Previously spell checker ignored text in single quotes however this meant incorrect spelling was ignored in text where it shouldn't have been. In cases single quotes were used for literal strings (such as variables, code & compiler flags), replace these with back-ticks. In cases they were used for UI labels, replace these with double quotes. In cases they were used to reference symbols, replace them with doxygens symbol link syntax (leading hash). Apply some spelling corrections & tweaks (for check_spelling_* targets).
1395 lines
52 KiB
C
1395 lines
52 KiB
C
/* SPDX-FileCopyrightText: 2001-2002 NaN Holding BV. All rights reserved.
|
|
*
|
|
* SPDX-License-Identifier: GPL-2.0-or-later */
|
|
|
|
#pragma once
|
|
|
|
/** \file
|
|
* \ingroup bli
|
|
*/
|
|
|
|
#include "BLI_compiler_attrs.h"
|
|
#include "BLI_math_inline.h"
|
|
|
|
#ifdef BLI_MATH_GCC_WARN_PRAGMA
|
|
# pragma GCC diagnostic push
|
|
# pragma GCC diagnostic ignored "-Wredundant-decls"
|
|
#endif
|
|
|
|
/* -------------------------------------------------------------------- */
|
|
/** \name Polygons
|
|
* \{ */
|
|
|
|
float normal_tri_v3(float n[3], const float v1[3], const float v2[3], const float v3[3]);
|
|
float normal_quad_v3(
|
|
float n[3], const float v1[3], const float v2[3], const float v3[3], const float v4[3]);
|
|
/**
|
|
* Computes the normal of a planar polygon See Graphics Gems for computing newell normal.
|
|
*/
|
|
float normal_poly_v3(float n[3], const float verts[][3], unsigned int nr);
|
|
|
|
MINLINE float area_tri_v2(const float v1[2], const float v2[2], const float v3[2]);
|
|
MINLINE float area_squared_tri_v2(const float v1[2], const float v2[2], const float v3[2]);
|
|
MINLINE float area_tri_signed_v2(const float v1[2], const float v2[2], const float v3[2]);
|
|
|
|
/* Triangles */
|
|
|
|
float area_tri_v3(const float v1[3], const float v2[3], const float v3[3]);
|
|
float area_squared_tri_v3(const float v1[3], const float v2[3], const float v3[3]);
|
|
float area_tri_signed_v3(const float v1[3],
|
|
const float v2[3],
|
|
const float v3[3],
|
|
const float normal[3]);
|
|
float area_quad_v3(const float v1[3], const float v2[3], const float v3[3], const float v4[3]);
|
|
float area_squared_quad_v3(const float v1[3],
|
|
const float v2[3],
|
|
const float v3[3],
|
|
const float v4[3]);
|
|
float area_poly_v3(const float verts[][3], unsigned int nr);
|
|
float area_poly_v2(const float verts[][2], unsigned int nr);
|
|
float area_squared_poly_v3(const float verts[][3], unsigned int nr);
|
|
float area_squared_poly_v2(const float verts[][2], unsigned int nr);
|
|
float area_poly_signed_v2(const float verts[][2], unsigned int nr);
|
|
float cotangent_tri_weight_v3(const float v1[3], const float v2[3], const float v3[3]);
|
|
|
|
void cross_tri_v3(float n[3], const float v1[3], const float v2[3], const float v3[3]);
|
|
/**
|
|
* Scalar cross product of a 2D triangle.
|
|
*
|
|
* - Equivalent to `area * 2`.
|
|
* - Useful for checking polygon winding (a negative value is clockwise).
|
|
*/
|
|
MINLINE float cross_tri_v2(const float v1[2], const float v2[2], const float v3[2]);
|
|
void cross_poly_v3(float n[3], const float verts[][3], unsigned int nr);
|
|
/**
|
|
* Scalar cross product of a 2D polygon.
|
|
*
|
|
* - Equivalent to `area * 2`.
|
|
* - Useful for checking polygon winding (a negative value is clockwise).
|
|
*/
|
|
float cross_poly_v2(const float verts[][2], unsigned int nr);
|
|
|
|
/** \} */
|
|
|
|
/* -------------------------------------------------------------------- */
|
|
/** \name Planes
|
|
* \{ */
|
|
|
|
/**
|
|
* Calculate a plane from a point and a direction,
|
|
* \note \a point_no isn't required to be normalized.
|
|
*/
|
|
void plane_from_point_normal_v3(float r_plane[4],
|
|
const float plane_co[3],
|
|
const float plane_no[3]);
|
|
/**
|
|
* Get a point and a direction from a plane.
|
|
*/
|
|
void plane_to_point_vector_v3(const float plane[4], float r_plane_co[3], float r_plane_no[3]);
|
|
/**
|
|
* Version of #plane_to_point_vector_v3 that gets a unit length vector.
|
|
*/
|
|
void plane_to_point_vector_v3_normalized(const float plane[4],
|
|
float r_plane_co[3],
|
|
float r_plane_no[3]);
|
|
|
|
MINLINE float plane_point_side_v3(const float plane[4], const float co[3]);
|
|
|
|
/** \} */
|
|
|
|
/* -------------------------------------------------------------------- */
|
|
/** \name Volume
|
|
* \{ */
|
|
|
|
/**
|
|
* The volume from a tetrahedron, points can be in any order
|
|
*/
|
|
float volume_tetrahedron_v3(const float v1[3],
|
|
const float v2[3],
|
|
const float v3[3],
|
|
const float v4[3]);
|
|
/**
|
|
* The volume from a tetrahedron, normal pointing inside gives negative volume
|
|
*/
|
|
float volume_tetrahedron_signed_v3(const float v1[3],
|
|
const float v2[3],
|
|
const float v3[3],
|
|
const float v4[3]);
|
|
|
|
/**
|
|
* The volume from a triangle that is made into a tetrahedron.
|
|
* This uses a simplified formula where the tip of the tetrahedron is in the world origin.
|
|
* Using this method, the total volume of a closed triangle mesh can be calculated.
|
|
* Note that you need to divide the result by 6 to get the actual volume.
|
|
*/
|
|
float volume_tri_tetrahedron_signed_v3_6x(const float v1[3], const float v2[3], const float v3[3]);
|
|
float volume_tri_tetrahedron_signed_v3(const float v1[3], const float v2[3], const float v3[3]);
|
|
|
|
/**
|
|
* Check if the edge is convex or concave
|
|
* (depends on face winding)
|
|
* Copied from BM_edge_is_convex().
|
|
*/
|
|
bool is_edge_convex_v3(const float v1[3],
|
|
const float v2[3],
|
|
const float f1_no[3],
|
|
const float f2_no[3]);
|
|
/**
|
|
* Evaluate if entire quad is a proper convex quad
|
|
*/
|
|
bool is_quad_convex_v3(const float v1[3], const float v2[3], const float v3[3], const float v4[3]);
|
|
bool is_quad_convex_v2(const float v1[2], const float v2[2], const float v3[2], const float v4[2]);
|
|
bool is_poly_convex_v2(const float verts[][2], unsigned int nr);
|
|
/**
|
|
* Check if either of the diagonals along this quad create flipped triangles
|
|
* (normals pointing away from each other).
|
|
* - (1 << 0): (v1-v3) is flipped.
|
|
* - (1 << 1): (v2-v4) is flipped.
|
|
*/
|
|
int is_quad_flip_v3(const float v1[3], const float v2[3], const float v3[3], const float v4[3]);
|
|
bool is_quad_flip_v3_first_third_fast(const float v1[3],
|
|
const float v2[3],
|
|
const float v3[3],
|
|
const float v4[3]);
|
|
|
|
/** \} */
|
|
|
|
/* -------------------------------------------------------------------- */
|
|
/** \name Distance
|
|
* \{ */
|
|
|
|
/**
|
|
* Distance p to line v1-v2 using Hesse formula (NO LINE PIECE!)
|
|
*/
|
|
float dist_squared_to_line_v2(const float p[2], const float l1[2], const float l2[2]);
|
|
float dist_to_line_v2(const float p[2], const float l1[2], const float l2[2]);
|
|
/**
|
|
* Distance p to line-piece v1-v2.
|
|
*/
|
|
float dist_squared_to_line_segment_v2(const float p[2], const float l1[2], const float l2[2]);
|
|
float dist_to_line_segment_v2(const float p[2], const float l1[2], const float l2[2]);
|
|
|
|
float dist_signed_squared_to_plane_v3(const float p[3], const float plane[4]);
|
|
float dist_squared_to_plane_v3(const float p[3], const float plane[4]);
|
|
/**
|
|
* Return the signed distance from the point to the plane.
|
|
*/
|
|
float dist_signed_to_plane_v3(const float p[3], const float plane[4]);
|
|
float dist_to_plane_v3(const float p[3], const float plane[4]);
|
|
|
|
/* Plane3 versions. */
|
|
|
|
float dist_signed_squared_to_plane3_v3(const float p[3], const float plane[3]);
|
|
float dist_squared_to_plane3_v3(const float p[3], const float plane[3]);
|
|
float dist_signed_to_plane3_v3(const float p[3], const float plane[3]);
|
|
float dist_to_plane3_v3(const float p[3], const float plane[3]);
|
|
|
|
/**
|
|
* Distance v1 to line-piece l1-l2 in 3D.
|
|
*/
|
|
float dist_squared_to_line_segment_v3(const float p[3], const float l1[3], const float l2[3]);
|
|
float dist_to_line_segment_v3(const float p[3], const float l1[3], const float l2[3]);
|
|
float dist_squared_to_line_v3(const float p[3], const float l1[3], const float l2[3]);
|
|
float dist_to_line_v3(const float p[3], const float l1[3], const float l2[3]);
|
|
/**
|
|
* Check if \a p is inside the 2x planes defined by `(v1, v2, v3)`
|
|
* where the 3x points define 2x planes.
|
|
*
|
|
* \param axis_ref: used when v1,v2,v3 form a line and to check if the corner is concave/convex.
|
|
*
|
|
* \note the distance from \a v1 & \a v3 to \a v2 doesn't matter
|
|
* (it just defines the planes).
|
|
*
|
|
* \return the lowest squared distance to either of the planes.
|
|
* where `(return < 0.0)` is outside.
|
|
*
|
|
* \code{.unparsed}
|
|
* v1
|
|
* +
|
|
* /
|
|
* x - out / x - inside
|
|
* /
|
|
* +----+
|
|
* v2 v3
|
|
* x - also outside
|
|
* \endcode
|
|
*/
|
|
float dist_signed_squared_to_corner_v3v3v3(const float p[3],
|
|
const float v1[3],
|
|
const float v2[3],
|
|
const float v3[3],
|
|
const float axis_ref[3]);
|
|
/**
|
|
* Compute the squared distance of a point to a line (defined as ray).
|
|
* \param ray_origin: A point on the line.
|
|
* \param ray_direction: Normalized direction of the line.
|
|
* \param co: Point to which the distance is to be calculated.
|
|
*/
|
|
float dist_squared_to_ray_v3_normalized(const float ray_origin[3],
|
|
const float ray_direction[3],
|
|
const float co[3]);
|
|
/**
|
|
* Find the closest point in a seg to a ray and return the distance squared.
|
|
* \param r_point: Is the point on segment closest to ray
|
|
* (or to ray_origin if the ray and the segment are parallel).
|
|
* \param r_depth: the distance of r_point projection on ray to the ray_origin.
|
|
*/
|
|
float dist_squared_ray_to_seg_v3(const float ray_origin[3],
|
|
const float ray_direction[3],
|
|
const float v0[3],
|
|
const float v1[3],
|
|
float r_point[3],
|
|
float *r_depth);
|
|
|
|
/**
|
|
* Returns the coordinates of the nearest vertex and the farthest vertex from a plane (or normal).
|
|
*/
|
|
void aabb_get_near_far_from_plane(const float plane_no[3],
|
|
const float bbmin[3],
|
|
const float bbmax[3],
|
|
float bb_near[3],
|
|
float bb_afar[3]);
|
|
|
|
struct DistRayAABB_Precalc {
|
|
float ray_origin[3];
|
|
float ray_direction[3];
|
|
float ray_inv_dir[3];
|
|
};
|
|
struct DistRayAABB_Precalc dist_squared_ray_to_aabb_v3_precalc(const float ray_origin[3],
|
|
const float ray_direction[3]);
|
|
/**
|
|
* Returns the distance from a ray to a bound-box (projected on ray)
|
|
*/
|
|
float dist_squared_ray_to_aabb_v3(const struct DistRayAABB_Precalc *data,
|
|
const float bb_min[3],
|
|
const float bb_max[3],
|
|
float r_point[3],
|
|
float *r_depth);
|
|
/**
|
|
* Use when there is no advantage to pre-calculation.
|
|
*/
|
|
float dist_squared_ray_to_aabb_v3_simple(const float ray_origin[3],
|
|
const float ray_direction[3],
|
|
const float bb_min[3],
|
|
const float bb_max[3],
|
|
float r_point[3],
|
|
float *r_depth);
|
|
|
|
struct DistProjectedAABBPrecalc {
|
|
float ray_origin[3];
|
|
float ray_direction[3];
|
|
float ray_inv_dir[3];
|
|
float pmat[4][4];
|
|
float mval[2];
|
|
};
|
|
/**
|
|
* \param projmat: Projection Matrix (usually perspective
|
|
* matrix multiplied by object matrix).
|
|
*/
|
|
void dist_squared_to_projected_aabb_precalc(struct DistProjectedAABBPrecalc *precalc,
|
|
const float projmat[4][4],
|
|
const float winsize[2],
|
|
const float mval[2]);
|
|
/**
|
|
* Returns the distance from a 2D coordinate to a bound-box (projected).
|
|
*/
|
|
float dist_squared_to_projected_aabb(struct DistProjectedAABBPrecalc *data,
|
|
const float bbmin[3],
|
|
const float bbmax[3],
|
|
bool r_axis_closest[3]);
|
|
float dist_squared_to_projected_aabb_simple(const float projmat[4][4],
|
|
const float winsize[2],
|
|
const float mval[2],
|
|
const float bbmin[3],
|
|
const float bbmax[3]);
|
|
|
|
/** Returns the distance between two 2D line segments. */
|
|
float dist_seg_seg_v2(const float a1[3], const float a2[3], const float b1[3], const float b2[3]);
|
|
|
|
float closest_to_ray_v3(float r_close[3],
|
|
const float p[3],
|
|
const float ray_orig[3],
|
|
const float ray_dir[3]);
|
|
float closest_to_line_v2(float r_close[2], const float p[2], const float l1[2], const float l2[2]);
|
|
double closest_to_line_v2_db(double r_close[2],
|
|
const double p[2],
|
|
const double l1[2],
|
|
const double l2[2]);
|
|
/**
|
|
* Find closest point to p on line through (`l1`, `l2`) and return lambda,
|
|
* where (0 <= lambda <= 1) when `p` is in the line segment (`l1`, `l2`).
|
|
*/
|
|
float closest_to_line_v3(float r_close[3], const float p[3], const float l1[3], const float l2[3]);
|
|
/**
|
|
* Point closest to v1 on line v2-v3 in 2D.
|
|
*
|
|
* \return A value in [0, 1] that corresponds to the position of #r_close on the line segment.
|
|
*/
|
|
float closest_to_line_segment_v2(float r_close[2],
|
|
const float p[2],
|
|
const float l1[2],
|
|
const float l2[2]);
|
|
|
|
/**
|
|
* Finds the points where two line segments are closest to each other.
|
|
*
|
|
* `lambda_*` is a value between 0 and 1 for each segment that indicates where `r_closest_*` is on
|
|
* the corresponding segment.
|
|
*
|
|
* \return Squared distance between both segments.
|
|
*/
|
|
float closest_seg_seg_v2(float r_closest_a[2],
|
|
float r_closest_b[2],
|
|
float *r_lambda_a,
|
|
float *r_lambda_b,
|
|
const float a1[2],
|
|
const float a2[2],
|
|
const float b1[2],
|
|
const float b2[2]);
|
|
|
|
/**
|
|
* Point closest to v1 on line v2-v3 in 3D.
|
|
*
|
|
* \return A value in [0, 1] that corresponds to the position of #r_close on the line segment.
|
|
*/
|
|
float closest_to_line_segment_v3(float r_close[3],
|
|
const float p[3],
|
|
const float l1[3],
|
|
const float l2[3]);
|
|
|
|
/**
|
|
* Finds the points where a ray and a segment are closest to each other.
|
|
*
|
|
* \return A value in [0, 1] that corresponds to the position of #r_close on the line segment.
|
|
*/
|
|
float closest_ray_to_segment_v3(const float ray_origin[3],
|
|
const float ray_direction[3],
|
|
const float v0[3],
|
|
const float v1[3],
|
|
float r_close[3]);
|
|
|
|
void closest_to_plane_normalized_v3(float r_close[3], const float plane[4], const float pt[3]);
|
|
/**
|
|
* Find the closest point on a plane.
|
|
*
|
|
* \param r_close: Return coordinate
|
|
* \param plane: The plane to test against.
|
|
* \param pt: The point to find the nearest of
|
|
*
|
|
* \note non-unit-length planes are supported.
|
|
*/
|
|
void closest_to_plane_v3(float r_close[3], const float plane[4], const float pt[3]);
|
|
void closest_to_plane3_normalized_v3(float r_close[3], const float plane[3], const float pt[3]);
|
|
void closest_to_plane3_v3(float r_close[3], const float plane[3], const float pt[3]);
|
|
|
|
/**
|
|
* Set 'r' to the point in triangle (v1, v2, v3) closest to point 'p'.
|
|
*/
|
|
void closest_on_tri_to_point_v3(
|
|
float r[3], const float p[3], const float v1[3], const float v2[3], const float v3[3]);
|
|
|
|
float ray_point_factor_v3_ex(const float p[3],
|
|
const float ray_origin[3],
|
|
const float ray_direction[3],
|
|
float epsilon,
|
|
float fallback);
|
|
float ray_point_factor_v3(const float p[3],
|
|
const float ray_origin[3],
|
|
const float ray_direction[3]);
|
|
|
|
/**
|
|
* A simplified version of #closest_to_line_v3
|
|
* we only need to return the `lambda`
|
|
*
|
|
* \param epsilon: avoid approaching divide-by-zero.
|
|
* Passing a zero will just check for nonzero division.
|
|
*/
|
|
float line_point_factor_v3_ex(
|
|
const float p[3], const float l1[3], const float l2[3], float epsilon, float fallback);
|
|
float line_point_factor_v3(const float p[3], const float l1[3], const float l2[3]);
|
|
|
|
float line_point_factor_v2_ex(
|
|
const float p[2], const float l1[2], const float l2[2], float epsilon, float fallback);
|
|
float line_point_factor_v2(const float p[2], const float l1[2], const float l2[2]);
|
|
|
|
/**
|
|
* \note #isect_line_plane_v3() shares logic.
|
|
*/
|
|
float line_plane_factor_v3(const float plane_co[3],
|
|
const float plane_no[3],
|
|
const float l1[3],
|
|
const float l2[3]);
|
|
|
|
/**
|
|
* Ensure the distance between these points is no greater than 'dist'.
|
|
* If it is, scale them both into the center.
|
|
*/
|
|
void limit_dist_v3(float v1[3], float v2[3], float dist);
|
|
|
|
/** \} */
|
|
|
|
/* -------------------------------------------------------------------- */
|
|
/** \name Intersection
|
|
* \{ */
|
|
|
|
/* TODO: int return value consistency. */
|
|
|
|
/* line-line */
|
|
#define ISECT_LINE_LINE_COLINEAR -1
|
|
#define ISECT_LINE_LINE_NONE 0
|
|
#define ISECT_LINE_LINE_EXACT 1
|
|
#define ISECT_LINE_LINE_CROSS 2
|
|
|
|
/**
|
|
* Intersect Line-Line, floats.
|
|
*/
|
|
int isect_seg_seg_v2(const float v1[2], const float v2[2], const float v3[2], const float v4[2]);
|
|
/**
|
|
* Returns a point on each segment that is closest to the other.
|
|
*/
|
|
void isect_seg_seg_v3(const float a0[3],
|
|
const float a1[3],
|
|
const float b0[3],
|
|
const float b1[3],
|
|
float r_a[3],
|
|
float r_b[3]);
|
|
|
|
/**
|
|
* Intersect Line-Line, integer.
|
|
*/
|
|
int isect_seg_seg_v2_int(const int v1[2], const int v2[2], const int v3[2], const int v4[2]);
|
|
/**
|
|
* Get intersection point of two 2D segments.
|
|
*
|
|
* \param endpoint_bias: Bias to use when testing for end-point overlap.
|
|
* A positive value considers intersections that extend past the endpoints,
|
|
* negative values contract the endpoints.
|
|
* Note the bias is applied to a 0-1 factor, not scaled to the length of segments.
|
|
*
|
|
* \returns intersection type:
|
|
* - -1: collinear.
|
|
* - 1: intersection.
|
|
* - 0: no intersection.
|
|
*/
|
|
int isect_seg_seg_v2_point_ex(const float v0[2],
|
|
const float v1[2],
|
|
const float v2[2],
|
|
const float v3[2],
|
|
float endpoint_bias,
|
|
float r_vi[2]);
|
|
int isect_seg_seg_v2_point(
|
|
const float v0[2], const float v1[2], const float v2[2], const float v3[2], float r_vi[2]);
|
|
bool isect_seg_seg_v2_simple(const float v1[2],
|
|
const float v2[2],
|
|
const float v3[2],
|
|
const float v4[2]);
|
|
/**
|
|
* If intersection == ISECT_LINE_LINE_CROSS or ISECT_LINE_LINE_NONE:
|
|
* <pre>
|
|
* pt = v1 + lambda * (v2 - v1) = v3 + mu * (v4 - v3)
|
|
* </pre>
|
|
* \returns intersection type:
|
|
* - ISECT_LINE_LINE_COLINEAR: collinear.
|
|
* - ISECT_LINE_LINE_EXACT: intersection at an endpoint of either.
|
|
* - ISECT_LINE_LINE_CROSS: interaction, not at an endpoint.
|
|
* - ISECT_LINE_LINE_NONE: no intersection.
|
|
* Also returns lambda and mu in r_lambda and r_mu.
|
|
*/
|
|
int isect_seg_seg_v2_lambda_mu_db(const double v1[2],
|
|
const double v2[2],
|
|
const double v3[2],
|
|
const double v4[2],
|
|
double *r_lambda,
|
|
double *r_mu);
|
|
/**
|
|
* \param l1, l2: Coordinates (point of line).
|
|
* \param sp, r: Coordinate and radius (sphere).
|
|
* \return r_p1, r_p2: Intersection coordinates.
|
|
*
|
|
* \note The order of assignment for intersection points (\a r_p1, \a r_p2) is predictable,
|
|
* based on the direction defined by `l2 - l1`,
|
|
* this direction compared with the normal of each point on the sphere:
|
|
* \a r_p1 always has a >= 0.0 dot product.
|
|
* \a r_p2 always has a <= 0.0 dot product.
|
|
* For example, when \a l1 is inside the sphere and \a l2 is outside,
|
|
* \a r_p1 will always be between \a l1 and \a l2.
|
|
*/
|
|
int isect_line_sphere_v3(const float l1[3],
|
|
const float l2[3],
|
|
const float sp[3],
|
|
float r,
|
|
float r_p1[3],
|
|
float r_p2[3]);
|
|
int isect_line_sphere_v2(const float l1[2],
|
|
const float l2[2],
|
|
const float sp[2],
|
|
float r,
|
|
float r_p1[2],
|
|
float r_p2[2]);
|
|
|
|
/**
|
|
* Intersect Line-Line, floats - gives intersection point.
|
|
*/
|
|
int isect_line_line_v2_point(
|
|
const float v0[2], const float v1[2], const float v2[2], const float v3[2], float r_vi[2]);
|
|
/**
|
|
* \return The number of point of interests
|
|
* 0 - lines are collinear
|
|
* 1 - lines are coplanar, i1 is set to intersection
|
|
* 2 - i1 and i2 are the nearest points on line 1 (v1, v2) and line 2 (v3, v4) respectively
|
|
*/
|
|
int isect_line_line_epsilon_v3(const float v1[3],
|
|
const float v2[3],
|
|
const float v3[3],
|
|
const float v4[3],
|
|
float r_i1[3],
|
|
float r_i2[3],
|
|
float epsilon);
|
|
int isect_line_line_v3(const float v1[3],
|
|
const float v2[3],
|
|
const float v3[3],
|
|
const float v4[3],
|
|
float r_i1[3],
|
|
float r_i2[3]);
|
|
/**
|
|
* Intersection point strictly between the two lines
|
|
* \return false when no intersection is found.
|
|
*/
|
|
bool isect_line_line_strict_v3(const float v1[3],
|
|
const float v2[3],
|
|
const float v3[3],
|
|
const float v4[3],
|
|
float vi[3],
|
|
float *r_lambda);
|
|
/**
|
|
* Check if two rays are not parallel and returns a factor that indicates
|
|
* the distance from \a ray_origin_b to the closest point on ray-a to ray-b.
|
|
*
|
|
* \note Neither directions need to be normalized.
|
|
*/
|
|
bool isect_ray_ray_epsilon_v3(const float ray_origin_a[3],
|
|
const float ray_direction_a[3],
|
|
const float ray_origin_b[3],
|
|
const float ray_direction_b[3],
|
|
float epsilon,
|
|
float *r_lambda_a,
|
|
float *r_lambda_b);
|
|
bool isect_ray_ray_v3(const float ray_origin_a[3],
|
|
const float ray_direction_a[3],
|
|
const float ray_origin_b[3],
|
|
const float ray_direction_b[3],
|
|
float *r_lambda_a,
|
|
float *r_lambda_b);
|
|
|
|
/**
|
|
* if clip is nonzero, will only return true if lambda is >= 0.0
|
|
* (i.e. intersection point is along positive \a ray_direction)
|
|
*
|
|
* \note #line_plane_factor_v3() shares logic.
|
|
*/
|
|
bool isect_ray_plane_v3_factor(const float ray_origin[3],
|
|
const float ray_direction[3],
|
|
const float plane_co[3],
|
|
const float plane_no[3],
|
|
float *r_lambda);
|
|
|
|
bool isect_ray_plane_v3(const float ray_origin[3],
|
|
const float ray_direction[3],
|
|
const float plane[4],
|
|
float *r_lambda,
|
|
bool clip);
|
|
|
|
/**
|
|
* Check if a point is behind all planes.
|
|
*/
|
|
bool isect_point_planes_v3(const float (*planes)[4], int totplane, const float p[3]);
|
|
/**
|
|
* Check if a point is in front all planes.
|
|
* Same as isect_point_planes_v3 but with planes facing the opposite direction.
|
|
*/
|
|
bool isect_point_planes_v3_negated(const float (*planes)[4], int totplane, const float p[3]);
|
|
|
|
/**
|
|
* Intersect line/plane.
|
|
*
|
|
* \param r_isect_co: The intersection point.
|
|
* \param l1: The first point of the line.
|
|
* \param l2: The second point of the line.
|
|
* \param plane_co: A point on the plane to intersect with.
|
|
* \param plane_no: The direction of the plane (does not need to be normalized).
|
|
*
|
|
* \note #line_plane_factor_v3() shares logic.
|
|
*/
|
|
bool isect_line_plane_v3(float r_isect_co[3],
|
|
const float l1[3],
|
|
const float l2[3],
|
|
const float plane_co[3],
|
|
const float plane_no[3]) ATTR_WARN_UNUSED_RESULT;
|
|
|
|
/**
|
|
* Intersect three planes, return the point where all 3 meet.
|
|
* See Graphics Gems 1 pg 305
|
|
*
|
|
* \param plane_a, plane_b, plane_c: Planes.
|
|
* \param r_isect_co: The resulting intersection point.
|
|
*/
|
|
bool isect_plane_plane_plane_v3(const float plane_a[4],
|
|
const float plane_b[4],
|
|
const float plane_c[4],
|
|
float r_isect_co[3]) ATTR_WARN_UNUSED_RESULT;
|
|
/**
|
|
* Intersect two planes, return a point on the intersection and a vector
|
|
* that runs on the direction of the intersection.
|
|
* \note this is a slightly reduced version of #isect_plane_plane_plane_v3
|
|
*
|
|
* \param plane_a, plane_b: Planes.
|
|
* \param r_isect_co: The resulting intersection point.
|
|
* \param r_isect_no: The resulting vector of the intersection.
|
|
*
|
|
* \note \a r_isect_no isn't unit length.
|
|
*/
|
|
bool isect_plane_plane_v3(const float plane_a[4],
|
|
const float plane_b[4],
|
|
float r_isect_co[3],
|
|
float r_isect_no[3]) ATTR_WARN_UNUSED_RESULT;
|
|
|
|
/**
|
|
* Intersect all planes, calling `callback_fn` for each point that intersects
|
|
* 3 of the planes that isn't outside any of the other planes.
|
|
*
|
|
* This can be thought of as calculating a convex-hull from an array of planes.
|
|
*
|
|
* \param eps_coplanar: Epsilon for testing if two planes are aligned (co-planar).
|
|
* \param eps_isect: Epsilon for testing of a point is behind any of the planes.
|
|
*
|
|
* \warning As complexity is a little under `O(N^3)`, this is only suitable for small arrays.
|
|
*
|
|
* \note This function could be optimized by some spatial structure.
|
|
*/
|
|
bool isect_planes_v3_fn(
|
|
const float planes[][4],
|
|
int planes_len,
|
|
float eps_coplanar,
|
|
float eps_isect,
|
|
void (*callback_fn)(const float co[3], int i, int j, int k, void *user_data),
|
|
void *user_data);
|
|
|
|
/* line/ray triangle */
|
|
|
|
/**
|
|
* Test if the line starting at p1 ending at p2 intersects the triangle v0..v2
|
|
* return non zero if it does.
|
|
*/
|
|
bool isect_line_segment_tri_v3(const float p1[3],
|
|
const float p2[3],
|
|
const float v0[3],
|
|
const float v1[3],
|
|
const float v2[3],
|
|
float *r_lambda,
|
|
float r_uv[2]);
|
|
/**
|
|
* Like #isect_line_segment_tri_v3, but allows epsilon tolerance around triangle.
|
|
*/
|
|
bool isect_line_segment_tri_epsilon_v3(const float p1[3],
|
|
const float p2[3],
|
|
const float v0[3],
|
|
const float v1[3],
|
|
const float v2[3],
|
|
float *r_lambda,
|
|
float r_uv[2],
|
|
float epsilon);
|
|
bool isect_axial_line_segment_tri_v3(int axis,
|
|
const float p1[3],
|
|
const float p2[3],
|
|
const float v0[3],
|
|
const float v1[3],
|
|
const float v2[3],
|
|
float *r_lambda);
|
|
|
|
/**
|
|
* Test if the ray starting at p1 going in d direction intersects the triangle v0..v2
|
|
* return non zero if it does.
|
|
*/
|
|
bool isect_ray_tri_v3(const float ray_origin[3],
|
|
const float ray_direction[3],
|
|
const float v0[3],
|
|
const float v1[3],
|
|
const float v2[3],
|
|
float *r_lambda,
|
|
float r_uv[2]);
|
|
bool isect_ray_tri_threshold_v3(const float ray_origin[3],
|
|
const float ray_direction[3],
|
|
const float v0[3],
|
|
const float v1[3],
|
|
const float v2[3],
|
|
float *r_lambda,
|
|
float r_uv[2],
|
|
float threshold);
|
|
bool isect_ray_tri_epsilon_v3(const float ray_origin[3],
|
|
const float ray_direction[3],
|
|
const float v0[3],
|
|
const float v1[3],
|
|
const float v2[3],
|
|
float *r_lambda,
|
|
float r_uv[2],
|
|
float epsilon);
|
|
/**
|
|
* Intersect two triangles.
|
|
*
|
|
* \param r_i1, r_i2: Retrieve the overlapping edge between the 2 triangles.
|
|
* \param r_tri_a_edge_isect_count: Indicates how many edges in the first triangle are intersected.
|
|
* \return true when the triangles intersect.
|
|
*
|
|
* \note If it exists, \a r_i1 will be a point on the edge of the 1st triangle.
|
|
* \note intersections between coplanar triangles are currently undetected.
|
|
*/
|
|
bool isect_tri_tri_v3_ex(const float tri_a[3][3],
|
|
const float tri_b[3][3],
|
|
float r_i1[3],
|
|
float r_i2[3],
|
|
int *r_tri_a_edge_isect_count);
|
|
bool isect_tri_tri_v3(const float t_a0[3],
|
|
const float t_a1[3],
|
|
const float t_a2[3],
|
|
const float t_b0[3],
|
|
const float t_b1[3],
|
|
const float t_b2[3],
|
|
float r_i1[3],
|
|
float r_i2[3]);
|
|
|
|
bool isect_tri_tri_v2(const float t_a0[2],
|
|
const float t_a1[2],
|
|
const float t_a2[2],
|
|
const float t_b0[2],
|
|
const float t_b1[2],
|
|
const float t_b2[2]);
|
|
|
|
/**
|
|
* Water-tight ray-cast (requires pre-calculation).
|
|
*/
|
|
struct IsectRayPrecalc {
|
|
/* Maximal dimension `kz`, and orthogonal dimensions. */
|
|
int kx, ky, kz;
|
|
|
|
/* Shear constants. */
|
|
float sx, sy, sz;
|
|
};
|
|
|
|
void isect_ray_tri_watertight_v3_precalc(struct IsectRayPrecalc *isect_precalc,
|
|
const float ray_direction[3]);
|
|
bool isect_ray_tri_watertight_v3(const float ray_origin[3],
|
|
const struct IsectRayPrecalc *isect_precalc,
|
|
const float v0[3],
|
|
const float v1[3],
|
|
const float v2[3],
|
|
float *r_lambda,
|
|
float r_uv[2]);
|
|
/**
|
|
* Slower version which calculates #IsectRayPrecalc each time.
|
|
*/
|
|
bool isect_ray_tri_watertight_v3_simple(const float ray_origin[3],
|
|
const float ray_direction[3],
|
|
const float v0[3],
|
|
const float v1[3],
|
|
const float v2[3],
|
|
float *r_lambda,
|
|
float r_uv[2]);
|
|
|
|
bool isect_ray_seg_v2(const float ray_origin[2],
|
|
const float ray_direction[2],
|
|
const float v0[2],
|
|
const float v1[2],
|
|
float *r_lambda,
|
|
float *r_u);
|
|
|
|
bool isect_ray_line_v3(const float ray_origin[3],
|
|
const float ray_direction[3],
|
|
const float v0[3],
|
|
const float v1[3],
|
|
float *r_lambda);
|
|
|
|
/* Point in polygon. */
|
|
|
|
bool isect_point_poly_v2(const float pt[2], const float verts[][2], unsigned int nr);
|
|
bool isect_point_poly_v2_int(const int pt[2], const int verts[][2], unsigned int nr);
|
|
|
|
/**
|
|
* Point in quad - only convex quads.
|
|
*/
|
|
int isect_point_quad_v2(
|
|
const float p[2], const float v1[2], const float v2[2], const float v3[2], const float v4[2]);
|
|
|
|
int isect_point_tri_v2(const float pt[2], const float v1[2], const float v2[2], const float v3[2]);
|
|
/**
|
|
* Only single direction.
|
|
*/
|
|
bool isect_point_tri_v2_cw(const float pt[2],
|
|
const float v1[2],
|
|
const float v2[2],
|
|
const float v3[2]);
|
|
/**
|
|
* \code{.unparsed}
|
|
* x1,y2
|
|
* | \
|
|
* | \ .(a,b)
|
|
* | \
|
|
* x1,y1-- x2,y1
|
|
* \endcode
|
|
*/
|
|
int isect_point_tri_v2_int(int x1, int y1, int x2, int y2, int a, int b);
|
|
bool isect_point_tri_prism_v3(const float p[3],
|
|
const float v1[3],
|
|
const float v2[3],
|
|
const float v3[3]);
|
|
/**
|
|
* \param r_isect_co: The point \a p projected onto the triangle.
|
|
* \return True when \a p is inside the triangle.
|
|
* \note Its up to the caller to check the distance between \a p and \a r_vi
|
|
* against an error margin.
|
|
*/
|
|
bool isect_point_tri_v3(const float p[3],
|
|
const float v1[3],
|
|
const float v2[3],
|
|
const float v3[3],
|
|
float r_isect_co[3]);
|
|
|
|
/**
|
|
* Axis-aligned bounding box.
|
|
*/
|
|
bool isect_aabb_aabb_v3(const float min1[3],
|
|
const float max1[3],
|
|
const float min2[3],
|
|
const float max2[3]);
|
|
|
|
struct IsectRayAABB_Precalc {
|
|
float ray_origin[3];
|
|
float ray_inv_dir[3];
|
|
int sign[3];
|
|
};
|
|
|
|
void isect_ray_aabb_v3_precalc(struct IsectRayAABB_Precalc *data,
|
|
const float ray_origin[3],
|
|
const float ray_direction[3]);
|
|
bool isect_ray_aabb_v3(const struct IsectRayAABB_Precalc *data,
|
|
const float bb_min[3],
|
|
const float bb_max[3],
|
|
float *r_tmin);
|
|
/**
|
|
* Test a bounding box (AABB) for ray intersection.
|
|
* Assumes the ray is already local to the boundbox space.
|
|
*
|
|
* \note \a direction should be normalized
|
|
* if you intend to use the \a tmin or \a tmax distance results!
|
|
*/
|
|
bool isect_ray_aabb_v3_simple(const float orig[3],
|
|
const float dir[3],
|
|
const float bb_min[3],
|
|
const float bb_max[3],
|
|
float *tmin,
|
|
float *tmax);
|
|
|
|
/* other */
|
|
#define ISECT_AABB_PLANE_BEHIND_ANY 0
|
|
#define ISECT_AABB_PLANE_CROSS_ANY 1
|
|
#define ISECT_AABB_PLANE_IN_FRONT_ALL 2
|
|
|
|
/**
|
|
* Checks status of an AABB in relation to a list of planes.
|
|
*
|
|
* \returns intersection type:
|
|
* - ISECT_AABB_PLANE_BEHIND_ONE (0): AABB is completely behind at least 1 plane;
|
|
* - ISECT_AABB_PLANE_CROSS_ANY (1): AABB intersects at least 1 plane;
|
|
* - ISECT_AABB_PLANE_IN_FRONT_ALL (2): AABB is completely in front of all planes;
|
|
*/
|
|
int isect_aabb_planes_v3(const float (*planes)[4],
|
|
int totplane,
|
|
const float bbmin[3],
|
|
const float bbmax[3]);
|
|
|
|
bool isect_sweeping_sphere_tri_v3(const float p1[3],
|
|
const float p2[3],
|
|
float radius,
|
|
const float v0[3],
|
|
const float v1[3],
|
|
const float v2[3],
|
|
float *r_lambda,
|
|
float ipoint[3]);
|
|
|
|
bool clip_segment_v3_plane(
|
|
const float p1[3], const float p2[3], const float plane[4], float r_p1[3], float r_p2[3]);
|
|
bool clip_segment_v3_plane_n(const float p1[3],
|
|
const float p2[3],
|
|
const float plane_array[][4],
|
|
int plane_num,
|
|
float r_p1[3],
|
|
float r_p2[3]);
|
|
|
|
bool point_in_slice_seg(float p[3], float l1[3], float l2[3]);
|
|
|
|
/** \} */
|
|
|
|
/* -------------------------------------------------------------------- */
|
|
/** \name Interpolation
|
|
* \{ */
|
|
|
|
void interp_weights_tri_v3(
|
|
float w[3], const float v1[3], const float v2[3], const float v3[3], const float co[3]);
|
|
void interp_weights_quad_v3(float w[4],
|
|
const float v1[3],
|
|
const float v2[3],
|
|
const float v3[3],
|
|
const float v4[3],
|
|
const float co[3]);
|
|
void interp_weights_poly_v3(float w[], float v[][3], int n, const float co[3]);
|
|
void interp_weights_poly_v2(float w[], float v[][2], int n, const float co[2]);
|
|
|
|
/** `(x1, v1)(t1=0)------(x2, v2)(t2=1), 0<t<1 --> (x, v)(t)`. */
|
|
void interp_cubic_v3(float x[3],
|
|
float v[3],
|
|
const float x1[3],
|
|
const float v1[3],
|
|
const float x2[3],
|
|
const float v2[3],
|
|
float t);
|
|
|
|
/**
|
|
* Given an array with some invalid values this function interpolates valid values
|
|
* replacing the invalid ones.
|
|
*/
|
|
int interp_sparse_array(float *array, int list_size, float skipval);
|
|
|
|
/**
|
|
* Given 2 triangles in 3D space, and a point in relation to the first triangle.
|
|
* calculate the location of a point in relation to the second triangle.
|
|
* Useful for finding relative positions with geometry.
|
|
*/
|
|
void transform_point_by_tri_v3(float pt_tar[3],
|
|
float const pt_src[3],
|
|
const float tri_tar_p1[3],
|
|
const float tri_tar_p2[3],
|
|
const float tri_tar_p3[3],
|
|
const float tri_src_p1[3],
|
|
const float tri_src_p2[3],
|
|
const float tri_src_p3[3]);
|
|
/**
|
|
* Simply re-interpolates,
|
|
* assumes p_src is between \a l_src_p1-l_src_p2
|
|
*/
|
|
void transform_point_by_seg_v3(float p_dst[3],
|
|
const float p_src[3],
|
|
const float l_dst_p1[3],
|
|
const float l_dst_p2[3],
|
|
const float l_src_p1[3],
|
|
const float l_src_p2[3]);
|
|
|
|
/**
|
|
* \note Using #cross_tri_v2 means locations outside the triangle are correctly weighted.
|
|
*
|
|
* \note This is *exactly* the same calculation as #resolve_tri_uv_v2,
|
|
* although it has double precision and is used for texture baking, so keep both.
|
|
*/
|
|
void barycentric_weights_v2(
|
|
const float v1[2], const float v2[2], const float v3[2], const float co[2], float w[3]);
|
|
/**
|
|
* A version of #barycentric_weights_v2 that doesn't allow negative weights.
|
|
* Useful when negative values cause problems and points are only
|
|
* ever slightly outside of the triangle.
|
|
*/
|
|
void barycentric_weights_v2_clamped(
|
|
const float v1[2], const float v2[2], const float v3[2], const float co[2], float w[3]);
|
|
/**
|
|
* still use 2D X,Y space but this works for verts transformed by a perspective matrix,
|
|
* using their 4th component as a weight
|
|
*/
|
|
void barycentric_weights_v2_persp(
|
|
const float v1[4], const float v2[4], const float v3[4], const float co[2], float w[3]);
|
|
/**
|
|
* same as #barycentric_weights_v2 but works with a quad,
|
|
* NOTE: untested for values outside the quad's bounds
|
|
* this is #interp_weights_poly_v2 expanded for quads only
|
|
*/
|
|
void barycentric_weights_v2_quad(const float v1[2],
|
|
const float v2[2],
|
|
const float v3[2],
|
|
const float v4[2],
|
|
const float co[2],
|
|
float w[4]);
|
|
|
|
/**
|
|
* \return false for degenerated triangles.
|
|
*/
|
|
bool barycentric_coords_v2(
|
|
const float v1[2], const float v2[2], const float v3[2], const float co[2], float w[3]);
|
|
/**
|
|
* \return
|
|
* - 0 if the point is outside of triangle.
|
|
* - 1 if the point is inside triangle.
|
|
* - 2 if it's on the edge.
|
|
*/
|
|
int barycentric_inside_triangle_v2(const float w[3]);
|
|
|
|
/**
|
|
* Barycentric reverse
|
|
*
|
|
* Compute coordinates (u, v) for point \a st with respect to triangle (\a st0, \a st1, \a st2)
|
|
*
|
|
* \note same basic result as #barycentric_weights_v2, see its comment for details.
|
|
*/
|
|
void resolve_tri_uv_v2(
|
|
float r_uv[2], const float st[2], const float st0[2], const float st1[2], const float st2[2]);
|
|
/**
|
|
* Barycentric reverse 3d
|
|
*
|
|
* Compute coordinates (u, v) for point \a st with respect to triangle (\a st0, \a st1, \a st2)
|
|
*/
|
|
void resolve_tri_uv_v3(
|
|
float r_uv[2], const float st[3], const float st0[3], const float st1[3], const float st2[3]);
|
|
/**
|
|
* Bilinear reverse.
|
|
*/
|
|
void resolve_quad_uv_v2(float r_uv[2],
|
|
const float st[2],
|
|
const float st0[2],
|
|
const float st1[2],
|
|
const float st2[2],
|
|
const float st3[2]);
|
|
/**
|
|
* Bilinear reverse with derivatives.
|
|
*/
|
|
void resolve_quad_uv_v2_deriv(float r_uv[2],
|
|
float r_deriv[2][2],
|
|
const float st[2],
|
|
const float st0[2],
|
|
const float st1[2],
|
|
const float st2[2],
|
|
const float st3[2]);
|
|
/**
|
|
* A version of resolve_quad_uv_v2 that only calculates the 'u'.
|
|
*/
|
|
float resolve_quad_u_v2(const float st[2],
|
|
const float st0[2],
|
|
const float st1[2],
|
|
const float st2[2],
|
|
const float st3[2]);
|
|
|
|
/**
|
|
* Use to find the point of a UV on a face.
|
|
* Reverse of `resolve_*` functions.
|
|
*/
|
|
void interp_bilinear_quad_v3(float data[4][3], float u, float v, float res[3]);
|
|
void interp_barycentric_tri_v3(float data[3][3], float u, float v, float res[3]);
|
|
|
|
/** \} */
|
|
|
|
/* -------------------------------------------------------------------- */
|
|
/** \name View & Projection
|
|
* \{ */
|
|
|
|
void lookat_m4(
|
|
float mat[4][4], float vx, float vy, float vz, float px, float py, float pz, float twist);
|
|
void polarview_m4(float mat[4][4], float dist, float azimuth, float incidence, float twist);
|
|
|
|
/**
|
|
* Matches `glFrustum` result.
|
|
*/
|
|
void perspective_m4(float mat[4][4],
|
|
float left,
|
|
float right,
|
|
float bottom,
|
|
float top,
|
|
float nearClip,
|
|
float farClip);
|
|
void perspective_m4_fov(float mat[4][4],
|
|
float angle_left,
|
|
float angle_right,
|
|
float angle_up,
|
|
float angle_down,
|
|
float nearClip,
|
|
float farClip);
|
|
/**
|
|
* Matches `glOrtho` result.
|
|
*/
|
|
void orthographic_m4(float mat[4][4],
|
|
float left,
|
|
float right,
|
|
float bottom,
|
|
float top,
|
|
float nearClip,
|
|
float farClip);
|
|
/**
|
|
* Translate a matrix created by orthographic_m4 or perspective_m4 in XY coords
|
|
* (used to jitter the view).
|
|
*/
|
|
void window_translate_m4(float winmat[4][4], float perspmat[4][4], float x, float y);
|
|
|
|
/**
|
|
* Frustum planes extraction from a projection matrix
|
|
* (homogeneous 4d vector representations of planes).
|
|
*
|
|
* plane parameters can be NULL if you do not need them.
|
|
*/
|
|
void planes_from_projmat(const float mat[4][4],
|
|
float left[4],
|
|
float right[4],
|
|
float bottom[4],
|
|
float top[4],
|
|
float near[4],
|
|
float far[4]);
|
|
|
|
void projmat_dimensions(const float winmat[4][4],
|
|
float *r_left,
|
|
float *r_right,
|
|
float *r_bottom,
|
|
float *r_top,
|
|
float *r_near,
|
|
float *r_far);
|
|
void projmat_dimensions_db(const float winmat_fl[4][4],
|
|
double *r_left,
|
|
double *r_right,
|
|
double *r_bottom,
|
|
double *r_top,
|
|
double *r_near,
|
|
double *r_far);
|
|
|
|
/**
|
|
* Creates a projection matrix for a small region of the viewport.
|
|
*
|
|
* \param projmat: Projection Matrix.
|
|
* \param win_size: Viewport Size.
|
|
* \param x_min, x_max, y_min, y_max: Coordinates of the subregion.
|
|
* \return r_projmat: Resulting Projection Matrix.
|
|
*/
|
|
void projmat_from_subregion(const float projmat[4][4],
|
|
const int win_size[2],
|
|
int x_min,
|
|
int x_max,
|
|
int y_min,
|
|
int y_max,
|
|
float r_projmat[4][4]);
|
|
|
|
int box_clip_bounds_m4(float boundbox[2][3], const float bounds[4], float winmat[4][4]);
|
|
void box_minmax_bounds_m4(float min[3], float max[3], float boundbox[2][3], float mat[4][4]);
|
|
|
|
/** \} */
|
|
|
|
/* -------------------------------------------------------------------- */
|
|
/** \name Mapping
|
|
* \{ */
|
|
|
|
bool map_to_tube(float *r_u, float *r_v, float x, float y, float z);
|
|
bool map_to_sphere(float *r_u, float *r_v, float x, float y, float z);
|
|
void map_to_plane_v2_v3v3(float r_co[2], const float co[3], const float no[3]);
|
|
void map_to_plane_axis_angle_v2_v3v3fl(float r_co[2],
|
|
const float co[3],
|
|
const float axis[3],
|
|
float angle);
|
|
|
|
/** \} */
|
|
|
|
/* -------------------------------------------------------------------- */
|
|
/** \name Normals
|
|
* \{ */
|
|
|
|
void accumulate_vertex_normals_tri_v3(float n1[3],
|
|
float n2[3],
|
|
float n3[3],
|
|
const float f_no[3],
|
|
const float co1[3],
|
|
const float co2[3],
|
|
const float co3[3]);
|
|
|
|
void accumulate_vertex_normals_v3(float n1[3],
|
|
float n2[3],
|
|
float n3[3],
|
|
float n4[3],
|
|
const float f_no[3],
|
|
const float co1[3],
|
|
const float co2[3],
|
|
const float co3[3],
|
|
const float co4[3]);
|
|
|
|
/**
|
|
* Add weighted face normal component into normals of the face vertices.
|
|
* Caller must pass pre-allocated vdiffs of nverts length.
|
|
*/
|
|
void accumulate_vertex_normals_poly_v3(
|
|
float **vertnos, const float polyno[3], const float **vertcos, float vdiffs[][3], int nverts);
|
|
|
|
/** \} */
|
|
|
|
/* -------------------------------------------------------------------- */
|
|
/** \name Tangents
|
|
* \{ */
|
|
|
|
void tangent_from_uv_v3(const float uv1[2],
|
|
const float uv2[2],
|
|
const float uv3[2],
|
|
const float co1[3],
|
|
const float co2[3],
|
|
const float co3[3],
|
|
const float n[3],
|
|
float r_tang[3]);
|
|
|
|
/** \} */
|
|
|
|
/* -------------------------------------------------------------------- */
|
|
/** \name Vector Clouds
|
|
* \{ */
|
|
|
|
/**
|
|
* Input:
|
|
*
|
|
* \param list_size: 4 lists as pointer to array[list_size]
|
|
* \param pos: current pos array of `new` positions
|
|
* \param weight: current weight array of `new`weights (may be NULL pointer if you have no weights)
|
|
* \param rpos: Reference rpos array of `old` positions
|
|
* \param rweight: Reference rweight array of `old` weights
|
|
* (may be NULL pointer if you have no weights).
|
|
*
|
|
* Output:
|
|
*
|
|
* \param lloc: Center of mass pos.
|
|
* \param rloc: Center of mass rpos.
|
|
* \param lrot: Rotation matrix.
|
|
* \param lscale: Scale matrix.
|
|
*
|
|
* pointers may be NULL if not needed
|
|
*/
|
|
void vcloud_estimate_transform_v3(int list_size,
|
|
const float (*pos)[3],
|
|
const float *weight,
|
|
const float (*rpos)[3],
|
|
const float *rweight,
|
|
float lloc[3],
|
|
float rloc[3],
|
|
float lrot[3][3],
|
|
float lscale[3][3]);
|
|
|
|
/** \} */
|
|
|
|
/* -------------------------------------------------------------------- */
|
|
/** \name Others
|
|
* \{ */
|
|
|
|
/**
|
|
* Same as axis_dominant_v3_to_m3, but flips the normal
|
|
*/
|
|
void axis_dominant_v3_to_m3_negate(float r_mat[3][3], const float normal[3]);
|
|
/**
|
|
* \brief Normal to x,y matrix
|
|
*
|
|
* Creates a 3x3 matrix from a normal.
|
|
* This matrix can be applied to vectors so their `z` axis runs along \a normal.
|
|
* In practice it means you can use x,y as 2d coords. \see
|
|
*
|
|
* \param r_mat: The matrix to return.
|
|
* \param normal: A unit length vector.
|
|
*/
|
|
void axis_dominant_v3_to_m3(float r_mat[3][3], const float normal[3]);
|
|
|
|
/**
|
|
* Get the 2 dominant axis values, 0==X, 1==Y, 2==Z.
|
|
*/
|
|
MINLINE void axis_dominant_v3(int *r_axis_a, int *r_axis_b, const float axis[3]);
|
|
/**
|
|
* Same as #axis_dominant_v3 but return the max value.
|
|
*/
|
|
MINLINE float axis_dominant_v3_max(int *r_axis_a,
|
|
int *r_axis_b,
|
|
const float axis[3]) ATTR_WARN_UNUSED_RESULT;
|
|
/**
|
|
* Get the single dominant axis value, 0==X, 1==Y, 2==Z.
|
|
*/
|
|
MINLINE int axis_dominant_v3_single(const float vec[3]);
|
|
/**
|
|
* The dominant axis of an orthogonal vector.
|
|
*/
|
|
MINLINE int axis_dominant_v3_ortho_single(const float vec[3]);
|
|
|
|
MINLINE int max_axis_v3(const float vec[3]);
|
|
MINLINE int min_axis_v3(const float vec[3]);
|
|
|
|
/**
|
|
* Simple function to either:
|
|
* - Calculate how many triangles needed from the total number of polygons + loops.
|
|
* - Calculate the first triangle index from the polygon index & that polygons loop-start.
|
|
*
|
|
* \param poly_count: The number of polygons or polygon-index
|
|
* (3+ sided faces, 1-2 sided give incorrect results).
|
|
* \param corner_count: The number of corners (also called loop-index).
|
|
*/
|
|
MINLINE int poly_to_tri_count(int poly_count, int corner_count);
|
|
|
|
/**
|
|
* Useful to calculate an even width shell, by taking the angle between 2 planes.
|
|
* The return value is a scale on the offset.
|
|
* no angle between planes is 1.0, as the angle between the 2 planes approaches 180d
|
|
* the distance gets very high, 180d would be inf, but this case isn't valid.
|
|
*/
|
|
MINLINE float shell_angle_to_dist(float angle);
|
|
/**
|
|
* Equivalent to `shell_angle_to_dist(angle_normalized_v3v3(a, b))`.
|
|
*/
|
|
MINLINE float shell_v3v3_normalized_to_dist(const float a[3], const float b[3]);
|
|
/**
|
|
* Equivalent to `shell_angle_to_dist(angle_normalized_v2v2(a, b))`.
|
|
*/
|
|
MINLINE float shell_v2v2_normalized_to_dist(const float a[2], const float b[2]);
|
|
/**
|
|
* Equivalent to `shell_angle_to_dist(angle_normalized_v3v3(a, b) / 2)`.
|
|
*/
|
|
MINLINE float shell_v3v3_mid_normalized_to_dist(const float a[3], const float b[3]);
|
|
/**
|
|
* Equivalent to `shell_angle_to_dist(angle_normalized_v2v2(a, b) / 2)`.
|
|
*/
|
|
MINLINE float shell_v2v2_mid_normalized_to_dist(const float a[2], const float b[2]);
|
|
|
|
/** \} */
|
|
|
|
/* -------------------------------------------------------------------- */
|
|
/** \name Cubic (Bezier)
|
|
* \{ */
|
|
|
|
/**
|
|
* Return the value which the distance between points will need to be scaled by,
|
|
* to define a handle, given both points are on a perfect circle.
|
|
*
|
|
* Use when we want a bezier curve to match a circle as closely as possible.
|
|
*
|
|
* \note the return value will need to be divided by 0.75 for correct results.
|
|
*/
|
|
float cubic_tangent_factor_circle_v3(const float tan_l[3], const float tan_r[3]);
|
|
|
|
/** \} */
|
|
|
|
/* -------------------------------------------------------------------- */
|
|
/** \name Geodesics
|
|
* \{ */
|
|
|
|
/**
|
|
* Utility for computing approximate geodesic distances on triangle meshes.
|
|
*
|
|
* Given triangle with vertex coordinates v0, v1, v2, and known geodesic distances
|
|
* dist1 and dist2 at v1 and v2, estimate a geodesic distance at vertex v0.
|
|
*
|
|
* From "Dart Throwing on Surfaces", EGSR 2009. Section 7, Geodesic Dart Throwing.
|
|
*/
|
|
float geodesic_distance_propagate_across_triangle(
|
|
const float v0[3], const float v1[3], const float v2[3], float dist1, float dist2);
|
|
|
|
/** \} */
|
|
|
|
/* -------------------------------------------------------------------- */
|
|
/** \name Inline Definitions
|
|
* \{ */
|
|
|
|
#if BLI_MATH_DO_INLINE
|
|
# include "intern/math_geom_inline.cc" // IWYU pragma: export
|
|
#endif
|
|
|
|
#ifdef BLI_MATH_GCC_WARN_PRAGMA
|
|
# pragma GCC diagnostic pop
|
|
#endif
|
|
|
|
/** \} */
|