Eigen: fold remaining OpenNL code into intern/eigen.
Differential Revision: https://developer.blender.org/D1662
This commit is contained in:
@@ -35,9 +35,11 @@ set(SRC
|
||||
eigen_capi.h
|
||||
|
||||
intern/eigenvalues.cc
|
||||
intern/linear_solver.cc
|
||||
intern/svd.cc
|
||||
|
||||
intern/eigenvalues.h
|
||||
intern/linear_solver.h
|
||||
intern/svd.h
|
||||
)
|
||||
|
||||
|
||||
@@ -28,6 +28,7 @@
|
||||
#define __EIGEN_C_API_H__
|
||||
|
||||
#include "intern/eigenvalues.h"
|
||||
#include "intern/linear_solver.h"
|
||||
#include "intern/svd.h"
|
||||
|
||||
#endif /* __EIGEN_C_API_H__ */
|
||||
|
||||
@@ -45,7 +45,7 @@ using Eigen::Map;
|
||||
|
||||
using Eigen::Success;
|
||||
|
||||
bool EG3_self_adjoint_eigen_solve(const int size, const float *matrix, float *r_eigen_values, float *r_eigen_vectors)
|
||||
bool EIG_self_adjoint_eigen_solve(const int size, const float *matrix, float *r_eigen_values, float *r_eigen_vectors)
|
||||
{
|
||||
SelfAdjointEigenSolver<MatrixXf> eigen_solver;
|
||||
|
||||
|
||||
@@ -31,7 +31,7 @@
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
bool EG3_self_adjoint_eigen_solve(const int size, const float *matrix, float *r_eigen_values, float *r_eigen_vectors);
|
||||
bool EIG_self_adjoint_eigen_solve(const int size, const float *matrix, float *r_eigen_values, float *r_eigen_vectors);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
|
||||
354
intern/eigen/intern/linear_solver.cc
Normal file
354
intern/eigen/intern/linear_solver.cc
Normal file
@@ -0,0 +1,354 @@
|
||||
/*
|
||||
* Sparse linear solver.
|
||||
* Copyright (C) 2004 Bruno Levy
|
||||
* Copyright (C) 2005-2015 Blender Foundation
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation; either version 2 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program; if not, write to the Free Software
|
||||
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
||||
*
|
||||
* If you modify this software, you should include a notice giving the
|
||||
* name of the person performing the modification, the date of modification,
|
||||
* and the reason for such modification.
|
||||
*/
|
||||
|
||||
#include "linear_solver.h"
|
||||
|
||||
#include <Eigen/Sparse>
|
||||
|
||||
#include <algorithm>
|
||||
#include <cassert>
|
||||
#include <cstdlib>
|
||||
#include <iostream>
|
||||
#include <vector>
|
||||
|
||||
/* Eigen data structures */
|
||||
|
||||
typedef Eigen::SparseMatrix<double, Eigen::ColMajor> EigenSparseMatrix;
|
||||
typedef Eigen::SparseLU<EigenSparseMatrix> EigenSparseLU;
|
||||
typedef Eigen::VectorXd EigenVectorX;
|
||||
typedef Eigen::Triplet<double> EigenTriplet;
|
||||
|
||||
/* Linear Solver data structure */
|
||||
|
||||
struct LinearSolver
|
||||
{
|
||||
struct Coeff
|
||||
{
|
||||
Coeff()
|
||||
{
|
||||
index = 0;
|
||||
value = 0.0;
|
||||
}
|
||||
|
||||
int index;
|
||||
double value;
|
||||
};
|
||||
|
||||
struct Variable
|
||||
{
|
||||
Variable()
|
||||
{
|
||||
memset(value, 0, sizeof(value));
|
||||
locked = false;
|
||||
index = 0;
|
||||
}
|
||||
|
||||
double value[4];
|
||||
bool locked;
|
||||
int index;
|
||||
std::vector<Coeff> a;
|
||||
};
|
||||
|
||||
enum State
|
||||
{
|
||||
STATE_VARIABLES_CONSTRUCT,
|
||||
STATE_MATRIX_CONSTRUCT,
|
||||
STATE_MATRIX_SOLVED
|
||||
};
|
||||
|
||||
LinearSolver(int num_rows_, int num_variables_, int num_rhs_, bool lsq_)
|
||||
{
|
||||
assert(num_variables_ > 0);
|
||||
assert(num_rhs_ <= 4);
|
||||
|
||||
state = STATE_VARIABLES_CONSTRUCT;
|
||||
m = 0;
|
||||
n = 0;
|
||||
sparseLU = NULL;
|
||||
num_variables = num_variables_;
|
||||
num_rhs = num_rhs_;
|
||||
num_rows = num_rows_;
|
||||
least_squares = lsq_;
|
||||
|
||||
variable.resize(num_variables);
|
||||
}
|
||||
|
||||
~LinearSolver()
|
||||
{
|
||||
delete sparseLU;
|
||||
}
|
||||
|
||||
State state;
|
||||
|
||||
int n;
|
||||
int m;
|
||||
|
||||
std::vector<EigenTriplet> Mtriplets;
|
||||
EigenSparseMatrix M;
|
||||
EigenSparseMatrix MtM;
|
||||
std::vector<EigenVectorX> b;
|
||||
std::vector<EigenVectorX> x;
|
||||
|
||||
EigenSparseLU *sparseLU;
|
||||
|
||||
int num_variables;
|
||||
std::vector<Variable> variable;
|
||||
|
||||
int num_rows;
|
||||
int num_rhs;
|
||||
|
||||
bool least_squares;
|
||||
};
|
||||
|
||||
LinearSolver *EIG_linear_solver_new(int num_rows, int num_columns, int num_rhs)
|
||||
{
|
||||
return new LinearSolver(num_rows, num_columns, num_rhs, false);
|
||||
}
|
||||
|
||||
LinearSolver *EIG_linear_least_squares_solver_new(int num_rows, int num_columns, int num_rhs)
|
||||
{
|
||||
return new LinearSolver(num_rows, num_columns, num_rhs, true);
|
||||
}
|
||||
|
||||
void EIG_linear_solver_delete(LinearSolver *solver)
|
||||
{
|
||||
delete solver;
|
||||
}
|
||||
|
||||
/* Variables */
|
||||
|
||||
void EIG_linear_solver_variable_set(LinearSolver *solver, int rhs, int index, double value)
|
||||
{
|
||||
solver->variable[index].value[rhs] = value;
|
||||
}
|
||||
|
||||
double EIG_linear_solver_variable_get(LinearSolver *solver, int rhs, int index)
|
||||
{
|
||||
return solver->variable[index].value[rhs];
|
||||
}
|
||||
|
||||
void EIG_linear_solver_variable_lock(LinearSolver *solver, int index)
|
||||
{
|
||||
if (!solver->variable[index].locked) {
|
||||
assert(solver->state == LinearSolver::STATE_VARIABLES_CONSTRUCT);
|
||||
solver->variable[index].locked = true;
|
||||
}
|
||||
}
|
||||
|
||||
static void linear_solver_variables_to_vector(LinearSolver *solver)
|
||||
{
|
||||
int num_rhs = solver->num_rhs;
|
||||
|
||||
for (int i = 0; i < solver->num_variables; i++) {
|
||||
LinearSolver::Variable* v = &solver->variable[i];
|
||||
if (!v->locked) {
|
||||
for (int j = 0; j < num_rhs; j++)
|
||||
solver->x[j][v->index] = v->value[j];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void linear_solver_vector_to_variables(LinearSolver *solver)
|
||||
{
|
||||
int num_rhs = solver->num_rhs;
|
||||
|
||||
for (int i = 0; i < solver->num_variables; i++) {
|
||||
LinearSolver::Variable* v = &solver->variable[i];
|
||||
if (!v->locked) {
|
||||
for (int j = 0; j < num_rhs; j++)
|
||||
v->value[j] = solver->x[j][v->index];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* Matrix */
|
||||
|
||||
static void linear_solver_ensure_matrix_construct(LinearSolver *solver)
|
||||
{
|
||||
/* transition to matrix construction if necessary */
|
||||
if (solver->state == LinearSolver::STATE_VARIABLES_CONSTRUCT) {
|
||||
int n = 0;
|
||||
|
||||
for (int i = 0; i < solver->num_variables; i++) {
|
||||
if (solver->variable[i].locked)
|
||||
solver->variable[i].index = ~0;
|
||||
else
|
||||
solver->variable[i].index = n++;
|
||||
}
|
||||
|
||||
int m = (solver->num_rows == 0)? n: solver->num_rows;
|
||||
|
||||
solver->m = m;
|
||||
solver->n = n;
|
||||
|
||||
assert(solver->least_squares || m == n);
|
||||
|
||||
/* reserve reasonable estimate */
|
||||
solver->Mtriplets.clear();
|
||||
solver->Mtriplets.reserve(std::max(m, n)*3);
|
||||
|
||||
solver->b.resize(solver->num_rhs);
|
||||
solver->x.resize(solver->num_rhs);
|
||||
|
||||
for (int i = 0; i < solver->num_rhs; i++) {
|
||||
solver->b[i].setZero(m);
|
||||
solver->x[i].setZero(n);
|
||||
}
|
||||
|
||||
linear_solver_variables_to_vector(solver);
|
||||
|
||||
solver->state = LinearSolver::STATE_MATRIX_CONSTRUCT;
|
||||
}
|
||||
}
|
||||
|
||||
void EIG_linear_solver_matrix_add(LinearSolver *solver, int row, int col, double value)
|
||||
{
|
||||
if (solver->state == LinearSolver::STATE_MATRIX_SOLVED)
|
||||
return;
|
||||
|
||||
linear_solver_ensure_matrix_construct(solver);
|
||||
|
||||
if (!solver->least_squares && solver->variable[row].locked);
|
||||
else if (solver->variable[col].locked) {
|
||||
if (!solver->least_squares)
|
||||
row = solver->variable[row].index;
|
||||
|
||||
LinearSolver::Coeff coeff;
|
||||
coeff.index = row;
|
||||
coeff.value = value;
|
||||
solver->variable[col].a.push_back(coeff);
|
||||
}
|
||||
else {
|
||||
if (!solver->least_squares)
|
||||
row = solver->variable[row].index;
|
||||
col = solver->variable[col].index;
|
||||
|
||||
/* direct insert into matrix is too slow, so use triplets */
|
||||
EigenTriplet triplet(row, col, value);
|
||||
solver->Mtriplets.push_back(triplet);
|
||||
}
|
||||
}
|
||||
|
||||
/* Right hand side */
|
||||
|
||||
void EIG_linear_solver_right_hand_side_add(LinearSolver *solver, int rhs, int index, double value)
|
||||
{
|
||||
linear_solver_ensure_matrix_construct(solver);
|
||||
|
||||
if (solver->least_squares) {
|
||||
solver->b[rhs][index] += value;
|
||||
}
|
||||
else if (!solver->variable[index].locked) {
|
||||
index = solver->variable[index].index;
|
||||
solver->b[rhs][index] += value;
|
||||
}
|
||||
}
|
||||
|
||||
/* Solve */
|
||||
|
||||
bool EIG_linear_solver_solve(LinearSolver *solver)
|
||||
{
|
||||
bool result = true;
|
||||
|
||||
assert(solver->state != LinearSolver::STATE_VARIABLES_CONSTRUCT);
|
||||
|
||||
if (solver->state == LinearSolver::STATE_MATRIX_CONSTRUCT) {
|
||||
/* create matrix from triplets */
|
||||
solver->M.resize(solver->m, solver->n);
|
||||
solver->M.setFromTriplets(solver->Mtriplets.begin(), solver->Mtriplets.end());
|
||||
solver->Mtriplets.clear();
|
||||
|
||||
/* create least squares matrix */
|
||||
if (solver->least_squares)
|
||||
solver->MtM = solver->M.transpose() * solver->M;
|
||||
|
||||
/* convert M to compressed column format */
|
||||
EigenSparseMatrix& M = (solver->least_squares)? solver->MtM: solver->M;
|
||||
M.makeCompressed();
|
||||
|
||||
/* perform sparse LU factorization */
|
||||
EigenSparseLU *sparseLU = new EigenSparseLU();
|
||||
solver->sparseLU = sparseLU;
|
||||
|
||||
sparseLU->compute(M);
|
||||
result = (sparseLU->info() == Eigen::Success);
|
||||
|
||||
solver->state = LinearSolver::STATE_MATRIX_SOLVED;
|
||||
}
|
||||
|
||||
if (result) {
|
||||
/* solve for each right hand side */
|
||||
for (int rhs = 0; rhs < solver->num_rhs; rhs++) {
|
||||
/* modify for locked variables */
|
||||
EigenVectorX& b = solver->b[rhs];
|
||||
|
||||
for (int i = 0; i < solver->num_variables; i++) {
|
||||
LinearSolver::Variable *variable = &solver->variable[i];
|
||||
|
||||
if (variable->locked) {
|
||||
std::vector<LinearSolver::Coeff>& a = variable->a;
|
||||
|
||||
for (int j = 0; j < a.size(); j++)
|
||||
b[a[j].index] -= a[j].value*variable->value[rhs];
|
||||
}
|
||||
}
|
||||
|
||||
/* solve */
|
||||
if (solver->least_squares) {
|
||||
EigenVectorX Mtb = solver->M.transpose() * b;
|
||||
solver->x[rhs] = solver->sparseLU->solve(Mtb);
|
||||
}
|
||||
else {
|
||||
EigenVectorX& b = solver->b[rhs];
|
||||
solver->x[rhs] = solver->sparseLU->solve(b);
|
||||
}
|
||||
|
||||
if (solver->sparseLU->info() != Eigen::Success)
|
||||
result = false;
|
||||
}
|
||||
|
||||
if (result)
|
||||
linear_solver_vector_to_variables(solver);
|
||||
}
|
||||
|
||||
/* clear for next solve */
|
||||
for (int rhs = 0; rhs < solver->num_rhs; rhs++)
|
||||
solver->b[rhs].setZero(solver->m);
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
/* Debugging */
|
||||
|
||||
void EIG_linear_solver_print_matrix(LinearSolver *solver)
|
||||
{
|
||||
std::cout << "A:" << solver->M << std::endl;
|
||||
|
||||
for (int rhs = 0; rhs < solver->num_rhs; rhs++)
|
||||
std::cout << "b " << rhs << ":" << solver->b[rhs] << std::endl;
|
||||
|
||||
if (solver->MtM.rows() && solver->MtM.cols())
|
||||
std::cout << "AtA:" << solver->MtM << std::endl;
|
||||
}
|
||||
|
||||
71
intern/eigen/intern/linear_solver.h
Normal file
71
intern/eigen/intern/linear_solver.h
Normal file
@@ -0,0 +1,71 @@
|
||||
/*
|
||||
* Sparse linear solver.
|
||||
* Copyright (C) 2004 Bruno Levy
|
||||
* Copyright (C) 2005-2015 Blender Foundation
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation; either version 2 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program; if not, write to the Free Software
|
||||
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
||||
*
|
||||
* If you modify this software, you should include a notice giving the
|
||||
* name of the person performing the modification, the date of modification,
|
||||
* and the reason for such modification.
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <stdbool.h>
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
/* Solvers for Ax = b and AtAx = Atb */
|
||||
|
||||
typedef struct LinearSolver LinearSolver;
|
||||
|
||||
LinearSolver *EIG_linear_solver_new(
|
||||
int num_rows,
|
||||
int num_columns,
|
||||
int num_right_hand_sides);
|
||||
|
||||
LinearSolver *EIG_linear_least_squares_solver_new(
|
||||
int num_rows,
|
||||
int num_columns,
|
||||
int num_right_hand_sides);
|
||||
|
||||
void EIG_linear_solver_delete(LinearSolver *solver);
|
||||
|
||||
/* Variables (x). Any locking must be done before matrix construction. */
|
||||
|
||||
void EIG_linear_solver_variable_set(LinearSolver *solver, int rhs, int index, double value);
|
||||
double EIG_linear_solver_variable_get(LinearSolver *solver, int rhs, int index);
|
||||
void EIG_linear_solver_variable_lock(LinearSolver *solver, int index);
|
||||
|
||||
/* Matrix (A) and right hand side (b) */
|
||||
|
||||
void EIG_linear_solver_matrix_add(LinearSolver *solver, int row, int col, double value);
|
||||
void EIG_linear_solver_right_hand_side_add(LinearSolver *solver, int rhs, int index, double value);
|
||||
|
||||
/* Solve. Repeated solves are supported, by changing b between solves. */
|
||||
|
||||
bool EIG_linear_solver_solve(LinearSolver *solver);
|
||||
|
||||
/* Debugging */
|
||||
|
||||
void EIG_linear_solver_print_matrix(LinearSolver *solver);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
@@ -48,7 +48,7 @@ using Eigen::MatrixXf;
|
||||
using Eigen::VectorXf;
|
||||
using Eigen::Map;
|
||||
|
||||
void EG3_svd_square_matrix(const int size, const float *matrix, float *r_U, float *r_S, float *r_V)
|
||||
void EIG_svd_square_matrix(const int size, const float *matrix, float *r_U, float *r_S, float *r_V)
|
||||
{
|
||||
/* Since our matrix is squared, we can use thinU/V. */
|
||||
unsigned int flags = (r_U ? ComputeThinU : 0) | (r_V ? ComputeThinV : 0);
|
||||
|
||||
@@ -31,7 +31,7 @@
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
void EG3_svd_square_matrix(const int size, const float *matrix, float *r_U, float *r_S, float *r_V);
|
||||
void EIG_svd_square_matrix(const int size, const float *matrix, float *r_U, float *r_S, float *r_V);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user