Files
test2/source/blender/blenkernel/BKE_attribute_math.hh
Brecht Van Lommel ffa4f8c7ad Refactor: Split off lighter BLI_color_types.hh from BLI_color.hh
Functions for convert between the color types and ostream support are
now outside the classes.

Many files were changed to fix cases where direct includes for headers
were missing.

Pull Request: https://projects.blender.org/blender/blender/pulls/145756
2025-09-05 11:11:32 +02:00

718 lines
22 KiB
C++

/* SPDX-FileCopyrightText: 2023 Blender Authors
*
* SPDX-License-Identifier: GPL-2.0-or-later */
/** \file
* \ingroup bke
*/
#pragma once
#include "BLI_array.hh"
#include "BLI_color_types.hh"
#include "BLI_cpp_type.hh"
#include "BLI_generic_span.hh"
#include "BLI_math_axis_angle.hh"
#include "BLI_math_color.hh"
#include "BLI_math_quaternion.hh"
#include "BLI_math_vector.h"
#include "BLI_math_vector.hh"
#include "BLI_offset_indices.hh"
#include "BKE_attribute.hh"
namespace blender {
class GVArray;
}
namespace blender::bke::attribute_math {
/**
* Utility function that simplifies calling a templated function based on a run-time data type.
*/
template<typename Func>
inline void convert_to_static_type(const CPPType &cpp_type, const Func &func)
{
cpp_type.to_static_type_tag<float,
float2,
float3,
int,
int2,
bool,
int8_t,
short2,
ColorGeometry4f,
ColorGeometry4b,
math::Quaternion,
float4x4>([&](auto type_tag) {
using T = typename decltype(type_tag)::type;
if constexpr (std::is_same_v<T, void>) {
/* It's expected that the given cpp type is one of the supported ones. */
BLI_assert_unreachable();
}
else {
func(T());
}
});
}
template<typename Func>
inline void convert_to_static_type(const bke::AttrType data_type, const Func &func)
{
const CPPType &cpp_type = bke::attribute_type_to_cpp_type(data_type);
convert_to_static_type(cpp_type, func);
}
/* -------------------------------------------------------------------- */
/** \name Mix two values of the same type.
*
* This is just basic linear interpolation.
* \{ */
template<typename T> T mix2(float factor, const T &a, const T &b);
template<> inline bool mix2(const float factor, const bool &a, const bool &b)
{
return ((1.0f - factor) * a + factor * b) >= 0.5f;
}
template<> inline int8_t mix2(const float factor, const int8_t &a, const int8_t &b)
{
return int8_t(std::round((1.0f - factor) * a + factor * b));
}
template<> inline int mix2(const float factor, const int &a, const int &b)
{
return int(std::round((1.0f - factor) * a + factor * b));
}
template<> inline short2 mix2(const float factor, const short2 &a, const short2 &b)
{
return math::interpolate(a, b, factor);
}
template<> inline int2 mix2(const float factor, const int2 &a, const int2 &b)
{
return math::interpolate(a, b, factor);
}
template<> inline float mix2(const float factor, const float &a, const float &b)
{
return (1.0f - factor) * a + factor * b;
}
template<> inline float2 mix2(const float factor, const float2 &a, const float2 &b)
{
return math::interpolate(a, b, factor);
}
template<> inline float3 mix2(const float factor, const float3 &a, const float3 &b)
{
return math::interpolate(a, b, factor);
}
template<>
inline ColorGeometry4f mix2(const float factor, const ColorGeometry4f &a, const ColorGeometry4f &b)
{
return math::interpolate(a, b, factor);
}
template<>
inline ColorGeometry4b mix2(const float factor, const ColorGeometry4b &a, const ColorGeometry4b &b)
{
return math::interpolate(a, b, factor);
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Mix three values of the same type.
*
* This is typically used to interpolate values within a triangle.
* \{ */
template<typename T> T mix3(const float3 &weights, const T &v0, const T &v1, const T &v2);
template<>
inline int8_t mix3(const float3 &weights, const int8_t &v0, const int8_t &v1, const int8_t &v2)
{
return int8_t(std::round(weights.x * v0 + weights.y * v1 + weights.z * v2));
}
template<> inline bool mix3(const float3 &weights, const bool &v0, const bool &v1, const bool &v2)
{
return (weights.x * v0 + weights.y * v1 + weights.z * v2) >= 0.5f;
}
template<> inline int mix3(const float3 &weights, const int &v0, const int &v1, const int &v2)
{
return int(std::round(weights.x * v0 + weights.y * v1 + weights.z * v2));
}
template<>
inline short2 mix3(const float3 &weights, const short2 &v0, const short2 &v1, const short2 &v2)
{
return short2(weights.x * float2(v0) + weights.y * float2(v1) + weights.z * float2(v2));
}
template<> inline int2 mix3(const float3 &weights, const int2 &v0, const int2 &v1, const int2 &v2)
{
return int2(weights.x * float2(v0) + weights.y * float2(v1) + weights.z * float2(v2));
}
template<>
inline float mix3(const float3 &weights, const float &v0, const float &v1, const float &v2)
{
return weights.x * v0 + weights.y * v1 + weights.z * v2;
}
template<>
inline float2 mix3(const float3 &weights, const float2 &v0, const float2 &v1, const float2 &v2)
{
return weights.x * v0 + weights.y * v1 + weights.z * v2;
}
template<>
inline float3 mix3(const float3 &weights, const float3 &v0, const float3 &v1, const float3 &v2)
{
return weights.x * v0 + weights.y * v1 + weights.z * v2;
}
template<>
inline ColorGeometry4f mix3(const float3 &weights,
const ColorGeometry4f &v0,
const ColorGeometry4f &v1,
const ColorGeometry4f &v2)
{
ColorGeometry4f result;
interp_v4_v4v4v4(result, v0, v1, v2, weights);
return result;
}
template<>
inline ColorGeometry4b mix3(const float3 &weights,
const ColorGeometry4b &v0,
const ColorGeometry4b &v1,
const ColorGeometry4b &v2)
{
const float4 v0_f{&v0.r};
const float4 v1_f{&v1.r};
const float4 v2_f{&v2.r};
const float4 mixed = v0_f * weights[0] + v1_f * weights[1] + v2_f * weights[2];
return ColorGeometry4b{
uint8_t(mixed[0]), uint8_t(mixed[1]), uint8_t(mixed[2]), uint8_t(mixed[3])};
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Mix four values of the same type.
*
* \{ */
template<typename T>
T mix4(const float4 &weights, const T &v0, const T &v1, const T &v2, const T &v3);
template<>
inline int8_t mix4(
const float4 &weights, const int8_t &v0, const int8_t &v1, const int8_t &v2, const int8_t &v3)
{
return int8_t(std::round(weights.x * v0 + weights.y * v1 + weights.z * v2 + weights.w * v3));
}
template<>
inline bool mix4(
const float4 &weights, const bool &v0, const bool &v1, const bool &v2, const bool &v3)
{
return (weights.x * v0 + weights.y * v1 + weights.z * v2 + weights.w * v3) >= 0.5f;
}
template<>
inline int mix4(const float4 &weights, const int &v0, const int &v1, const int &v2, const int &v3)
{
return int(std::round(weights.x * v0 + weights.y * v1 + weights.z * v2 + weights.w * v3));
}
template<>
inline short2 mix4(
const float4 &weights, const short2 &v0, const short2 &v1, const short2 &v2, const short2 &v3)
{
return short2(weights.x * float2(v0) + weights.y * float2(v1) + weights.z * float2(v2) +
weights.w * float2(v3));
}
template<>
inline int2 mix4(
const float4 &weights, const int2 &v0, const int2 &v1, const int2 &v2, const int2 &v3)
{
return int2(weights.x * float2(v0) + weights.y * float2(v1) + weights.z * float2(v2) +
weights.w * float2(v3));
}
template<>
inline float mix4(
const float4 &weights, const float &v0, const float &v1, const float &v2, const float &v3)
{
return weights.x * v0 + weights.y * v1 + weights.z * v2 + weights.w * v3;
}
template<>
inline float2 mix4(
const float4 &weights, const float2 &v0, const float2 &v1, const float2 &v2, const float2 &v3)
{
return weights.x * v0 + weights.y * v1 + weights.z * v2 + weights.w * v3;
}
template<>
inline float3 mix4(
const float4 &weights, const float3 &v0, const float3 &v1, const float3 &v2, const float3 &v3)
{
return weights.x * v0 + weights.y * v1 + weights.z * v2 + weights.w * v3;
}
template<>
inline ColorGeometry4f mix4(const float4 &weights,
const ColorGeometry4f &v0,
const ColorGeometry4f &v1,
const ColorGeometry4f &v2,
const ColorGeometry4f &v3)
{
ColorGeometry4f result;
interp_v4_v4v4v4v4(result, v0, v1, v2, v3, weights);
return result;
}
template<>
inline ColorGeometry4b mix4(const float4 &weights,
const ColorGeometry4b &v0,
const ColorGeometry4b &v1,
const ColorGeometry4b &v2,
const ColorGeometry4b &v3)
{
const float4 v0_f{&v0.r};
const float4 v1_f{&v1.r};
const float4 v2_f{&v2.r};
const float4 v3_f{&v3.r};
float4 mixed;
interp_v4_v4v4v4v4(mixed, v0_f, v1_f, v2_f, v3_f, weights);
return ColorGeometry4b{
uint8_t(mixed[0]), uint8_t(mixed[1]), uint8_t(mixed[2]), uint8_t(mixed[3])};
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Mix a dynamic amount of values with weights for many elements.
*
* This section provides an abstraction for "mixers". The abstraction encapsulates details about
* how different types should be mixed. Usually #DefaultMixer<T> should be used to get a mixer for
* a specific type.
* \{ */
template<typename T> class SimpleMixer {
private:
MutableSpan<T> buffer_;
T default_value_;
Array<float> total_weights_;
public:
/**
* \param buffer: Span where the interpolated values should be stored.
* \param default_value: Output value for an element that has not been affected by a #mix_in.
*/
SimpleMixer(MutableSpan<T> buffer, T default_value = {})
: SimpleMixer(buffer, buffer.index_range(), default_value)
{
}
/**
* \param mask: Only initialize these indices. Other indices in the buffer will be invalid.
*/
SimpleMixer(MutableSpan<T> buffer, const IndexMask &mask, T default_value = {})
: buffer_(buffer), default_value_(default_value), total_weights_(buffer.size(), 0.0f)
{
BLI_STATIC_ASSERT(std::is_trivial_v<T>, "");
mask.foreach_index([&](const int64_t i) { buffer_[i] = default_value_; });
}
/**
* Set a #value into the element with the given #index.
*/
void set(const int64_t index, const T &value, const float weight = 1.0f)
{
buffer_[index] = value * weight;
total_weights_[index] = weight;
}
/**
* Mix a #value into the element with the given #index.
*/
void mix_in(const int64_t index, const T &value, const float weight = 1.0f)
{
buffer_[index] += value * weight;
total_weights_[index] += weight;
}
/**
* Has to be called before the buffer provided in the constructor is used.
*/
void finalize()
{
this->finalize(IndexMask(buffer_.size()));
}
void finalize(const IndexMask &mask)
{
mask.foreach_index([&](const int64_t i) {
const float weight = total_weights_[i];
if (weight > 0.0f) {
buffer_[i] *= 1.0f / weight;
}
else {
buffer_[i] = default_value_;
}
});
}
};
/**
* Mixes together booleans with "or" while fitting the same interface as the other
* mixers in order to be simpler to use. This mixing method has a few benefits:
* - An "average" for selections is relatively meaningless.
* - Predictable selection propagation is very super important.
* - It's generally easier to remove an element from a selection that is slightly too large than
* the opposite.
*/
class BooleanPropagationMixer {
private:
MutableSpan<bool> buffer_;
public:
/**
* \param buffer: Span where the interpolated values should be stored.
*/
BooleanPropagationMixer(MutableSpan<bool> buffer)
: BooleanPropagationMixer(buffer, buffer.index_range())
{
}
/**
* \param mask: Only initialize these indices. Other indices in the buffer will be invalid.
*/
BooleanPropagationMixer(MutableSpan<bool> buffer, const IndexMask &mask) : buffer_(buffer)
{
mask.foreach_index([&](const int64_t i) { buffer_[i] = false; });
}
/**
* Set a #value into the element with the given #index.
*/
void set(const int64_t index, const bool value, [[maybe_unused]] const float weight = 1.0f)
{
buffer_[index] = value;
}
/**
* Mix a #value into the element with the given #index.
*/
void mix_in(const int64_t index, const bool value, [[maybe_unused]] const float weight = 1.0f)
{
buffer_[index] |= value;
}
/**
* Does not do anything, since the mixing is trivial.
*/
void finalize() {}
void finalize(const IndexMask & /*mask*/) {}
};
/**
* This mixer accumulates values in a type that is different from the one that is mixed.
* Some types cannot encode the floating point weights in their values (e.g. int and bool).
*/
template<typename T,
typename AccumulationT,
AccumulationT (*ValueToAccumulate)(const T &value),
T (*AccumulateToValue)(const AccumulationT &value)>
class SimpleMixerWithAccumulationType {
private:
struct Item {
/* Store both values together, because they are accessed together. */
AccumulationT value = AccumulationT(0);
float weight = 0.0f;
};
MutableSpan<T> buffer_;
T default_value_;
Array<Item> accumulation_buffer_;
public:
SimpleMixerWithAccumulationType(MutableSpan<T> buffer, T default_value = {})
: SimpleMixerWithAccumulationType(buffer, buffer.index_range(), default_value)
{
}
/**
* \param mask: Only initialize these indices. Other indices in the buffer will be invalid.
*/
SimpleMixerWithAccumulationType(MutableSpan<T> buffer,
const IndexMask &mask,
T default_value = {})
: buffer_(buffer), default_value_(default_value), accumulation_buffer_(buffer.size())
{
mask.foreach_index([&](const int64_t index) { buffer_[index] = default_value_; });
}
void set(const int64_t index, const T &value, const float weight = 1.0f)
{
const AccumulationT converted_value = ValueToAccumulate(value);
Item &item = accumulation_buffer_[index];
item.value = converted_value * weight;
item.weight = weight;
}
void mix_in(const int64_t index, const T &value, const float weight = 1.0f)
{
const AccumulationT converted_value = ValueToAccumulate(value);
Item &item = accumulation_buffer_[index];
item.value += converted_value * weight;
item.weight += weight;
}
void finalize()
{
this->finalize(buffer_.index_range());
}
void finalize(const IndexMask &mask)
{
mask.foreach_index([&](const int64_t i) {
const Item &item = accumulation_buffer_[i];
if (item.weight > 0.0f) {
const float weight_inv = 1.0f / item.weight;
const T converted_value = AccumulateToValue(item.value * weight_inv);
buffer_[i] = converted_value;
}
else {
buffer_[i] = default_value_;
}
});
}
};
class ColorGeometry4fMixer {
private:
MutableSpan<ColorGeometry4f> buffer_;
ColorGeometry4f default_color_;
Array<float> total_weights_;
public:
ColorGeometry4fMixer(MutableSpan<ColorGeometry4f> buffer,
ColorGeometry4f default_color = ColorGeometry4f(0.0f, 0.0f, 0.0f, 1.0f));
/**
* \param mask: Only initialize these indices. Other indices in the buffer will be invalid.
*/
ColorGeometry4fMixer(MutableSpan<ColorGeometry4f> buffer,
const IndexMask &mask,
ColorGeometry4f default_color = ColorGeometry4f(0.0f, 0.0f, 0.0f, 1.0f));
void set(int64_t index, const ColorGeometry4f &color, float weight = 1.0f);
void mix_in(int64_t index, const ColorGeometry4f &color, float weight = 1.0f);
void finalize();
void finalize(const IndexMask &mask);
};
class ColorGeometry4bMixer {
private:
MutableSpan<ColorGeometry4b> buffer_;
ColorGeometry4b default_color_;
Array<float> total_weights_;
Array<float4> accumulation_buffer_;
public:
ColorGeometry4bMixer(MutableSpan<ColorGeometry4b> buffer,
ColorGeometry4b default_color = ColorGeometry4b(0, 0, 0, 255));
/**
* \param mask: Only initialize these indices. Other indices in the buffer will be invalid.
*/
ColorGeometry4bMixer(MutableSpan<ColorGeometry4b> buffer,
const IndexMask &mask,
ColorGeometry4b default_color = ColorGeometry4b(0, 0, 0, 255));
void set(int64_t index, const ColorGeometry4b &color, float weight = 1.0f);
void mix_in(int64_t index, const ColorGeometry4b &color, float weight = 1.0f);
void finalize();
void finalize(const IndexMask &mask);
};
class float4x4Mixer {
private:
MutableSpan<float4x4> buffer_;
Array<float> total_weights_;
Array<float3> location_buffer_;
Array<float3> expmap_buffer_;
Array<float3> scale_buffer_;
public:
float4x4Mixer(MutableSpan<float4x4> buffer);
/**
* \param mask: Only initialize these indices. Other indices in the buffer will be invalid.
*/
float4x4Mixer(MutableSpan<float4x4> buffer, const IndexMask &mask);
void set(int64_t index, const float4x4 &value, float weight = 1.0f);
void mix_in(int64_t index, const float4x4 &value, float weight = 1.0f);
void finalize();
void finalize(const IndexMask &mask);
};
template<typename T> struct DefaultMixerStruct {
/* Use void by default. This can be checked for in `if constexpr` statements. */
using type = void;
};
template<> struct DefaultMixerStruct<float> {
using type = SimpleMixer<float>;
};
template<> struct DefaultMixerStruct<float2> {
using type = SimpleMixer<float2>;
};
template<> struct DefaultMixerStruct<float3> {
using type = SimpleMixer<float3>;
};
template<> struct DefaultMixerStruct<ColorGeometry4f> {
/* Use a special mixer for colors. ColorGeometry4f can't be added/multiplied, because this is not
* something one should usually do with colors. */
using type = ColorGeometry4fMixer;
};
template<> struct DefaultMixerStruct<ColorGeometry4b> {
using type = ColorGeometry4bMixer;
};
template<> struct DefaultMixerStruct<float4x4> {
using type = float4x4Mixer;
};
template<> struct DefaultMixerStruct<int> {
static double int_to_double(const int &value)
{
return double(value);
}
static int double_to_int(const double &value)
{
return int(std::round(value));
}
/* Store interpolated ints in a double temporarily, so that weights are handled correctly. It
* uses double instead of float so that it is accurate for all 32 bit integers. */
using type = SimpleMixerWithAccumulationType<int, double, int_to_double, double_to_int>;
};
template<> struct DefaultMixerStruct<short2> {
static float2 int_to_float(const short2 &value)
{
return float2(value);
}
static short2 float_to_int(const float2 &value)
{
return short2(math::round(value));
}
using type = SimpleMixerWithAccumulationType<short2, float2, int_to_float, float_to_int>;
};
template<> struct DefaultMixerStruct<int2> {
static double2 int_to_double(const int2 &value)
{
return double2(value);
}
static int2 double_to_int(const double2 &value)
{
return int2(math::round(value));
}
/* Store interpolated ints in a double temporarily, so that weights are handled correctly. It
* uses double instead of float so that it is accurate for all 32 bit integers. */
using type = SimpleMixerWithAccumulationType<int2, double2, int_to_double, double_to_int>;
};
template<> struct DefaultMixerStruct<bool> {
static float bool_to_float(const bool &value)
{
return value ? 1.0f : 0.0f;
}
static bool float_to_bool(const float &value)
{
return value >= 0.5f;
}
/* Store interpolated booleans in a float temporary.
* Otherwise information provided by weights is easily rounded away. */
using type = SimpleMixerWithAccumulationType<bool, float, bool_to_float, float_to_bool>;
};
template<> struct DefaultMixerStruct<int8_t> {
static float int8_t_to_float(const int8_t &value)
{
return float(value);
}
static int8_t float_to_int8_t(const float &value)
{
return int8_t(std::round(value));
}
/* Store interpolated 8 bit integers in a float temporarily to increase accuracy. */
using type = SimpleMixerWithAccumulationType<int8_t, float, int8_t_to_float, float_to_int8_t>;
};
template<> struct DefaultMixerStruct<math::Quaternion> {
static float3 quat_to_expmap(const math::Quaternion &value)
{
return value.expmap();
}
static math::Quaternion expmap_to_quat(const float3 &value)
{
return math::Quaternion::expmap(value);
}
using type =
SimpleMixerWithAccumulationType<math::Quaternion, float3, quat_to_expmap, expmap_to_quat>;
};
template<typename T> struct DefaultPropagationMixerStruct {
/* Use void by default. This can be checked for in `if constexpr` statements. */
using type = typename DefaultMixerStruct<T>::type;
};
template<> struct DefaultPropagationMixerStruct<bool> {
using type = BooleanPropagationMixer;
};
/**
* This mixer is meant for propagating attributes when creating new geometry. A key difference
* with the default mixer is that booleans are mixed with "or" instead of "at least half"
* (the default mixing for booleans).
*/
template<typename T>
using DefaultPropagationMixer = typename DefaultPropagationMixerStruct<T>::type;
/* Utility to get a good default mixer for a given type. This is `void` when there is no default
* mixer for the given type. */
template<typename T> using DefaultMixer = typename DefaultMixerStruct<T>::type;
/** \} */
/* -------------------------------------------------------------------- */
/** \name Generic Array Utils Implementations
*
* Extra implementations of functions from #BLI_array_utils.hh for all attribute types,
* used to avoid templating the same logic for each type in many places.
* \{ */
void gather(GSpan src, Span<int> map, GMutableSpan dst);
void gather(const GVArray &src, Span<int> map, GMutableSpan dst);
void gather_group_to_group(OffsetIndices<int> src_offsets,
OffsetIndices<int> dst_offsets,
const IndexMask &selection,
GSpan src,
GMutableSpan dst);
void gather_to_groups(OffsetIndices<int> dst_offsets,
const IndexMask &src_selection,
GSpan src,
GMutableSpan dst);
void gather_ranges_to_groups(Span<IndexRange> src_ranges,
OffsetIndices<int> dst_offsets,
GSpan src,
GMutableSpan dst);
/** \} */
} // namespace blender::bke::attribute_math