]));
EIG_linear_solver_matrix_add(sys->context, i, i, 1.0f + fabsf(smd->lambda) * wpaint / (4.0f * sys->ring_areas[i]));
}
else {
nlMatrixAdd(sys->context, i, i, 1.0f + fabsf(smd->lambda_border) * wpaint * 2.0f);
EIG_linear_solver_matrix_add(sys->context, i, i, 1.0f + fabsf(smd->lambda_border) * wpaint * 2.0f);
}
}
}
else {
nlMatrixAdd(sys->context, i, i, 1.0f);
EIG_linear_solver_matrix_add(sys->context, i, i, 1.0f);
}
}
}
@@ -464,32 +452,16 @@ static void laplaciansmoothModifier_do(
fill_laplacian_matrix(sys);
}
nlEnd(sys->context, NL_MATRIX);
nlEnd(sys->context, NL_SYSTEM);
if (nlSolve(sys->context, NL_TRUE)) {
if (EIG_linear_solver_solve(sys->context)) {
validate_solution(sys, smd->flag, smd->lambda, smd->lambda_border);
}
}
nlDeleteContext(sys->context);
EIG_linear_solver_delete(sys->context);
sys->context = NULL;
#ifdef OPENNL_THREADING_HACK
modifier_opennl_unlock();
#endif
delete_laplacian_system(sys);
}
#else /* WITH_OPENNL */
static void laplaciansmoothModifier_do(
LaplacianSmoothModifierData *smd, Object *ob, DerivedMesh *dm,
float (*vertexCos)[3], int numVerts)
{
UNUSED_VARS(smd, ob, dm, vertexCos, numVerts);
}
#endif /* WITH_OPENNL */
static void init_data(ModifierData *md)
{
LaplacianSmoothModifierData *smd = (LaplacianSmoothModifierData *) md;

View File

@@ -55,10 +55,6 @@
#include "MEM_guardedalloc.h"
#ifdef OPENNL_THREADING_HACK
#include "BLI_threads.h"
#endif
void modifier_init_texture(const Scene *scene, Tex *tex)
{
if (!tex)
@@ -234,23 +230,6 @@ void modifier_get_vgroup(Object *ob, DerivedMesh *dm, const char *name, MDeformV
}
#ifdef OPENNL_THREADING_HACK
static ThreadMutex opennl_context_mutex = BLI_MUTEX_INITIALIZER;
void modifier_opennl_lock(void)
{
BLI_mutex_lock(&opennl_context_mutex);
}
void modifier_opennl_unlock(void)
{
BLI_mutex_unlock(&opennl_context_mutex);
}
#endif
/* only called by BKE_modifier.h/modifier.c */
void modifier_type_init(ModifierTypeInfo *types[])
{

View File

@@ -52,21 +52,4 @@ struct DerivedMesh *get_dm_for_modifier(struct Object *ob, ModifierApplyFlag fla
void modifier_get_vgroup(struct Object *ob, struct DerivedMesh *dm,
const char *name, struct MDeformVert **dvert, int *defgrp_index);
/* XXX workaround for non-threadsafe context in OpenNL (T38403)
* OpenNL uses global pointer for "current context", which causes
* conflict when multiple modifiers get evaluated in threaded depgraph.
* This is just a stupid hack to prevent assert failure / crash,
* otherwise we'd have to modify OpenNL on a large scale.
* OpenNL should be replaced eventually, there are other options (eigen, ceres).
* - lukas_t
*/
#ifdef WITH_OPENNL
#define OPENNL_THREADING_HACK
#endif
#ifdef OPENNL_THREADING_HACK
void modifier_opennl_lock(void);
void modifier_opennl_unlock(void);
#endif
#endif /* __MOD_UTIL_H__ */

View File

@@ -169,7 +169,6 @@ endif()
extern_recastnavigation
bf_intern_raskter
bf_intern_opencolorio
bf_intern_opennl
bf_intern_glew_mx
bf_intern_eigen
extern_rangetree
@@ -195,8 +194,6 @@ endif()
list(APPEND BLENDER_SORTED_LIBS extern_ceres)
endif()
list(APPEND BLENDER_SORTED_LIBS extern_colamd)
if(WITH_MOD_BOOLEAN)
list(APPEND BLENDER_SORTED_LIBS extern_carve)
endif()