Files
Hans Goudey b20ecee555 Mesh: Move freestyle tags to generic attributes
This commit moves the freestyle edge and face mark tags to become
generic attributes, similar to other changes over the past years. The
attributes are called "freestyle_edge" and "freestyle_face", and they're
now propagated like regular boolean attributes.

Compatibility wise, forward and backward blend file compatibility are
maintained (for forward compatibility this is implemented a bit
differently than in the past because of the ongoing `AttributeStorage`
transition). In the Python API, `use_freestyle_mark` has been removed;
the attribute API should be used instead (just like bevel weights).
The BMesh (`freestyle`) accessors are removed too.

The conversions benefit from the fact that bit-wise, the old structs are
the same as `bool`, so we can convert to the old and new formats without
reallocating arrays.

Pull Request: https://projects.blender.org/blender/blender/pulls/141996
2025-07-16 18:26:26 +02:00

821 lines
23 KiB
C++

/* SPDX-FileCopyrightText: 2008-2023 Blender Authors
*
* SPDX-License-Identifier: GPL-2.0-or-later */
/** \file
* \ingroup freestyle
*/
#include "BlenderFileLoader.h"
#include "DNA_meshdata_types.h"
#include "BLI_math_geom.h"
#include "BLI_math_matrix.h"
#include "BLI_math_vector.h"
#include "BLI_utildefines.h"
#include "BKE_attribute.hh"
#include "BKE_customdata.hh"
#include "BKE_global.hh"
#include "BKE_mesh.hh"
#include "BKE_object.hh"
#include <sstream>
using blender::float3;
using blender::Span;
namespace Freestyle {
BlenderFileLoader::BlenderFileLoader(Render *re, ViewLayer *view_layer, Depsgraph *depsgraph)
{
_re = re;
_depsgraph = depsgraph;
_Scene = nullptr;
_numFacesRead = 0;
#if 0
_minEdgeSize = DBL_MAX;
#endif
_smooth = (view_layer->freestyle_config.flags & FREESTYLE_FACE_SMOOTHNESS_FLAG) != 0;
_pRenderMonitor = nullptr;
}
BlenderFileLoader::~BlenderFileLoader()
{
_Scene = nullptr;
}
NodeGroup *BlenderFileLoader::Load()
{
if (G.debug & G_DEBUG_FREESTYLE) {
cout << "\n=== Importing triangular meshes into Blender ===" << endl;
}
// creation of the scene root node
_Scene = new NodeGroup;
if (_re->clip_start < 0.0f) {
// Adjust clipping start/end and set up a Z offset when the viewport preview
// is used with the orthographic view. In this case, _re->clip_start is negative,
// while Freestyle assumes that imported mesh data are in the camera coordinate
// system with the view point located at origin [bug #36009].
_z_near = -0.001f;
_z_offset = _re->clip_start + _z_near;
_z_far = -_re->clip_end + _z_offset;
}
else {
_z_near = -_re->clip_start;
_z_far = -_re->clip_end;
_z_offset = 0.0f;
}
int id = 0;
const eEvaluationMode eval_mode = DEG_get_mode(_depsgraph);
DEGObjectIterSettings deg_iter_settings{};
deg_iter_settings.depsgraph = _depsgraph;
deg_iter_settings.flags = DEG_ITER_OBJECT_FLAG_LINKED_DIRECTLY |
DEG_ITER_OBJECT_FLAG_LINKED_VIA_SET | DEG_ITER_OBJECT_FLAG_VISIBLE |
DEG_ITER_OBJECT_FLAG_DUPLI;
DEG_OBJECT_ITER_BEGIN (&deg_iter_settings, ob) {
if (_pRenderMonitor && _pRenderMonitor->testBreak()) {
break;
}
if ((ob->base_flag & (BASE_HOLDOUT | BASE_INDIRECT_ONLY)) ||
(ob->visibility_flag & OB_HOLDOUT))
{
continue;
}
if (!(BKE_object_visibility(ob, eval_mode) & OB_VISIBLE_SELF)) {
continue;
}
/* Evaluated meta-balls will appear as mesh objects in the iterator. */
if (ob->type == OB_MBALL) {
continue;
}
Mesh *mesh = BKE_object_to_mesh(nullptr, ob, false);
if (mesh) {
insertShapeNode(ob, mesh, ++id);
BKE_object_to_mesh_clear(ob);
}
}
DEG_OBJECT_ITER_END;
// Return the built scene.
return _Scene;
}
#define CLIPPED_BY_NEAR -1
#define NOT_CLIPPED 0
#define CLIPPED_BY_FAR 1
// check if each vertex of a triangle (V1, V2, V3) is clipped by the near/far plane
// and calculate the number of triangles to be generated by clipping
int BlenderFileLoader::countClippedFaces(float v1[3], float v2[3], float v3[3], int clip[3])
{
float *v[3];
int numClipped, sum, numTris = 0;
v[0] = v1;
v[1] = v2;
v[2] = v3;
numClipped = sum = 0;
for (int i = 0; i < 3; i++) {
if (v[i][2] > _z_near) {
clip[i] = CLIPPED_BY_NEAR;
numClipped++;
}
else if (v[i][2] < _z_far) {
clip[i] = CLIPPED_BY_FAR;
numClipped++;
}
else {
clip[i] = NOT_CLIPPED;
}
#if 0
if (G.debug & G_DEBUG_FREESTYLE) {
printf("%d %s\n",
i,
(clip[i] == NOT_CLIPPED) ? "not" :
(clip[i] == CLIPPED_BY_NEAR) ? "near" :
"far");
}
#endif
sum += clip[i];
}
switch (numClipped) {
case 0:
numTris = 1; // triangle
break;
case 1:
numTris = 2; // tetragon
break;
case 2:
if (sum == 0) {
numTris = 3; // pentagon
}
else {
numTris = 1; // triangle
}
break;
case 3:
if (ELEM(sum, 3, -3)) {
numTris = 0;
}
else {
numTris = 2; // tetragon
}
break;
}
return numTris;
}
// find the intersection point C between the line segment from V1 to V2 and
// a clipping plane at depth Z (i.e., the Z component of C is known, while
// the X and Y components are unknown).
void BlenderFileLoader::clipLine(float v1[3], float v2[3], float c[3], float z)
{
// Order v1 and v2 by Z values to make sure that clipLine(P, Q, c, z)
// and clipLine(Q, P, c, z) gives exactly the same numerical result.
float *p, *q;
if (v1[2] < v2[2]) {
p = v1;
q = v2;
}
else {
p = v2;
q = v1;
}
double d[3];
for (int i = 0; i < 3; i++) {
d[i] = q[i] - p[i];
}
double t = (z - p[2]) / d[2];
c[0] = p[0] + t * d[0];
c[1] = p[1] + t * d[1];
c[2] = z;
}
// clip the triangle (V1, V2, V3) by the near and far clipping plane and
// obtain a set of vertices after the clipping. The number of vertices
// is at most 5.
void BlenderFileLoader::clipTriangle(int numTris,
float triCoords[][3],
float v1[3],
float v2[3],
float v3[3],
float triNormals[][3],
float n1[3],
float n2[3],
float n3[3],
bool edgeMarks[5],
bool em1,
bool em2,
bool em3,
const int clip[3])
{
float *v[3], *n[3];
bool em[3];
int i, j, k;
v[0] = v1;
n[0] = n1;
v[1] = v2;
n[1] = n2;
v[2] = v3;
n[2] = n3;
em[0] = em1; /* edge mark of the edge between v1 and v2 */
em[1] = em2; /* edge mark of the edge between v2 and v3 */
em[2] = em3; /* edge mark of the edge between v3 and v1 */
k = 0;
for (i = 0; i < 3; i++) {
j = (i + 1) % 3;
if (clip[i] == NOT_CLIPPED) {
copy_v3_v3(triCoords[k], v[i]);
copy_v3_v3(triNormals[k], n[i]);
edgeMarks[k] = em[i];
k++;
if (clip[j] != NOT_CLIPPED) {
clipLine(v[i], v[j], triCoords[k], (clip[j] == CLIPPED_BY_NEAR) ? _z_near : _z_far);
copy_v3_v3(triNormals[k], n[j]);
edgeMarks[k] = false;
k++;
}
}
else if (clip[i] != clip[j]) {
if (clip[j] == NOT_CLIPPED) {
clipLine(v[i], v[j], triCoords[k], (clip[i] == CLIPPED_BY_NEAR) ? _z_near : _z_far);
copy_v3_v3(triNormals[k], n[i]);
edgeMarks[k] = em[i];
k++;
}
else {
clipLine(v[i], v[j], triCoords[k], (clip[i] == CLIPPED_BY_NEAR) ? _z_near : _z_far);
copy_v3_v3(triNormals[k], n[i]);
edgeMarks[k] = em[i];
k++;
clipLine(v[i], v[j], triCoords[k], (clip[j] == CLIPPED_BY_NEAR) ? _z_near : _z_far);
copy_v3_v3(triNormals[k], n[j]);
edgeMarks[k] = false;
k++;
}
}
}
BLI_assert(k == 2 + numTris);
(void)numTris; /* Ignored in release builds. */
}
void BlenderFileLoader::addTriangle(LoaderState *ls,
float v1[3],
float v2[3],
float v3[3],
float n1[3],
float n2[3],
float n3[3],
bool fm,
bool em1,
bool em2,
bool em3)
{
float *fv[3], *fn[3];
#if 0
float len;
#endif
uint i, j;
IndexedFaceSet::FaceEdgeMark marks = 0;
// initialize the bounding box by the first vertex
if (ls->currentIndex == 0) {
copy_v3_v3(ls->minBBox, v1);
copy_v3_v3(ls->maxBBox, v1);
}
fv[0] = v1;
fn[0] = n1;
fv[1] = v2;
fn[1] = n2;
fv[2] = v3;
fn[2] = n3;
for (i = 0; i < 3; i++) {
copy_v3_v3(ls->pv, fv[i]);
copy_v3_v3(ls->pn, fn[i]);
// update the bounding box
for (j = 0; j < 3; j++) {
if (ls->minBBox[j] > ls->pv[j]) {
ls->minBBox[j] = ls->pv[j];
}
if (ls->maxBBox[j] < ls->pv[j]) {
ls->maxBBox[j] = ls->pv[j];
}
}
#if 0
len = len_v3v3(fv[i], fv[(i + 1) % 3]);
if (_minEdgeSize > len) {
_minEdgeSize = len;
}
#endif
*ls->pvi = ls->currentIndex;
*ls->pni = ls->currentIndex;
*ls->pmi = ls->currentMIndex;
ls->currentIndex += 3;
ls->pv += 3;
ls->pn += 3;
ls->pvi++;
ls->pni++;
ls->pmi++;
}
if (fm) {
marks |= IndexedFaceSet::FACE_MARK;
}
if (em1) {
marks |= IndexedFaceSet::EDGE_MARK_V1V2;
}
if (em2) {
marks |= IndexedFaceSet::EDGE_MARK_V2V3;
}
if (em3) {
marks |= IndexedFaceSet::EDGE_MARK_V3V1;
}
*(ls->pm++) = marks;
}
// With A, B and P indicating the three vertices of a given triangle, returns:
// 1 if points A and B are in the same position in the 3D space;
// 2 if the distance between point P and line segment AB is zero; and
// zero otherwise.
int BlenderFileLoader::testDegenerateTriangle(float v1[3], float v2[3], float v3[3])
{
const float eps = 1.0e-6;
const float eps_sq = eps * eps;
#if 0
float area = area_tri_v3(v1, v2, v3);
bool verbose = (area < 1.0e-6);
#endif
if (equals_v3v3(v1, v2) || equals_v3v3(v2, v3) || equals_v3v3(v1, v3)) {
#if 0
if (verbose && G.debug & G_DEBUG_FREESTYLE) {
printf("BlenderFileLoader::testDegenerateTriangle = 1\n");
}
#endif
return 1;
}
if (dist_squared_to_line_segment_v3(v1, v2, v3) < eps_sq ||
dist_squared_to_line_segment_v3(v2, v1, v3) < eps_sq ||
dist_squared_to_line_segment_v3(v3, v1, v2) < eps_sq)
{
#if 0
if (verbose && G.debug & G_DEBUG_FREESTYLE) {
printf("BlenderFileLoader::testDegenerateTriangle = 2\n");
}
#endif
return 2;
}
#if 0
if (verbose && G.debug & G_DEBUG_FREESTYLE) {
printf("BlenderFileLoader::testDegenerateTriangle = 0\n");
}
#endif
return 0;
}
static bool testEdgeMark(Mesh *mesh,
const blender::VArray<bool> &fed,
const blender::int3 &tri,
int i)
{
const Span<blender::int2> edges = mesh->edges();
const Span<int> corner_verts = mesh->corner_verts();
const Span<int> corner_edges = mesh->corner_edges();
const int corner = tri[i];
const int corner_next = tri[(i + 1) % 3];
const blender::int2 &edge = edges[corner_edges[corner]];
if (!ELEM(corner_verts[corner_next], edge[0], edge[1])) {
/* Not an edge in the original mesh before triangulation. */
return false;
}
return fed[corner_edges[corner]];
}
void BlenderFileLoader::insertShapeNode(Object *ob, Mesh *mesh, int id)
{
using namespace blender;
char *name = ob->id.name + 2;
const Span<float3> vert_positions = mesh->vert_positions();
const OffsetIndices mesh_polys = mesh->faces();
const Span<int> corner_verts = mesh->corner_verts();
// Compute loop triangles
int tottri = poly_to_tri_count(mesh->faces_num, mesh->corners_num);
blender::int3 *corner_tris = MEM_malloc_arrayN<blender::int3>(size_t(tottri), __func__);
blender::bke::mesh::corner_tris_calc(
vert_positions, mesh_polys, corner_verts, {corner_tris, tottri});
const blender::Span<int> tri_faces = mesh->corner_tri_faces();
const blender::Span<blender::float3> corner_normals = mesh->corner_normals();
const bke::AttributeAccessor attributes = mesh->attributes();
// Get other mesh data
const VArray<bool> fed = *attributes.lookup_or_default<bool>(
"freestyle_edge", bke::AttrDomain::Edge, false);
const VArray<bool> ffa = *attributes.lookup_or_default<bool>(
"freestyle_face", bke::AttrDomain::Face, false);
// Compute view matrix
Object *ob_camera_eval = DEG_get_evaluated(_depsgraph, RE_GetCamera(_re));
float viewinv[4][4], viewmat[4][4];
RE_GetCameraModelMatrix(_re, ob_camera_eval, viewinv);
invert_m4_m4(viewmat, viewinv);
// Compute matrix including camera transform
float obmat[4][4], nmat[4][4];
mul_m4_m4m4(obmat, viewmat, ob->object_to_world().ptr());
invert_m4_m4(nmat, obmat);
transpose_m4(nmat);
// We count the number of triangles after the clipping by the near and far view
// planes is applied (NOTE: mesh vertices are in the camera coordinate system).
uint numFaces = 0;
float v1[3], v2[3], v3[3];
float n1[3], n2[3], n3[3], facenormal[3];
int clip[3];
for (int a = 0; a < tottri; a++) {
const int3 &tri = corner_tris[a];
copy_v3_v3(v1, vert_positions[corner_verts[tri[0]]]);
copy_v3_v3(v2, vert_positions[corner_verts[tri[1]]]);
copy_v3_v3(v3, vert_positions[corner_verts[tri[2]]]);
mul_m4_v3(obmat, v1);
mul_m4_v3(obmat, v2);
mul_m4_v3(obmat, v3);
v1[2] += _z_offset;
v2[2] += _z_offset;
v3[2] += _z_offset;
numFaces += countClippedFaces(v1, v2, v3, clip);
}
#if 0
if (G.debug & G_DEBUG_FREESTYLE) {
cout << "numFaces " << numFaces << endl;
}
#endif
if (numFaces == 0) {
MEM_freeN(corner_tris);
return;
}
// We allocate memory for the meshes to be imported
NodeGroup *currentMesh = new NodeGroup;
NodeShape *shape = new NodeShape;
uint vSize = 3 * 3 * numFaces;
float *vertices = new float[vSize];
uint nSize = vSize;
float *normals = new float[nSize];
uint *numVertexPerFaces = new uint[numFaces];
vector<Material *> meshMaterials;
vector<FrsMaterial> meshFrsMaterials;
IndexedFaceSet::TRIANGLES_STYLE *faceStyle = new IndexedFaceSet::TRIANGLES_STYLE[numFaces];
uint i;
for (i = 0; i < numFaces; i++) {
faceStyle[i] = IndexedFaceSet::TRIANGLES;
numVertexPerFaces[i] = 3;
}
IndexedFaceSet::FaceEdgeMark *faceEdgeMarks = new IndexedFaceSet::FaceEdgeMark[numFaces];
uint viSize = 3 * numFaces;
uint *VIndices = new uint[viSize];
uint niSize = viSize;
uint *NIndices = new uint[niSize];
uint *MIndices = new uint[viSize]; // Material Indices
LoaderState ls;
ls.pv = vertices;
ls.pn = normals;
ls.pm = faceEdgeMarks;
ls.pvi = VIndices;
ls.pni = NIndices;
ls.pmi = MIndices;
ls.currentIndex = 0;
ls.currentMIndex = 0;
FrsMaterial tmpMat;
const VArray<int> material_indices = *attributes.lookup_or_default<int>(
"material_index", bke::AttrDomain::Face, 0);
const VArray<bool> sharp_faces = *attributes.lookup_or_default<bool>(
"sharp_face", bke::AttrDomain::Face, false);
// We parse the vlak nodes again and import meshes while applying the clipping
// by the near and far view planes.
for (int a = 0; a < tottri; a++) {
const int3 &tri = corner_tris[a];
const int poly_i = tri_faces[a];
Material *mat = BKE_object_material_get(ob, material_indices[poly_i] + 1);
copy_v3_v3(v1, vert_positions[corner_verts[tri[0]]]);
copy_v3_v3(v2, vert_positions[corner_verts[tri[1]]]);
copy_v3_v3(v3, vert_positions[corner_verts[tri[2]]]);
mul_m4_v3(obmat, v1);
mul_m4_v3(obmat, v2);
mul_m4_v3(obmat, v3);
v1[2] += _z_offset;
v2[2] += _z_offset;
v3[2] += _z_offset;
if (_smooth && (!sharp_faces[poly_i])) {
copy_v3_v3(n1, corner_normals[tri[0]]);
copy_v3_v3(n2, corner_normals[tri[1]]);
copy_v3_v3(n3, corner_normals[tri[2]]);
mul_mat3_m4_v3(nmat, n1);
mul_mat3_m4_v3(nmat, n2);
mul_mat3_m4_v3(nmat, n3);
normalize_v3(n1);
normalize_v3(n2);
normalize_v3(n3);
}
else {
normal_tri_v3(facenormal, v3, v2, v1);
copy_v3_v3(n1, facenormal);
copy_v3_v3(n2, facenormal);
copy_v3_v3(n3, facenormal);
}
uint numTris = countClippedFaces(v1, v2, v3, clip);
if (numTris == 0) {
continue;
}
bool fm = ffa[poly_i];
bool em1 = false, em2 = false, em3 = false;
if (fed) {
em1 = testEdgeMark(mesh, fed, tri, 0);
em2 = testEdgeMark(mesh, fed, tri, 1);
em3 = testEdgeMark(mesh, fed, tri, 2);
}
if (mat) {
tmpMat.setLine(mat->line_col[0], mat->line_col[1], mat->line_col[2], mat->line_col[3]);
tmpMat.setDiffuse(mat->r, mat->g, mat->b, 1.0f);
tmpMat.setSpecular(mat->specr, mat->specg, mat->specb, 1.0f);
tmpMat.setShininess(128.0f);
tmpMat.setPriority(mat->line_priority);
}
if (meshMaterials.empty()) {
meshMaterials.push_back(mat);
meshFrsMaterials.push_back(tmpMat);
shape->setFrsMaterial(tmpMat);
}
else {
// find if the Blender material is already in the list
uint i = 0;
bool found = false;
for (vector<Material *>::iterator it = meshMaterials.begin(), itend = meshMaterials.end();
it != itend;
it++, i++)
{
if (*it == mat) {
ls.currentMIndex = i;
found = true;
break;
}
}
if (!found) {
meshMaterials.push_back(mat);
meshFrsMaterials.push_back(tmpMat);
ls.currentMIndex = meshFrsMaterials.size() - 1;
}
}
float triCoords[5][3], triNormals[5][3];
bool edgeMarks[5]; // edgeMarks[i] is for the edge between i-th and (i+1)-th vertices
clipTriangle(
numTris, triCoords, v1, v2, v3, triNormals, n1, n2, n3, edgeMarks, em1, em2, em3, clip);
for (i = 0; i < numTris; i++) {
addTriangle(&ls,
triCoords[0],
triCoords[i + 1],
triCoords[i + 2],
triNormals[0],
triNormals[i + 1],
triNormals[i + 2],
fm,
(i == 0) ? edgeMarks[0] : false,
edgeMarks[i + 1],
(i == numTris - 1) ? edgeMarks[i + 2] : false);
_numFacesRead++;
}
}
MEM_freeN(corner_tris);
// We might have several times the same vertex. We want a clean
// shape with no real-vertex. Here, we are making a cleaning pass.
float *cleanVertices = nullptr;
uint cvSize;
uint *cleanVIndices = nullptr;
GeomCleaner::CleanIndexedVertexArray(
vertices, vSize, VIndices, viSize, &cleanVertices, &cvSize, &cleanVIndices);
float *cleanNormals = nullptr;
uint cnSize;
uint *cleanNIndices = nullptr;
GeomCleaner::CleanIndexedVertexArray(
normals, nSize, NIndices, niSize, &cleanNormals, &cnSize, &cleanNIndices);
// format materials array
FrsMaterial **marray = new FrsMaterial *[meshFrsMaterials.size()];
uint mindex = 0;
for (vector<FrsMaterial>::iterator m = meshFrsMaterials.begin(), mend = meshFrsMaterials.end();
m != mend;
++m)
{
marray[mindex] = new FrsMaterial(*m);
++mindex;
}
// deallocates memory:
delete[] vertices;
delete[] normals;
delete[] VIndices;
delete[] NIndices;
// Fix for degenerated triangles
// A degenerate triangle is a triangle such that
// 1) A and B are in the same position in the 3D space; or
// 2) the distance between point P and line segment AB is zero.
// Only those degenerate triangles in the second form are resolved here
// by adding a small offset to P, whereas those in the first form are
// addressed later in WShape::MakeFace().
vector<detri_t> detriList;
Vec3r zero(0.0, 0.0, 0.0);
uint vi0, vi1, vi2;
for (i = 0; i < viSize; i += 3) {
detri_t detri;
vi0 = cleanVIndices[i];
vi1 = cleanVIndices[i + 1];
vi2 = cleanVIndices[i + 2];
Vec3r v0(cleanVertices[vi0], cleanVertices[vi0 + 1], cleanVertices[vi0 + 2]);
Vec3r v1(cleanVertices[vi1], cleanVertices[vi1 + 1], cleanVertices[vi1 + 2]);
Vec3r v2(cleanVertices[vi2], cleanVertices[vi2 + 1], cleanVertices[vi2 + 2]);
if (v0 == v1 || v0 == v2 || v1 == v2) {
continue; // do nothing for now
}
if (GeomUtils::distPointSegment<Vec3r>(v0, v1, v2) < 1.0e-6) {
detri.viP = vi0;
detri.viA = vi1;
detri.viB = vi2;
}
else if (GeomUtils::distPointSegment<Vec3r>(v1, v0, v2) < 1.0e-6) {
detri.viP = vi1;
detri.viA = vi0;
detri.viB = vi2;
}
else if (GeomUtils::distPointSegment<Vec3r>(v2, v0, v1) < 1.0e-6) {
detri.viP = vi2;
detri.viA = vi0;
detri.viB = vi1;
}
else {
continue;
}
detri.v = zero;
detri.n = 0;
for (uint j = 0; j < viSize; j += 3) {
if (i == j) {
continue;
}
vi0 = cleanVIndices[j];
vi1 = cleanVIndices[j + 1];
vi2 = cleanVIndices[j + 2];
Vec3r v0(cleanVertices[vi0], cleanVertices[vi0 + 1], cleanVertices[vi0 + 2]);
Vec3r v1(cleanVertices[vi1], cleanVertices[vi1 + 1], cleanVertices[vi1 + 2]);
Vec3r v2(cleanVertices[vi2], cleanVertices[vi2 + 1], cleanVertices[vi2 + 2]);
if (detri.viP == vi0 && (detri.viA == vi1 || detri.viB == vi1)) {
detri.v += (v2 - v0);
detri.n++;
}
else if (detri.viP == vi0 && (detri.viA == vi2 || detri.viB == vi2)) {
detri.v += (v1 - v0);
detri.n++;
}
else if (detri.viP == vi1 && (detri.viA == vi0 || detri.viB == vi0)) {
detri.v += (v2 - v1);
detri.n++;
}
else if (detri.viP == vi1 && (detri.viA == vi2 || detri.viB == vi2)) {
detri.v += (v0 - v1);
detri.n++;
}
else if (detri.viP == vi2 && (detri.viA == vi0 || detri.viB == vi0)) {
detri.v += (v1 - v2);
detri.n++;
}
else if (detri.viP == vi2 && (detri.viA == vi1 || detri.viB == vi1)) {
detri.v += (v0 - v2);
detri.n++;
}
}
if (detri.n > 0) {
detri.v.normalizeSafe();
}
detriList.push_back(detri);
}
if (!detriList.empty()) {
vector<detri_t>::iterator v;
for (v = detriList.begin(); v != detriList.end(); v++) {
detri_t detri = (*v);
if (detri.n == 0) {
cleanVertices[detri.viP] = cleanVertices[detri.viA];
cleanVertices[detri.viP + 1] = cleanVertices[detri.viA + 1];
cleanVertices[detri.viP + 2] = cleanVertices[detri.viA + 2];
}
else if (detri.v.norm() > 0.0) {
cleanVertices[detri.viP] += 1.0e-5 * detri.v.x();
cleanVertices[detri.viP + 1] += 1.0e-5 * detri.v.y();
cleanVertices[detri.viP + 2] += 1.0e-5 * detri.v.z();
}
}
if (G.debug & G_DEBUG_FREESTYLE) {
printf("Warning: Object %s contains %lu degenerated triangle%s (strokes may be incorrect)\n",
name,
ulong(detriList.size()),
(detriList.size() > 1) ? "s" : "");
}
}
// Create the IndexedFaceSet with the retrieved attributes
IndexedFaceSet *rep;
rep = new IndexedFaceSet(cleanVertices,
cvSize,
cleanNormals,
cnSize,
marray,
meshFrsMaterials.size(),
nullptr,
0,
numFaces,
numVertexPerFaces,
faceStyle,
faceEdgeMarks,
cleanVIndices,
viSize,
cleanNIndices,
niSize,
MIndices,
viSize,
nullptr,
0,
0);
// sets the id of the rep
rep->setId(Id(id, 0));
rep->setName(ob->id.name + 2);
rep->setLibraryPath(ob->id.lib ? ob->id.lib->filepath : "");
const BBox<Vec3r> bbox = BBox<Vec3r>(Vec3r(ls.minBBox[0], ls.minBBox[1], ls.minBBox[2]),
Vec3r(ls.maxBBox[0], ls.maxBBox[1], ls.maxBBox[2]));
rep->setBBox(bbox);
shape->AddRep(rep);
currentMesh->AddChild(shape);
_Scene->AddChild(currentMesh);
}
} /* namespace Freestyle */