Files
Bastien Montagne bc80ef136e Big Endian Support Removal.
This commit implements #125759.

It removes:
* Blender does not build on big endian systems anymore.
* Support for opening blendfiles written from a big endian system is
  removed.

It keeps:
* Support to generate thumbnails from big endian blendfiles.
* BE support in `extern` or `intern` libraries, including Cycles.
* Support to open big endian versions of third party file formats:
  - PLY files.
  - Some image files (cineon, ...).

Pull Request: https://projects.blender.org/blender/blender/pulls/140138
2025-06-12 10:37:47 +02:00

409 lines
8.3 KiB
C++

/* SPDX-FileCopyrightText: 2001-2002 NaN Holding BV. All rights reserved.
*
* SPDX-License-Identifier: GPL-2.0-or-later */
/** \file
* \ingroup bli
*/
#include <cmath>
#include <cstdlib>
#include <cstring>
#include <ctime>
#include <random>
#include "MEM_guardedalloc.h"
#include "BLI_bitmap.h"
#include "BLI_compiler_compat.h"
#include "BLI_math_vector.h"
#include "BLI_noise.h"
#include "BLI_rand.h"
#include "BLI_rand.hh"
#include "BLI_sys_types.h"
#include "BLI_threads.h"
#include "BLI_strict_flags.h" /* IWYU pragma: keep. Keep last. */
#define hash BLI_noise_hash_uchar_512
/**
* Random Number Generator.
*/
struct RNG {
blender::RandomNumberGenerator rng;
MEM_CXX_CLASS_ALLOC_FUNCS("RNG")
};
RNG *BLI_rng_new(uint seed)
{
RNG *rng = new RNG();
rng->rng.seed(seed);
return rng;
}
RNG *BLI_rng_new_srandom(uint seed)
{
RNG *rng = new RNG();
rng->rng.seed_random(seed);
return rng;
}
void BLI_rng_free(RNG *rng)
{
delete rng;
}
void BLI_rng_seed(RNG *rng, uint seed)
{
rng->rng.seed(seed);
}
void BLI_rng_srandom(RNG *rng, uint seed)
{
rng->rng.seed_random(seed);
}
void BLI_rng_get_char_n(RNG *rng, char *bytes, size_t bytes_len)
{
rng->rng.get_bytes(blender::MutableSpan(bytes, int64_t(bytes_len)));
}
int BLI_rng_get_int(RNG *rng)
{
return rng->rng.get_int32();
}
uint BLI_rng_get_uint(RNG *rng)
{
return rng->rng.get_uint32();
}
double BLI_rng_get_double(RNG *rng)
{
return rng->rng.get_double();
}
float BLI_rng_get_float(RNG *rng)
{
return rng->rng.get_float();
}
void BLI_rng_get_tri_sample_float_v2(
RNG *rng, const float v1[2], const float v2[2], const float v3[2], float r_pt[2])
{
copy_v2_v2(r_pt, rng->rng.get_triangle_sample(v1, v2, v3));
}
void BLI_rng_shuffle_array(RNG *rng, void *data, uint elem_size_i, uint elem_num)
{
if (elem_num <= 1) {
return;
}
const uint elem_size = elem_size_i;
uint i = elem_num;
void *temp = malloc(elem_size);
while (i--) {
const uint j = BLI_rng_get_uint(rng) % elem_num;
if (i != j) {
void *iElem = (uchar *)data + i * elem_size_i;
void *jElem = (uchar *)data + j * elem_size_i;
memcpy(temp, iElem, elem_size);
memcpy(iElem, jElem, elem_size);
memcpy(jElem, temp, elem_size);
}
}
free(temp);
}
void BLI_rng_shuffle_bitmap(RNG *rng, BLI_bitmap *bitmap, uint bits_num)
{
if (bits_num <= 1) {
return;
}
uint i = bits_num;
while (i--) {
const uint j = BLI_rng_get_uint(rng) % bits_num;
if (i != j) {
const bool i_bit = BLI_BITMAP_TEST(bitmap, i);
const bool j_bit = BLI_BITMAP_TEST(bitmap, j);
BLI_BITMAP_SET(bitmap, i, j_bit);
BLI_BITMAP_SET(bitmap, j, i_bit);
}
}
}
void BLI_rng_skip(RNG *rng, int n)
{
rng->rng.skip(uint(n));
}
/***/
float BLI_hash_frand(uint seed)
{
RNG rng;
BLI_rng_srandom(&rng, seed);
return BLI_rng_get_float(&rng);
}
void BLI_array_randomize(void *data, uint elem_size, uint elem_num, uint seed)
{
RNG rng;
BLI_rng_seed(&rng, seed);
BLI_rng_shuffle_array(&rng, data, elem_size, elem_num);
}
void BLI_bitmap_randomize(BLI_bitmap *bitmap, uint bits_num, uint seed)
{
RNG rng;
BLI_rng_seed(&rng, seed);
BLI_rng_shuffle_bitmap(&rng, bitmap, bits_num);
}
/* ********* for threaded random ************** */
struct RNG_THREAD_ARRAY {
std::array<RNG, BLENDER_MAX_THREADS> rng_tab;
};
RNG_THREAD_ARRAY *BLI_rng_threaded_new()
{
uint i;
RNG_THREAD_ARRAY *rngarr = MEM_new<RNG_THREAD_ARRAY>("random_array");
for (i = 0; i < BLENDER_MAX_THREADS; i++) {
BLI_rng_srandom(&rngarr->rng_tab[i], uint(clock()));
}
return rngarr;
}
void BLI_rng_threaded_free(RNG_THREAD_ARRAY *rngarr)
{
MEM_delete(rngarr);
}
int BLI_rng_thread_rand(RNG_THREAD_ARRAY *rngarr, int thread)
{
return BLI_rng_get_int(&rngarr->rng_tab[size_t(thread)]);
}
/* ********* Low-discrepancy sequences ************** */
/* incremental halton sequence generator, from:
* "Instant Radiosity", Keller A. */
BLI_INLINE double halton_ex(double invprimes, double *offset)
{
double e = fabs((1.0 - *offset) - 1e-10);
if (invprimes >= e) {
double lasth;
double h = invprimes;
do {
lasth = h;
h *= invprimes;
} while (h >= e);
*offset += ((lasth + h) - 1.0);
}
else {
*offset += invprimes;
}
return *offset;
}
void BLI_halton_1d(uint prime, double offset, int n, double *r)
{
const double invprime = 1.0 / double(prime);
*r = 0.0;
for (int s = 0; s < n; s++) {
*r = halton_ex(invprime, &offset);
}
}
void BLI_halton_2d(const uint prime[2], double offset[2], int n, double *r)
{
const double invprimes[2] = {1.0 / double(prime[0]), 1.0 / double(prime[1])};
r[0] = r[1] = 0.0;
for (int s = 0; s < n; s++) {
for (int i = 0; i < 2; i++) {
r[i] = halton_ex(invprimes[i], &offset[i]);
}
}
}
void BLI_halton_3d(const uint prime[3], double offset[3], int n, double *r)
{
const double invprimes[3] = {
1.0 / double(prime[0]), 1.0 / double(prime[1]), 1.0 / double(prime[2])};
r[0] = r[1] = r[2] = 0.0;
for (int s = 0; s < n; s++) {
for (int i = 0; i < 3; i++) {
r[i] = halton_ex(invprimes[i], &offset[i]);
}
}
}
/* From "Sampling with Hammersley and Halton Points" TT Wong
* Appendix: Source Code 1 */
BLI_INLINE double radical_inverse(uint n)
{
double u = 0;
/* This reverse the bit-wise representation
* around the decimal point. */
for (double p = 0.5; n; p *= 0.5, n >>= 1) {
if (n & 1) {
u += p;
}
}
return u;
}
void BLI_hammersley_1d(uint n, double *r)
{
*r = radical_inverse(n);
}
namespace blender {
RandomNumberGenerator RandomNumberGenerator::from_random_seed()
{
std::random_device rd;
std::mt19937 e{rd()};
std::uniform_int_distribution<uint32_t> dist;
const uint32_t seed = dist(e);
return RandomNumberGenerator(seed);
}
void RandomNumberGenerator::seed_random(uint32_t seed)
{
this->seed(seed + hash[seed & 255]);
seed = this->get_uint32();
this->seed(seed + hash[seed & 255]);
seed = this->get_uint32();
this->seed(seed + hash[seed & 255]);
}
int RandomNumberGenerator::round_probabilistic(float x)
{
/* Support for negative values can be added when necessary. */
BLI_assert(x >= 0.0f);
const float round_up_probability = fractf(x);
const bool round_up = round_up_probability > this->get_float();
return int(x) + int(round_up);
}
float2 RandomNumberGenerator::get_unit_float2()
{
float a = float(M_PI * 2.0) * this->get_float();
return {cosf(a), sinf(a)};
}
float3 RandomNumberGenerator::get_unit_float3()
{
float z = (2.0f * this->get_float()) - 1.0f;
float r = 1.0f - z * z;
if (r > 0.0f) {
float a = float(M_PI * 2.0) * this->get_float();
r = sqrtf(r);
float x = r * cosf(a);
float y = r * sinf(a);
return {x, y, z};
}
return {0.0f, 0.0f, 1.0f};
}
float2 RandomNumberGenerator::get_triangle_sample(float2 v1, float2 v2, float2 v3)
{
float u = this->get_float();
float v = this->get_float();
if (u + v > 1.0f) {
u = 1.0f - u;
v = 1.0f - v;
}
float2 side_u = v2 - v1;
float2 side_v = v3 - v1;
float2 sample = v1;
sample += side_u * u;
sample += side_v * v;
return sample;
}
float3 RandomNumberGenerator::get_triangle_sample_3d(float3 v1, float3 v2, float3 v3)
{
float u = this->get_float();
float v = this->get_float();
if (u + v > 1.0f) {
u = 1.0f - u;
v = 1.0f - v;
}
float3 side_u = v2 - v1;
float3 side_v = v3 - v1;
float3 sample = v1;
sample += side_u * u;
sample += side_v * v;
return sample;
}
void RandomNumberGenerator::get_bytes(MutableSpan<char> r_bytes)
{
constexpr int64_t mask_bytes = 2;
constexpr int64_t rand_stride = int64_t(sizeof(x_)) - mask_bytes;
int64_t last_len = 0;
int64_t trim_len = r_bytes.size();
if (trim_len > rand_stride) {
last_len = trim_len % rand_stride;
trim_len = trim_len - last_len;
}
else {
trim_len = 0;
last_len = r_bytes.size();
}
const char *data_src = (const char *)&x_;
int64_t i = 0;
while (i != trim_len) {
BLI_assert(i < trim_len);
/* NOTE: this is endianness-sensitive.
* Big Endian needs to iterate in reverse, with a `mask_bytes - 1` offset. */
for (int64_t j = 0; j != rand_stride; j++) {
r_bytes[i++] = data_src[j];
}
this->step();
}
if (last_len) {
for (int64_t j = 0; j != last_len; j++) {
r_bytes[i++] = data_src[j];
}
}
}
} // namespace blender