Previously spell checker ignored text in single quotes however this meant incorrect spelling was ignored in text where it shouldn't have been. In cases single quotes were used for literal strings (such as variables, code & compiler flags), replace these with back-ticks. In cases they were used for UI labels, replace these with double quotes. In cases they were used to reference symbols, replace them with doxygens symbol link syntax (leading hash). Apply some spelling corrections & tweaks (for check_spelling_* targets).
642 lines
25 KiB
C
642 lines
25 KiB
C
/* SPDX-FileCopyrightText: 2001-2002 NaN Holding BV. All rights reserved.
|
|
*
|
|
* SPDX-License-Identifier: GPL-2.0-or-later */
|
|
|
|
#pragma once
|
|
|
|
/** \file
|
|
* \ingroup bli
|
|
*/
|
|
|
|
#include "BLI_compiler_attrs.h"
|
|
#include "BLI_math_inline.h"
|
|
#include "BLI_utildefines.h"
|
|
|
|
/* -------------------------------------------------------------------- */
|
|
/** \name Init
|
|
* \{ */
|
|
|
|
#ifdef BLI_MATH_GCC_WARN_PRAGMA
|
|
# pragma GCC diagnostic push
|
|
# pragma GCC diagnostic ignored "-Wredundant-decls"
|
|
#endif
|
|
|
|
MINLINE void zero_v2(float r[2]);
|
|
MINLINE void zero_v3(float r[3]);
|
|
MINLINE void zero_v4(float r[4]);
|
|
|
|
MINLINE void copy_v2_v2(float r[2], const float a[2]);
|
|
MINLINE void copy_v3_v3(float r[3], const float a[3]);
|
|
MINLINE void copy_v4_v4(float r[4], const float a[4]);
|
|
|
|
MINLINE void copy_v2_fl(float r[2], float f);
|
|
MINLINE void copy_v3_fl(float r[3], float f);
|
|
MINLINE void copy_v4_fl(float r[4], float f);
|
|
|
|
MINLINE void swap_v2_v2(float a[2], float b[2]);
|
|
MINLINE void swap_v3_v3(float a[3], float b[3]);
|
|
MINLINE void swap_v4_v4(float a[4], float b[4]);
|
|
|
|
/* unsigned char */
|
|
|
|
MINLINE void copy_v3_v3_uchar(unsigned char r[3], const unsigned char a[3]);
|
|
MINLINE void copy_v4_v4_uchar(unsigned char r[4], const unsigned char a[4]);
|
|
|
|
/* short */
|
|
|
|
MINLINE void copy_v2_v2_short(short r[2], const short a[2]);
|
|
MINLINE void copy_v3_v3_short(short r[3], const short a[3]);
|
|
|
|
/* int */
|
|
|
|
MINLINE void zero_v3_int(int r[3]);
|
|
MINLINE void copy_v2_v2_int(int r[2], const int a[2]);
|
|
MINLINE void copy_v3_v3_int(int r[3], const int a[3]);
|
|
MINLINE void copy_v4_v4_int(int r[4], const int a[4]);
|
|
|
|
/* double */
|
|
|
|
MINLINE void copy_v2_v2_db(double r[2], const double a[2]);
|
|
MINLINE void copy_v3_v3_db(double r[3], const double a[3]);
|
|
MINLINE void copy_v4_v4_db(double r[4], const double a[4]);
|
|
|
|
/* int <-> float */
|
|
|
|
MINLINE void copy_v2fl_v2i(float r[2], const int a[2]);
|
|
|
|
/* double -> float */
|
|
|
|
MINLINE void copy_v3fl_v3db(float r[3], const double a[3]);
|
|
MINLINE void copy_v4fl_v4db(float r[4], const double a[4]);
|
|
|
|
/* float -> double */
|
|
|
|
MINLINE void copy_v2db_v2fl(double r[2], const float a[2]);
|
|
MINLINE void copy_v3db_v3fl(double r[3], const float a[3]);
|
|
|
|
/* float args -> vec */
|
|
|
|
MINLINE void copy_v2_fl2(float v[2], float x, float y);
|
|
MINLINE void copy_v3_fl3(float v[3], float x, float y, float z);
|
|
MINLINE void copy_v4_fl4(float v[4], float x, float y, float z, float w);
|
|
|
|
/** \} */
|
|
|
|
/* -------------------------------------------------------------------- */
|
|
/** \name Arithmetic
|
|
* \{ */
|
|
|
|
MINLINE void add_v2_fl(float r[2], float f);
|
|
MINLINE void add_v3_fl(float r[3], float f);
|
|
MINLINE void add_v2_v2(float r[2], const float a[2]);
|
|
MINLINE void add_v2_v2v2(float r[2], const float a[2], const float b[2]);
|
|
MINLINE void add_v3_v3(float r[3], const float a[3]);
|
|
MINLINE void add_v3_v3_db(double r[3], const double a[3]);
|
|
MINLINE void add_v3_v3v3(float r[3], const float a[3], const float b[3]);
|
|
MINLINE void add_v4_v4(float r[4], const float a[4]);
|
|
|
|
MINLINE void add_v3fl_v3fl_v3i(float r[3], const float a[3], const int b[3]);
|
|
|
|
MINLINE void add_v3_uchar_clamped(uchar r[3], int i);
|
|
|
|
MINLINE void sub_v2_v2(float r[2], const float a[2]);
|
|
MINLINE void sub_v2_v2v2(float r[2], const float a[2], const float b[2]);
|
|
MINLINE void sub_v2_v2v2_db(double r[2], const double a[2], const double b[2]);
|
|
MINLINE void sub_v2_v2v2_int(int r[2], const int a[2], const int b[2]);
|
|
MINLINE void sub_v3_v3(float r[3], const float a[3]);
|
|
MINLINE void sub_v3_v3v3(float r[3], const float a[3], const float b[3]);
|
|
MINLINE void sub_v3_v3v3_int(int r[3], const int a[3], const int b[3]);
|
|
MINLINE void sub_v3_v3v3_db(double r[3], const double a[3], const double b[3]);
|
|
MINLINE void sub_v4_v4v4(float r[4], const float a[4], const float b[4]);
|
|
|
|
MINLINE void sub_v2db_v2fl_v2fl(double r[2], const float a[2], const float b[2]);
|
|
MINLINE void sub_v3db_v3fl_v3fl(double r[3], const float a[3], const float b[3]);
|
|
|
|
MINLINE void mul_v2_fl(float r[2], float f);
|
|
MINLINE void mul_v2_v2fl(float r[2], const float a[2], float f);
|
|
MINLINE void mul_v3_fl(float r[3], float f);
|
|
MINLINE void mul_v3db_db(double r[3], double f);
|
|
MINLINE void mul_v3_v3fl(float r[3], const float a[3], float f);
|
|
MINLINE void mul_v2_v2(float r[2], const float a[2]);
|
|
MINLINE void mul_v2_v2v2(float r[2], const float a[2], const float b[2]);
|
|
MINLINE void mul_v3_v3(float r[3], const float a[3]);
|
|
MINLINE void mul_v3_v3v3(float r[3], const float v1[3], const float v2[3]);
|
|
MINLINE void mul_v4_fl(float r[4], float f);
|
|
MINLINE void mul_v4_v4fl(float r[4], const float a[4], float f);
|
|
/**
|
|
* Convenience function to get the projected depth of a position.
|
|
* This avoids creating a temporary 4D vector and multiplying it - only for the 4th component.
|
|
*
|
|
* Matches logic for:
|
|
*
|
|
* \code{.c}
|
|
* float co_4d[4] = {co[0], co[1], co[2], 1.0};
|
|
* mul_m4_v4(mat, co_4d);
|
|
* return co_4d[3];
|
|
* \endcode
|
|
*/
|
|
MINLINE float mul_project_m4_v3_zfac(const float mat[4][4],
|
|
const float co[3]) ATTR_WARN_UNUSED_RESULT;
|
|
/**
|
|
* Has the effect of #mul_m3_v3(), on a single axis.
|
|
*/
|
|
MINLINE float dot_m3_v3_row_x(const float M[3][3], const float a[3]) ATTR_WARN_UNUSED_RESULT;
|
|
MINLINE float dot_m3_v3_row_y(const float M[3][3], const float a[3]) ATTR_WARN_UNUSED_RESULT;
|
|
MINLINE float dot_m3_v3_row_z(const float M[3][3], const float a[3]) ATTR_WARN_UNUSED_RESULT;
|
|
/**
|
|
* Has the effect of #mul_mat3_m4_v3(), on a single axis.
|
|
* (no adding translation)
|
|
*/
|
|
MINLINE float dot_m4_v3_row_x(const float M[4][4], const float a[3]) ATTR_WARN_UNUSED_RESULT;
|
|
MINLINE float dot_m4_v3_row_y(const float M[4][4], const float a[3]) ATTR_WARN_UNUSED_RESULT;
|
|
MINLINE float dot_m4_v3_row_z(const float M[4][4], const float a[3]) ATTR_WARN_UNUSED_RESULT;
|
|
|
|
MINLINE void madd_v2_v2fl(float r[2], const float a[2], float f);
|
|
MINLINE void madd_v3_v3fl(float r[3], const float a[3], float f);
|
|
MINLINE void madd_v2_v2v2fl(float r[2], const float a[2], const float b[2], float f);
|
|
MINLINE void madd_v3_v3v3fl(float r[3], const float a[3], const float b[3], float f);
|
|
MINLINE void madd_v3_v3v3v3(float r[3], const float a[3], const float b[3], const float c[3]);
|
|
MINLINE void madd_v4_v4fl(float r[4], const float a[4], float f);
|
|
|
|
MINLINE void madd_v3fl_v3fl_v3fl_v3i(float r[3],
|
|
const float a[3],
|
|
const float b[3],
|
|
const int c[3]);
|
|
|
|
MINLINE void negate_v2_v2(float r[2], const float a[2]);
|
|
MINLINE void negate_v3(float r[3]);
|
|
MINLINE void negate_v3_v3(float r[3], const float a[3]);
|
|
MINLINE void negate_v4(float r[4]);
|
|
MINLINE void negate_v4_v4(float r[4], const float a[4]);
|
|
|
|
/* could add more... */
|
|
|
|
MINLINE void negate_v3_db(double r[3]);
|
|
|
|
MINLINE void invert_v2(float r[2]);
|
|
MINLINE void invert_v3(float r[3]);
|
|
/**
|
|
* Invert the vector, but leaves zero values as zero.
|
|
*/
|
|
MINLINE void invert_v3_safe(float r[3]);
|
|
|
|
MINLINE float dot_v2v2(const float a[2], const float b[2]) ATTR_WARN_UNUSED_RESULT;
|
|
MINLINE double dot_v2v2_db(const double a[2], const double b[2]) ATTR_WARN_UNUSED_RESULT;
|
|
MINLINE float dot_v3v3(const float a[3], const float b[3]) ATTR_WARN_UNUSED_RESULT;
|
|
MINLINE float dot_v3v3v3(const float p[3],
|
|
const float a[3],
|
|
const float b[3]) ATTR_WARN_UNUSED_RESULT;
|
|
MINLINE float dot_v4v4(const float a[4], const float b[4]) ATTR_WARN_UNUSED_RESULT;
|
|
|
|
MINLINE double dot_v3db_v3fl(const double a[3], const float b[3]) ATTR_WARN_UNUSED_RESULT;
|
|
|
|
MINLINE double dot_v3v3_db(const double a[3], const double b[3]) ATTR_WARN_UNUSED_RESULT;
|
|
|
|
MINLINE float cross_v2v2(const float a[2], const float b[2]) ATTR_WARN_UNUSED_RESULT;
|
|
MINLINE double cross_v2v2_db(const double a[2], const double b[2]) ATTR_WARN_UNUSED_RESULT;
|
|
MINLINE void cross_v3_v3v3(float r[3], const float a[3], const float b[3]);
|
|
/**
|
|
* Cross product suffers from severe precision loss when vectors are
|
|
* nearly parallel or opposite; doing the computation in double helps a lot.
|
|
*/
|
|
MINLINE void cross_v3_v3v3_db(double r[3], const double a[3], const double b[3]);
|
|
|
|
/**
|
|
* Excuse this fairly specific function, its used for polygon normals all over the place
|
|
* (could use a better name).
|
|
*/
|
|
MINLINE void add_newell_cross_v3_v3v3(float n[3], const float v_prev[3], const float v_curr[3]);
|
|
|
|
/** \} */
|
|
|
|
/* -------------------------------------------------------------------- */
|
|
/** \name Length
|
|
* \{ */
|
|
|
|
MINLINE float len_squared_v2(const float v[2]) ATTR_WARN_UNUSED_RESULT;
|
|
MINLINE float len_squared_v3(const float v[3]) ATTR_WARN_UNUSED_RESULT;
|
|
MINLINE float len_manhattan_v2(const float v[2]) ATTR_WARN_UNUSED_RESULT;
|
|
MINLINE int len_manhattan_v2_int(const int v[2]) ATTR_WARN_UNUSED_RESULT;
|
|
MINLINE float len_manhattan_v3(const float v[3]) ATTR_WARN_UNUSED_RESULT;
|
|
MINLINE float len_v2(const float v[2]) ATTR_WARN_UNUSED_RESULT;
|
|
MINLINE double len_v2_db(const double v[2]) ATTR_WARN_UNUSED_RESULT;
|
|
MINLINE float len_v2v2(const float v1[2], const float v2[2]) ATTR_WARN_UNUSED_RESULT;
|
|
MINLINE double len_v2v2_db(const double v1[2], const double v2[2]) ATTR_WARN_UNUSED_RESULT;
|
|
MINLINE float len_v2v2_int(const int v1[2], const int v2[2]);
|
|
MINLINE float len_squared_v2v2(const float a[2], const float b[2]) ATTR_WARN_UNUSED_RESULT;
|
|
MINLINE float len_squared_v3v3(const float a[3], const float b[3]) ATTR_WARN_UNUSED_RESULT;
|
|
MINLINE float len_squared_v4v4(const float a[4], const float b[4]) ATTR_WARN_UNUSED_RESULT;
|
|
MINLINE float len_manhattan_v2v2(const float a[2], const float b[2]) ATTR_WARN_UNUSED_RESULT;
|
|
MINLINE int len_manhattan_v2v2_int(const int a[2], const int b[2]) ATTR_WARN_UNUSED_RESULT;
|
|
MINLINE float len_v3(const float a[3]) ATTR_WARN_UNUSED_RESULT;
|
|
MINLINE float len_v3v3(const float a[3], const float b[3]) ATTR_WARN_UNUSED_RESULT;
|
|
|
|
MINLINE float normalize_v2_length(float n[2], float unit_length);
|
|
/**
|
|
* \note any vectors containing `nan` will be zeroed out.
|
|
*/
|
|
MINLINE float normalize_v2_v2_length(float r[2], const float a[2], float unit_length);
|
|
MINLINE float normalize_v3_length(float n[3], float unit_length);
|
|
/**
|
|
* \note any vectors containing `nan` will be zeroed out.
|
|
*/
|
|
MINLINE float normalize_v3_v3_length(float r[3], const float a[3], float unit_length);
|
|
MINLINE double normalize_v3_length_db(double n[3], double unit_length);
|
|
|
|
MINLINE float normalize_v2(float n[2]);
|
|
MINLINE float normalize_v2_v2(float r[2], const float a[2]);
|
|
MINLINE float normalize_v3(float n[3]);
|
|
MINLINE float normalize_v3_v3(float r[3], const float a[3]);
|
|
MINLINE double normalize_v3_db(double n[3]);
|
|
|
|
/** \} */
|
|
|
|
/* -------------------------------------------------------------------- */
|
|
/** \name Interpolation
|
|
* \{ */
|
|
|
|
void interp_v2_v2v2(float r[2], const float a[2], const float b[2], float t);
|
|
void interp_v2_v2v2_db(double target[2], const double a[2], const double b[2], double t);
|
|
/**
|
|
* Weight 3 2D vectors,
|
|
* `w` must be unit length but is not a vector, just 3 weights.
|
|
*/
|
|
void interp_v2_v2v2v2(
|
|
float r[2], const float a[2], const float b[2], const float c[2], const float t[3]);
|
|
void interp_v3_v3v3(float r[3], const float a[3], const float b[3], float t);
|
|
void interp_v3_v3v3_db(double target[3], const double a[3], const double b[3], double t);
|
|
/**
|
|
* Weight 3 vectors,
|
|
* `w` must be unit length but is not a vector, just 3 weights.
|
|
*/
|
|
void interp_v3_v3v3v3(
|
|
float p[3], const float v1[3], const float v2[3], const float v3[3], const float w[3]);
|
|
/**
|
|
* Weight 3 vectors,
|
|
* `w` must be unit length but is not a vector, just 4 weights.
|
|
*/
|
|
void interp_v3_v3v3v3v3(float p[3],
|
|
const float v1[3],
|
|
const float v2[3],
|
|
const float v3[3],
|
|
const float v4[3],
|
|
const float w[4]);
|
|
void interp_v4_v4v4(float r[4], const float a[4], const float b[4], float t);
|
|
void interp_v4_v4v4v4(
|
|
float p[4], const float v1[4], const float v2[4], const float v3[4], const float w[3]);
|
|
void interp_v4_v4v4v4v4(float p[4],
|
|
const float v1[4],
|
|
const float v2[4],
|
|
const float v3[4],
|
|
const float v4[4],
|
|
const float w[4]);
|
|
void interp_v3_v3v3v3_uv(
|
|
float p[3], const float v1[3], const float v2[3], const float v3[3], const float uv[2]);
|
|
|
|
/**
|
|
* slerp, treat vectors as spherical coordinates
|
|
* \see #interp_qt_qtqt
|
|
*
|
|
* \return success
|
|
*/
|
|
bool interp_v3_v3v3_slerp(float target[3], const float a[3], const float b[3], float t)
|
|
ATTR_WARN_UNUSED_RESULT;
|
|
|
|
/**
|
|
* Same as #interp_v3_v3v3_slerp but uses fallback values for opposite vectors.
|
|
*/
|
|
void interp_v3_v3v3_slerp_safe(float target[3], const float a[3], const float b[3], float t);
|
|
|
|
/** Cubic curve interpolation (bezier spline). */
|
|
void interp_v2_v2v2v2v2_cubic(float p[2],
|
|
const float v1[2],
|
|
const float v2[2],
|
|
const float v3[2],
|
|
const float v4[2],
|
|
float u);
|
|
|
|
void interp_v3_v3v3_uchar(unsigned char target[3],
|
|
const unsigned char a[3],
|
|
const unsigned char b[3],
|
|
float t);
|
|
|
|
void mid_v3_v3v3(float r[3], const float a[3], const float b[3]);
|
|
void mid_v2_v2v2(float r[2], const float a[2], const float b[2]);
|
|
void mid_v3_v3v3v3(float v[3], const float v1[3], const float v2[3], const float v3[3]);
|
|
void mid_v2_v2v2v2(float v[2], const float v1[2], const float v2[2], const float v3[2]);
|
|
void mid_v3_v3v3v3v3(
|
|
float v[3], const float v1[3], const float v2[3], const float v3[3], const float v4[3]);
|
|
void mid_v3_v3_array(float r[3], const float (*vec_arr)[3], unsigned int vec_arr_num);
|
|
|
|
/**
|
|
* Specialized function for calculating normals.
|
|
* Fast-path for:
|
|
*
|
|
* \code{.c}
|
|
* add_v3_v3v3(r, a, b);
|
|
* normalize_v3(r)
|
|
* mul_v3_fl(r, angle_normalized_v3v3(a, b) / M_PI_2);
|
|
* \endcode
|
|
*
|
|
* We can use the length of (a + b) to calculate the angle.
|
|
*/
|
|
void mid_v3_v3v3_angle_weighted(float r[3], const float a[3], const float b[3]);
|
|
|
|
/** \} */
|
|
|
|
/* -------------------------------------------------------------------- */
|
|
/** \name Comparison
|
|
* \{ */
|
|
|
|
MINLINE bool is_zero_v2(const float v[2]) ATTR_WARN_UNUSED_RESULT;
|
|
MINLINE bool is_zero_v3(const float v[3]) ATTR_WARN_UNUSED_RESULT;
|
|
MINLINE bool is_zero_v4(const float v[4]) ATTR_WARN_UNUSED_RESULT;
|
|
|
|
MINLINE bool is_finite_v2(const float v[2]) ATTR_WARN_UNUSED_RESULT;
|
|
MINLINE bool is_finite_v3(const float v[3]) ATTR_WARN_UNUSED_RESULT;
|
|
MINLINE bool is_finite_v4(const float v[4]) ATTR_WARN_UNUSED_RESULT;
|
|
|
|
MINLINE bool is_one_v3(const float v[3]) ATTR_WARN_UNUSED_RESULT;
|
|
|
|
MINLINE bool equals_v2v2(const float v1[2], const float v2[2]) ATTR_WARN_UNUSED_RESULT;
|
|
MINLINE bool equals_v3v3(const float v1[3], const float v2[3]) ATTR_WARN_UNUSED_RESULT;
|
|
MINLINE bool equals_v4v4(const float v1[4], const float v2[4]) ATTR_WARN_UNUSED_RESULT;
|
|
|
|
MINLINE bool equals_v4v4_int(const int v1[4], const int v2[4]) ATTR_WARN_UNUSED_RESULT;
|
|
|
|
MINLINE bool compare_v2v2(const float v1[2],
|
|
const float v2[2],
|
|
float limit) ATTR_WARN_UNUSED_RESULT;
|
|
MINLINE bool compare_v3v3(const float v1[3],
|
|
const float v2[3],
|
|
float limit) ATTR_WARN_UNUSED_RESULT;
|
|
MINLINE bool compare_v4v4(const float v1[4],
|
|
const float v2[4],
|
|
float limit) ATTR_WARN_UNUSED_RESULT;
|
|
|
|
MINLINE bool compare_len_v3v3(const float v1[3],
|
|
const float v2[3],
|
|
float limit) ATTR_WARN_UNUSED_RESULT;
|
|
|
|
MINLINE bool compare_size_v3v3(const float v1[3],
|
|
const float v2[3],
|
|
float limit) ATTR_WARN_UNUSED_RESULT;
|
|
|
|
/**
|
|
* <pre>
|
|
* + l1
|
|
* |
|
|
* neg <- | -> pos
|
|
* |
|
|
* + l2
|
|
* </pre>
|
|
*
|
|
* \return Positive value when `pt` is left-of-line
|
|
* (looking from `l1` -> `l2`).
|
|
*/
|
|
MINLINE float line_point_side_v2(const float l1[2],
|
|
const float l2[2],
|
|
const float pt[2]) ATTR_WARN_UNUSED_RESULT;
|
|
|
|
/** \} */
|
|
|
|
/* -------------------------------------------------------------------- */
|
|
/** \name Angles
|
|
* \{ */
|
|
|
|
/* - angle with 2 arguments is angle between vector.
|
|
* - angle with 3 arguments is angle between 3 points at the middle point.
|
|
* - angle_normalized_* is faster equivalent if vectors are normalized.
|
|
*/
|
|
|
|
/**
|
|
* Return the shortest angle in radians between the 2 vectors.
|
|
*/
|
|
float angle_v2v2(const float a[2], const float b[2]) ATTR_WARN_UNUSED_RESULT;
|
|
float angle_signed_v2v2(const float v1[2], const float v2[2]) ATTR_WARN_UNUSED_RESULT;
|
|
float angle_v2v2v2(const float a[2], const float b[2], const float c[2]) ATTR_WARN_UNUSED_RESULT;
|
|
float angle_normalized_v2v2(const float a[2], const float b[2]) ATTR_WARN_UNUSED_RESULT;
|
|
/**
|
|
* Return the shortest angle in radians between the 2 vectors.
|
|
*/
|
|
float angle_v3v3(const float a[3], const float b[3]) ATTR_WARN_UNUSED_RESULT;
|
|
/**
|
|
* Return the angle in radians between vecs 1-2 and 2-3 in radians
|
|
* If v1 is a shoulder, v2 is the elbow and v3 is the hand,
|
|
* this would return the angle at the elbow.
|
|
*
|
|
* note that when v1/v2/v3 represent 3 points along a straight line
|
|
* that the angle returned will be pi (180deg), rather than 0.0.
|
|
*/
|
|
float angle_v3v3v3(const float a[3], const float b[3], const float c[3]) ATTR_WARN_UNUSED_RESULT;
|
|
/**
|
|
* Quicker than full angle computation.
|
|
*/
|
|
float cos_v3v3v3(const float p1[3], const float p2[3], const float p3[3]) ATTR_WARN_UNUSED_RESULT;
|
|
/**
|
|
* Quicker than full angle computation.
|
|
*/
|
|
float cos_v2v2v2(const float p1[2], const float p2[2], const float p3[2]) ATTR_WARN_UNUSED_RESULT;
|
|
/**
|
|
* Angle between 2 vectors, about an axis (axis can be considered a plane).
|
|
*/
|
|
float angle_on_axis_v3v3_v3(const float v1[3],
|
|
const float v2[3],
|
|
const float axis[3]) ATTR_WARN_UNUSED_RESULT;
|
|
float angle_signed_on_axis_v3v3_v3(const float v1[3],
|
|
const float v2[3],
|
|
const float axis[3]) ATTR_WARN_UNUSED_RESULT;
|
|
float angle_normalized_v3v3(const float v1[3], const float v2[3]) ATTR_WARN_UNUSED_RESULT;
|
|
/**
|
|
* Angle between 2 vectors defined by 3 coords, about an axis (axis can be considered a plane).
|
|
*/
|
|
float angle_on_axis_v3v3v3_v3(const float v1[3],
|
|
const float v2[3],
|
|
const float v3[3],
|
|
const float axis[3]) ATTR_WARN_UNUSED_RESULT;
|
|
float angle_signed_on_axis_v3v3v3_v3(const float v1[3],
|
|
const float v2[3],
|
|
const float v3[3],
|
|
const float axis[3]) ATTR_WARN_UNUSED_RESULT;
|
|
void angle_tri_v3(float angles[3], const float v1[3], const float v2[3], const float v3[3]);
|
|
void angle_quad_v3(
|
|
float angles[4], const float v1[3], const float v2[3], const float v3[3], const float v4[3]);
|
|
void angle_poly_v3(float *angles, const float *verts[3], int len);
|
|
|
|
/** \} */
|
|
|
|
/* -------------------------------------------------------------------- */
|
|
/** \name Geometry
|
|
* \{ */
|
|
|
|
/**
|
|
* Project \a p onto \a v_proj
|
|
*/
|
|
void project_v2_v2v2(float out[2], const float p[2], const float v_proj[2]);
|
|
/**
|
|
* Project \a p onto \a v_proj
|
|
*/
|
|
void project_v3_v3v3(float out[3], const float p[3], const float v_proj[3]);
|
|
/**
|
|
* Project \a p onto a unit length \a v_proj
|
|
*/
|
|
void project_v2_v2v2_normalized(float out[2], const float p[2], const float v_proj[2]);
|
|
/**
|
|
* Project \a p onto a unit length \a v_proj
|
|
*/
|
|
void project_v3_v3v3_normalized(float out[3], const float p[3], const float v_proj[3]);
|
|
/**
|
|
* In this case plane is a 3D vector only (no 4th component).
|
|
*
|
|
* Projecting will make \a out a copy of \a p orthogonal to \a v_plane.
|
|
*
|
|
* \note If \a p is exactly perpendicular to \a v_plane, \a out will just be a copy of \a p.
|
|
*
|
|
* \note This function is a convenience to call:
|
|
* \code{.c}
|
|
* project_v3_v3v3(out, p, v_plane);
|
|
* sub_v3_v3v3(out, p, out);
|
|
* \endcode
|
|
*/
|
|
void project_plane_v3_v3v3(float out[3], const float p[3], const float v_plane[3]);
|
|
void project_plane_normalized_v3_v3v3(float out[3], const float p[3], const float v_plane[3]);
|
|
/**
|
|
* Project a vector on a plane defined by normal and a plane point p.
|
|
*/
|
|
void project_v3_plane(float out[3], const float plane_no[3], const float plane_co[3]);
|
|
/**
|
|
* Returns a reflection vector from a vector and a normal vector
|
|
* reflect = vec - ((2 * dot(vec, mirror)) * mirror).
|
|
*
|
|
* <pre>
|
|
* v
|
|
* + ^
|
|
* \ |
|
|
* \|
|
|
* + normal: axis of reflection
|
|
* /
|
|
* /
|
|
* +
|
|
* out: result (negate for a "bounce").
|
|
* </pre>
|
|
*/
|
|
void reflect_v3_v3v3(float out[3], const float v[3], const float normal[3]);
|
|
/**
|
|
* Takes a vector and computes 2 orthogonal directions.
|
|
*
|
|
* \note if \a n is n unit length, computed values will be too.
|
|
*/
|
|
void ortho_basis_v3v3_v3(float r_n1[3], float r_n2[3], const float n[3]);
|
|
/**
|
|
* Calculates \a p - a perpendicular vector to \a v
|
|
*
|
|
* \note return vector won't maintain same length.
|
|
*/
|
|
void ortho_v3_v3(float out[3], const float v[3]);
|
|
/**
|
|
* Trivial compared to v3, include for consistency.
|
|
*/
|
|
void ortho_v2_v2(float out[2], const float v[2]);
|
|
/**
|
|
* Returns a vector bisecting the angle at b formed by a, b and c.
|
|
*/
|
|
void bisect_v3_v3v3v3(float r[3], const float a[3], const float b[3], const float c[3]);
|
|
/**
|
|
* Rotate a point \a p by \a angle around origin (0, 0)
|
|
*/
|
|
void rotate_v2_v2fl(float r[2], const float p[2], float angle);
|
|
void rotate_v3_v3v3fl(float r[3], const float p[3], const float axis[3], float angle);
|
|
/**
|
|
* Rotate a point \a p by \a angle around an arbitrary unit length \a axis.
|
|
* http://local.wasp.uwa.edu.au/~pbourke/geometry/
|
|
*/
|
|
void rotate_normalized_v3_v3v3fl(float out[3], const float p[3], const float axis[3], float angle);
|
|
|
|
/** \} */
|
|
|
|
/* -------------------------------------------------------------------- */
|
|
/** \name Other
|
|
* \{ */
|
|
|
|
void print_v2(const char *str, const float v[2]);
|
|
void print_v3(const char *str, const float v[3]);
|
|
void print_v4(const char *str, const float v[4]);
|
|
void print_vn(const char *str, const float v[], int n);
|
|
|
|
#define print_v2_id(v) print_v2(STRINGIFY(v), v)
|
|
#define print_v3_id(v) print_v3(STRINGIFY(v), v)
|
|
#define print_v4_id(v) print_v4(STRINGIFY(v), v)
|
|
#define print_vn_id(v, n) print_vn(STRINGIFY(v), v, n)
|
|
|
|
MINLINE void normal_short_to_float_v3(float out[3], const short in[3]);
|
|
MINLINE void normal_float_to_short_v3(short out[3], const float in[3]);
|
|
|
|
void minmax_v4v4_v4(float min[4], float max[4], const float vec[4]);
|
|
void minmax_v3v3_v3(float min[3], float max[3], const float vec[3]);
|
|
void minmax_v2v2_v2(float min[2], float max[2], const float vec[2]);
|
|
|
|
/** ensure \a v1 is \a dist from \a v2 */
|
|
void dist_ensure_v3_v3fl(float v1[3], const float v2[3], float dist);
|
|
void dist_ensure_v2_v2fl(float v1[2], const float v2[2], float dist);
|
|
|
|
void axis_sort_v3(const float axis_values[3], int r_axis_order[3]);
|
|
|
|
MINLINE void clamp_v2(float vec[2], float min, float max);
|
|
MINLINE void clamp_v3(float vec[3], float min, float max);
|
|
MINLINE void clamp_v4(float vec[4], float min, float max);
|
|
|
|
/** \} */
|
|
|
|
/* -------------------------------------------------------------------- */
|
|
/** \name Array Functions
|
|
*
|
|
* Follow fixed length vector function conventions.
|
|
* \{ */
|
|
|
|
double dot_vn_vn(const float *array_src_a,
|
|
const float *array_src_b,
|
|
int size) ATTR_WARN_UNUSED_RESULT;
|
|
double len_squared_vn(const float *array, int size) ATTR_WARN_UNUSED_RESULT;
|
|
float normalize_vn_vn(float *array_tar, const float *array_src, int size);
|
|
float normalize_vn(float *array_tar, int size);
|
|
void range_vn_i(int *array_tar, int size, int start);
|
|
void range_vn_u(unsigned int *array_tar, int size, unsigned int start);
|
|
void range_vn_fl(float *array_tar, int size, float start, float step);
|
|
void negate_vn(float *array_tar, int size);
|
|
void negate_vn_vn(float *array_tar, const float *array_src, int size);
|
|
void mul_vn_vn(float *array_tar, const float *array_src, int size);
|
|
void mul_vn_vnvn(float *array_tar, const float *array_src_a, const float *array_src_b, int size);
|
|
void mul_vn_fl(float *array_tar, int size, float f);
|
|
void mul_vn_vn_fl(float *array_tar, const float *array_src, int size, float f);
|
|
void add_vn_vn(float *array_tar, const float *array_src, int size);
|
|
void add_vn_vnvn(float *array_tar, const float *array_src_a, const float *array_src_b, int size);
|
|
void sub_vn_vn(float *array_tar, const float *array_src, int size);
|
|
void sub_vn_vnvn(float *array_tar, const float *array_src_a, const float *array_src_b, int size);
|
|
void interp_vn_vn(float *array_tar, const float *array_src, float t, int size);
|
|
void copy_vn_i(int *array_tar, int size, int val);
|
|
void copy_vn_short(short *array_tar, int size, short val);
|
|
void copy_vn_fl(float *array_tar, int size, float val);
|
|
|
|
void add_vn_vn_d(double *array_tar, const double *array_src, int size);
|
|
void add_vn_vnvn_d(double *array_tar,
|
|
const double *array_src_a,
|
|
const double *array_src_b,
|
|
int size);
|
|
void mul_vn_db(double *array_tar, int size, double f);
|
|
|
|
/** \} */
|
|
|
|
/* -------------------------------------------------------------------- */
|
|
/** \name Inline Definitions
|
|
* \{ */
|
|
|
|
#if BLI_MATH_DO_INLINE
|
|
# include "intern/math_vector_inline.cc" // IWYU pragma: export
|
|
#endif
|
|
|
|
#ifdef BLI_MATH_GCC_WARN_PRAGMA
|
|
# pragma GCC diagnostic pop
|
|
#endif
|
|
|
|
/** \} */
|