Files
test2/source/blender/imbuf/intern/conversion.cc
Aras Pranckevicius 44b7d7592d ImBuf: multi-thread IMB_byte_from_float / IMB_float_from_byte
Both were largely or completely single threaded.

They are used in various places, but testing their usage in VSE
compositor modifier branch (!139634), applying a default "do nothing"
compositor modifier on a 1080p image (on Ryzen 5950X):
51.4ms -> 12.2ms

Details about IMB_byte_from_float:
- No longer allocate a full new float buffer, instead do all work in
  a local small (32KB size, half of typical L1 cache) job-local buffer.
- Previous code was doing un-premultiply + OCIO + premultiply
  + un-premultiply again. That is pointless; just do
  un-premultiply once.

Details about IMB_float_from_byte / IMB_float_from_byte_ex:
- Remove incorrect code around"allocate float buffer outside of image
  buffer" since it was not actually true to begin with.
- Inside threaded part, do color space conversion and premultiply at
  once per-scanline, so that data stays in CPU caches more.

Pull Request: https://projects.blender.org/blender/blender/pulls/145716
2025-09-05 18:59:18 +02:00

819 lines
27 KiB
C++

/* SPDX-FileCopyrightText: 2001-2002 NaN Holding BV. All rights reserved.
* SPDX-FileCopyrightText: 2024 Blender Authors
*
* SPDX-License-Identifier: GPL-2.0-or-later */
/** \file
* \ingroup imbuf
*/
#include "BLI_array.hh"
#include "BLI_rect.h"
#include "BLI_task.hh"
#include "IMB_filter.hh"
#include "IMB_imbuf.hh"
#include "IMB_imbuf_types.hh"
#include "IMB_colormanagement.hh"
#include "IMB_colormanagement_intern.hh"
#include "MEM_guardedalloc.h"
#include "OCIO_colorspace.hh"
/* -------------------------------------------------------------------- */
/** \name Generic Buffer Conversion
* \{ */
MINLINE void ushort_to_byte_v4(uchar b[4], const ushort us[4])
{
b[0] = unit_ushort_to_uchar(us[0]);
b[1] = unit_ushort_to_uchar(us[1]);
b[2] = unit_ushort_to_uchar(us[2]);
b[3] = unit_ushort_to_uchar(us[3]);
}
MINLINE uchar ftochar(float value)
{
return unit_float_to_uchar_clamp(value);
}
MINLINE void ushort_to_byte_dither_v4(uchar b[4], const ushort us[4], float dither, int x, int y)
{
#define USHORTTOFLOAT(val) (float(val) / 65535.0f)
float dither_value = dither_random_value(x, y) * 0.0033f * dither;
b[0] = ftochar(dither_value + USHORTTOFLOAT(us[0]));
b[1] = ftochar(dither_value + USHORTTOFLOAT(us[1]));
b[2] = ftochar(dither_value + USHORTTOFLOAT(us[2]));
b[3] = unit_ushort_to_uchar(us[3]);
#undef USHORTTOFLOAT
}
MINLINE void float_to_byte_dither_v4(uchar b[4], const float f[4], float dither, int x, int y)
{
float dither_value = dither_random_value(x, y) * 0.0033f * dither;
b[0] = ftochar(dither_value + f[0]);
b[1] = ftochar(dither_value + f[1]);
b[2] = ftochar(dither_value + f[2]);
b[3] = unit_float_to_uchar_clamp(f[3]);
}
bool IMB_alpha_affects_rgb(const ImBuf *ibuf)
{
return ibuf && (ibuf->flags & IB_alphamode_channel_packed) == 0;
}
void IMB_buffer_byte_from_float(uchar *rect_to,
const float *rect_from,
int channels_from,
float dither,
int profile_to,
int profile_from,
bool predivide,
int width,
int height,
int stride_to,
int stride_from,
int start_y)
{
float tmp[4];
int x, y;
/* we need valid profiles */
BLI_assert(profile_to != IB_PROFILE_NONE);
BLI_assert(profile_from != IB_PROFILE_NONE);
for (y = 0; y < height; y++) {
if (channels_from == 1) {
/* single channel input */
const float *from = rect_from + size_t(stride_from) * y;
uchar *to = rect_to + size_t(stride_to) * y * 4;
for (x = 0; x < width; x++, from++, to += 4) {
to[0] = to[1] = to[2] = to[3] = unit_float_to_uchar_clamp(from[0]);
}
}
else if (channels_from == 3) {
/* RGB input */
const float *from = rect_from + size_t(stride_from) * y * 3;
uchar *to = rect_to + size_t(stride_to) * y * 4;
if (profile_to == profile_from) {
/* no color space conversion */
for (x = 0; x < width; x++, from += 3, to += 4) {
rgb_float_to_uchar(to, from);
to[3] = 255;
}
}
else if (profile_to == IB_PROFILE_SRGB) {
/* convert from linear to sRGB */
for (x = 0; x < width; x++, from += 3, to += 4) {
linearrgb_to_srgb_v3_v3(tmp, from);
rgb_float_to_uchar(to, tmp);
to[3] = 255;
}
}
else if (profile_to == IB_PROFILE_LINEAR_RGB) {
/* convert from sRGB to linear */
for (x = 0; x < width; x++, from += 3, to += 4) {
srgb_to_linearrgb_v3_v3(tmp, from);
rgb_float_to_uchar(to, tmp);
to[3] = 255;
}
}
}
else if (channels_from == 4) {
/* RGBA input */
const float *from = rect_from + size_t(stride_from) * y * 4;
uchar *to = rect_to + size_t(stride_to) * y * 4;
if (profile_to == profile_from) {
/* no color space conversion */
if (dither && predivide) {
float straight[4];
for (x = 0; x < width; x++, from += 4, to += 4) {
premul_to_straight_v4_v4(straight, from);
float_to_byte_dither_v4(to, straight, dither, x, y + start_y);
}
}
else if (dither) {
for (x = 0; x < width; x++, from += 4, to += 4) {
float_to_byte_dither_v4(to, from, dither, x, y + start_y);
}
}
else if (predivide) {
for (x = 0; x < width; x++, from += 4, to += 4) {
premul_float_to_straight_uchar(to, from);
}
}
else {
for (x = 0; x < width; x++, from += 4, to += 4) {
rgba_float_to_uchar(to, from);
}
}
}
else if (profile_to == IB_PROFILE_SRGB) {
/* convert from linear to sRGB */
ushort us[4];
float straight[4];
if (dither && predivide) {
for (x = 0; x < width; x++, from += 4, to += 4) {
premul_to_straight_v4_v4(straight, from);
linearrgb_to_srgb_ushort4(us, from);
ushort_to_byte_dither_v4(to, us, dither, x, y + start_y);
}
}
else if (dither) {
for (x = 0; x < width; x++, from += 4, to += 4) {
linearrgb_to_srgb_ushort4(us, from);
ushort_to_byte_dither_v4(to, us, dither, x, y + start_y);
}
}
else if (predivide) {
for (x = 0; x < width; x++, from += 4, to += 4) {
premul_to_straight_v4_v4(straight, from);
linearrgb_to_srgb_ushort4(us, from);
ushort_to_byte_v4(to, us);
}
}
else {
for (x = 0; x < width; x++, from += 4, to += 4) {
linearrgb_to_srgb_ushort4(us, from);
ushort_to_byte_v4(to, us);
}
}
}
else if (profile_to == IB_PROFILE_LINEAR_RGB) {
/* convert from sRGB to linear */
if (dither && predivide) {
for (x = 0; x < width; x++, from += 4, to += 4) {
srgb_to_linearrgb_predivide_v4(tmp, from);
float_to_byte_dither_v4(to, tmp, dither, x, y + start_y);
}
}
else if (dither) {
for (x = 0; x < width; x++, from += 4, to += 4) {
srgb_to_linearrgb_v4(tmp, from);
float_to_byte_dither_v4(to, tmp, dither, x, y + start_y);
}
}
else if (predivide) {
for (x = 0; x < width; x++, from += 4, to += 4) {
srgb_to_linearrgb_predivide_v4(tmp, from);
rgba_float_to_uchar(to, tmp);
}
}
else {
for (x = 0; x < width; x++, from += 4, to += 4) {
srgb_to_linearrgb_v4(tmp, from);
rgba_float_to_uchar(to, tmp);
}
}
}
}
}
}
void IMB_buffer_byte_from_float_mask(uchar *rect_to,
const float *rect_from,
int channels_from,
float dither,
bool predivide,
int width,
int height,
int stride_to,
int stride_from,
char *mask)
{
int x, y;
for (y = 0; y < height; y++) {
if (channels_from == 1) {
/* single channel input */
const float *from = rect_from + size_t(stride_from) * y;
uchar *to = rect_to + size_t(stride_to) * y * 4;
for (x = 0; x < width; x++, from++, to += 4) {
if (*mask++ == FILTER_MASK_USED) {
to[0] = to[1] = to[2] = to[3] = unit_float_to_uchar_clamp(from[0]);
}
}
}
else if (channels_from == 3) {
/* RGB input */
const float *from = rect_from + size_t(stride_from) * y * 3;
uchar *to = rect_to + size_t(stride_to) * y * 4;
for (x = 0; x < width; x++, from += 3, to += 4) {
if (*mask++ == FILTER_MASK_USED) {
rgb_float_to_uchar(to, from);
to[3] = 255;
}
}
}
else if (channels_from == 4) {
/* RGBA input */
const float *from = rect_from + size_t(stride_from) * y * 4;
uchar *to = rect_to + size_t(stride_to) * y * 4;
if (dither && predivide) {
float straight[4];
for (x = 0; x < width; x++, from += 4, to += 4) {
if (*mask++ == FILTER_MASK_USED) {
premul_to_straight_v4_v4(straight, from);
float_to_byte_dither_v4(to, straight, dither, x, y);
}
}
}
else if (dither) {
for (x = 0; x < width; x++, from += 4, to += 4) {
if (*mask++ == FILTER_MASK_USED) {
float_to_byte_dither_v4(to, from, dither, x, y);
}
}
}
else if (predivide) {
for (x = 0; x < width; x++, from += 4, to += 4) {
if (*mask++ == FILTER_MASK_USED) {
premul_float_to_straight_uchar(to, from);
}
}
}
else {
for (x = 0; x < width; x++, from += 4, to += 4) {
if (*mask++ == FILTER_MASK_USED) {
rgba_float_to_uchar(to, from);
}
}
}
}
}
}
void IMB_buffer_float_from_byte(float *rect_to,
const uchar *rect_from,
int profile_to,
int profile_from,
bool predivide,
int width,
int height,
int stride_to,
int stride_from)
{
float tmp[4];
int x, y;
/* we need valid profiles */
BLI_assert(profile_to != IB_PROFILE_NONE);
BLI_assert(profile_from != IB_PROFILE_NONE);
/* RGBA input */
for (y = 0; y < height; y++) {
const uchar *from = rect_from + size_t(stride_from) * y * 4;
float *to = rect_to + size_t(stride_to) * y * 4;
if (profile_to == profile_from) {
/* no color space conversion */
for (x = 0; x < width; x++, from += 4, to += 4) {
rgba_uchar_to_float(to, from);
}
}
else if (profile_to == IB_PROFILE_LINEAR_RGB) {
/* convert sRGB to linear */
if (predivide) {
for (x = 0; x < width; x++, from += 4, to += 4) {
srgb_to_linearrgb_uchar4_predivide(to, from);
}
}
else {
for (x = 0; x < width; x++, from += 4, to += 4) {
srgb_to_linearrgb_uchar4(to, from);
}
}
}
else if (profile_to == IB_PROFILE_SRGB) {
/* convert linear to sRGB */
if (predivide) {
for (x = 0; x < width; x++, from += 4, to += 4) {
rgba_uchar_to_float(tmp, from);
linearrgb_to_srgb_predivide_v4(to, tmp);
}
}
else {
for (x = 0; x < width; x++, from += 4, to += 4) {
rgba_uchar_to_float(tmp, from);
linearrgb_to_srgb_v4(to, tmp);
}
}
}
}
}
void IMB_buffer_float_from_float(float *rect_to,
const float *rect_from,
int channels_from,
int profile_to,
int profile_from,
bool predivide,
int width,
int height,
int stride_to,
int stride_from)
{
int x, y;
/* we need valid profiles */
BLI_assert(profile_to != IB_PROFILE_NONE);
BLI_assert(profile_from != IB_PROFILE_NONE);
if (channels_from == 1) {
/* single channel input */
for (y = 0; y < height; y++) {
const float *from = rect_from + size_t(stride_from) * y;
float *to = rect_to + size_t(stride_to) * y * 4;
for (x = 0; x < width; x++, from++, to += 4) {
to[0] = to[1] = to[2] = to[3] = from[0];
}
}
}
else if (channels_from == 3) {
/* RGB input */
for (y = 0; y < height; y++) {
const float *from = rect_from + size_t(stride_from) * y * 3;
float *to = rect_to + size_t(stride_to) * y * 4;
if (profile_to == profile_from) {
/* no color space conversion */
for (x = 0; x < width; x++, from += 3, to += 4) {
copy_v3_v3(to, from);
to[3] = 1.0f;
}
}
else if (profile_to == IB_PROFILE_LINEAR_RGB) {
/* convert from sRGB to linear */
for (x = 0; x < width; x++, from += 3, to += 4) {
srgb_to_linearrgb_v3_v3(to, from);
to[3] = 1.0f;
}
}
else if (profile_to == IB_PROFILE_SRGB) {
/* convert from linear to sRGB */
for (x = 0; x < width; x++, from += 3, to += 4) {
linearrgb_to_srgb_v3_v3(to, from);
to[3] = 1.0f;
}
}
}
}
else if (channels_from == 4) {
/* RGBA input */
for (y = 0; y < height; y++) {
const float *from = rect_from + size_t(stride_from) * y * 4;
float *to = rect_to + size_t(stride_to) * y * 4;
if (profile_to == profile_from) {
/* same profile, copy */
memcpy(to, from, sizeof(float) * size_t(4) * width);
}
else if (profile_to == IB_PROFILE_LINEAR_RGB) {
/* convert to sRGB to linear */
if (predivide) {
for (x = 0; x < width; x++, from += 4, to += 4) {
srgb_to_linearrgb_predivide_v4(to, from);
}
}
else {
for (x = 0; x < width; x++, from += 4, to += 4) {
srgb_to_linearrgb_v4(to, from);
}
}
}
else if (profile_to == IB_PROFILE_SRGB) {
/* convert from linear to sRGB */
if (predivide) {
for (x = 0; x < width; x++, from += 4, to += 4) {
linearrgb_to_srgb_predivide_v4(to, from);
}
}
else {
for (x = 0; x < width; x++, from += 4, to += 4) {
linearrgb_to_srgb_v4(to, from);
}
}
}
}
}
}
void IMB_buffer_float_from_float_threaded(float *rect_to,
const float *rect_from,
int channels_from,
int profile_to,
int profile_from,
bool predivide,
int width,
int height,
int stride_to,
int stride_from)
{
using namespace blender;
threading::parallel_for(IndexRange(height), 64, [&](const IndexRange y_range) {
int64_t offset_from = y_range.first() * stride_from * channels_from;
int64_t offset_to = y_range.first() * stride_to * 4;
IMB_buffer_float_from_float(rect_to + offset_to,
rect_from + offset_from,
channels_from,
profile_to,
profile_from,
predivide,
width,
y_range.size(),
stride_to,
stride_from);
});
}
void IMB_buffer_float_from_float_mask(float *rect_to,
const float *rect_from,
int channels_from,
int width,
int height,
int stride_to,
int stride_from,
char *mask)
{
int x, y;
if (channels_from == 1) {
/* single channel input */
for (y = 0; y < height; y++) {
const float *from = rect_from + size_t(stride_from) * y;
float *to = rect_to + size_t(stride_to) * y * 4;
for (x = 0; x < width; x++, from++, to += 4) {
if (*mask++ == FILTER_MASK_USED) {
to[0] = to[1] = to[2] = to[3] = from[0];
}
}
}
}
else if (channels_from == 3) {
/* RGB input */
for (y = 0; y < height; y++) {
const float *from = rect_from + size_t(stride_from) * y * 3;
float *to = rect_to + size_t(stride_to) * y * 4;
for (x = 0; x < width; x++, from += 3, to += 4) {
if (*mask++ == FILTER_MASK_USED) {
copy_v3_v3(to, from);
to[3] = 1.0f;
}
}
}
}
else if (channels_from == 4) {
/* RGBA input */
for (y = 0; y < height; y++) {
const float *from = rect_from + size_t(stride_from) * y * 4;
float *to = rect_to + size_t(stride_to) * y * 4;
for (x = 0; x < width; x++, from += 4, to += 4) {
if (*mask++ == FILTER_MASK_USED) {
copy_v4_v4(to, from);
}
}
}
}
}
void IMB_buffer_byte_from_byte(uchar *rect_to,
const uchar *rect_from,
int profile_to,
int profile_from,
bool predivide,
int width,
int height,
int stride_to,
int stride_from)
{
float tmp[4];
int x, y;
/* we need valid profiles */
BLI_assert(profile_to != IB_PROFILE_NONE);
BLI_assert(profile_from != IB_PROFILE_NONE);
/* always RGBA input */
for (y = 0; y < height; y++) {
const uchar *from = rect_from + size_t(stride_from) * y * 4;
uchar *to = rect_to + size_t(stride_to) * y * 4;
if (profile_to == profile_from) {
/* same profile, copy */
memcpy(to, from, sizeof(uchar[4]) * width);
}
else if (profile_to == IB_PROFILE_LINEAR_RGB) {
/* convert to sRGB to linear */
if (predivide) {
for (x = 0; x < width; x++, from += 4, to += 4) {
rgba_uchar_to_float(tmp, from);
srgb_to_linearrgb_predivide_v4(tmp, tmp);
rgba_float_to_uchar(to, tmp);
}
}
else {
for (x = 0; x < width; x++, from += 4, to += 4) {
rgba_uchar_to_float(tmp, from);
srgb_to_linearrgb_v4(tmp, tmp);
rgba_float_to_uchar(to, tmp);
}
}
}
else if (profile_to == IB_PROFILE_SRGB) {
/* convert from linear to sRGB */
if (predivide) {
for (x = 0; x < width; x++, from += 4, to += 4) {
rgba_uchar_to_float(tmp, from);
linearrgb_to_srgb_predivide_v4(tmp, tmp);
rgba_float_to_uchar(to, tmp);
}
}
else {
for (x = 0; x < width; x++, from += 4, to += 4) {
rgba_uchar_to_float(tmp, from);
linearrgb_to_srgb_v4(tmp, tmp);
rgba_float_to_uchar(to, tmp);
}
}
}
}
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name ImBuf Conversion
* \{ */
void IMB_byte_from_float(ImBuf *ibuf)
{
using namespace blender;
/* Nothing to do if there's no float buffer */
if (ibuf->float_buffer.data == nullptr) {
return;
}
/* Allocate byte buffer if needed. */
if (ibuf->byte_buffer.data == nullptr) {
if (!IMB_alloc_byte_pixels(ibuf, false)) {
return;
}
}
const char *from_colorspace = (ibuf->float_buffer.colorspace == nullptr) ?
IMB_colormanagement_role_colorspace_name_get(
COLOR_ROLE_SCENE_LINEAR) :
ibuf->float_buffer.colorspace->name().c_str();
const char *to_colorspace = (ibuf->byte_buffer.colorspace == nullptr) ?
IMB_colormanagement_role_colorspace_name_get(
COLOR_ROLE_DEFAULT_BYTE) :
ibuf->byte_buffer.colorspace->name().c_str();
const bool predivide = IMB_alpha_affects_rgb(ibuf);
ColormanageProcessor *processor = STREQ(from_colorspace, to_colorspace) ?
nullptr :
IMB_colormanagement_colorspace_processor_new(
from_colorspace, to_colorspace);
if (processor && IMB_colormanagement_processor_is_noop(processor)) {
IMB_colormanagement_processor_free(processor);
processor = nullptr;
}
/* At 4 floats per pixel, this is 32KB of data, and fits into typical CPU L1 cache. */
static constexpr int grain_size = 2048;
threading::parallel_for(
IndexRange(IMB_get_pixel_count(ibuf)), grain_size, [&](const IndexRange range) {
/* Copy chunk of source float pixels into a local buffer. */
Array<float, grain_size * 4> buffer(range.size() * ibuf->channels);
buffer.as_mutable_span().copy_from(
Span(ibuf->float_buffer.data + range.first() * ibuf->channels, buffer.size()));
/* Unpremultiply alpha if needed. */
if (predivide) {
IMB_unpremultiply_rect_float(buffer.data(), ibuf->channels, range.size(), 1);
}
/* Convert to byte color space if needed. */
if (processor) {
IMB_colormanagement_processor_apply(
processor, buffer.data(), range.size(), 1, ibuf->channels, false);
}
/* Convert to bytes. */
IMB_buffer_byte_from_float(ibuf->byte_buffer.data + range.first() * 4,
buffer.data(),
ibuf->channels,
ibuf->dither,
IB_PROFILE_SRGB,
IB_PROFILE_SRGB,
false,
range.size(),
1,
ibuf->x,
ibuf->x);
});
if (processor != nullptr) {
IMB_colormanagement_processor_free(processor);
}
/* ensure user flag is reset */
ibuf->userflags &= ~IB_RECT_INVALID;
}
void IMB_float_from_byte_ex(ImBuf *dst, const ImBuf *src, const rcti *region_to_update)
{
using namespace blender;
BLI_assert_msg(dst->float_buffer.data != nullptr,
"Destination buffer should have a float buffer assigned.");
BLI_assert_msg(src->byte_buffer.data != nullptr,
"Source buffer should have a byte buffer assigned.");
BLI_assert_msg(dst->x == src->x, "Source and destination buffer should have the same dimension");
BLI_assert_msg(dst->y == src->y, "Source and destination buffer should have the same dimension");
BLI_assert_msg(dst->channels = 4, "Destination buffer should have 4 channels.");
BLI_assert_msg(region_to_update->xmin >= 0,
"Region to update should be clipped to the given buffers.");
BLI_assert_msg(region_to_update->ymin >= 0,
"Region to update should be clipped to the given buffers.");
BLI_assert_msg(region_to_update->xmax <= dst->x,
"Region to update should be clipped to the given buffers.");
BLI_assert_msg(region_to_update->ymax <= dst->y,
"Region to update should be clipped to the given buffers.");
const int region_width = BLI_rcti_size_x(region_to_update);
const int region_height = BLI_rcti_size_y(region_to_update);
const bool premultiply_alpha = IMB_alpha_affects_rgb(src);
threading::parallel_for(
IndexRange(region_to_update->ymin, region_height), 64, [&](const IndexRange y_range) {
const uchar *src_ptr = src->byte_buffer.data;
src_ptr += (region_to_update->xmin + y_range.first() * dst->x) * 4;
float *dst_ptr = dst->float_buffer.data;
dst_ptr += (region_to_update->xmin + y_range.first() * dst->x) * 4;
/* Convert byte -> float without color or alpha conversions. */
IMB_buffer_float_from_byte(dst_ptr,
src_ptr,
IB_PROFILE_SRGB,
IB_PROFILE_SRGB,
false,
region_width,
y_range.size(),
src->x,
dst->x);
/* Convert to scene linear color space, and premultiply alpha if needed. */
float *dst_ptr_line = dst_ptr;
for ([[maybe_unused]] const int64_t y : y_range) {
IMB_colormanagement_colorspace_to_scene_linear(
dst_ptr_line, region_width, 1, dst->channels, src->byte_buffer.colorspace, false);
if (premultiply_alpha) {
IMB_premultiply_rect_float(dst_ptr_line, dst->channels, region_width, 1);
}
dst_ptr_line += 4 * dst->x;
}
});
}
void IMB_float_from_byte(ImBuf *ibuf)
{
/* Nothing to do if there's no byte buffer. */
if (ibuf->byte_buffer.data == nullptr) {
return;
}
/* Allocate float buffer if needed. */
if (ibuf->float_buffer.data == nullptr) {
if (!IMB_alloc_float_pixels(ibuf, 4, false)) {
return;
}
}
rcti region_to_update;
BLI_rcti_init(&region_to_update, 0, ibuf->x, 0, ibuf->y);
IMB_float_from_byte_ex(ibuf, ibuf, &region_to_update);
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Color to Gray-Scale
* \{ */
void IMB_color_to_bw(ImBuf *ibuf)
{
float *rct_fl = ibuf->float_buffer.data;
uchar *rct = ibuf->byte_buffer.data;
size_t i;
if (rct_fl) {
if (ibuf->channels >= 3) {
for (i = IMB_get_pixel_count(ibuf); i > 0; i--, rct_fl += ibuf->channels) {
rct_fl[0] = rct_fl[1] = rct_fl[2] = IMB_colormanagement_get_luminance(rct_fl);
}
}
}
if (rct) {
for (i = IMB_get_pixel_count(ibuf); i > 0; i--, rct += 4) {
rct[0] = rct[1] = rct[2] = IMB_colormanagement_get_luminance_byte(rct);
}
}
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Alter Saturation
* \{ */
void IMB_saturation(ImBuf *ibuf, float sat)
{
using namespace blender;
const size_t pixel_count = IMB_get_pixel_count(ibuf);
if (ibuf->byte_buffer.data != nullptr) {
threading::parallel_for(IndexRange(pixel_count), 64 * 1024, [&](IndexRange range) {
uchar *ptr = ibuf->byte_buffer.data + range.first() * 4;
float rgb[3];
float hsv[3];
for ([[maybe_unused]] const int64_t i : range) {
rgb_uchar_to_float(rgb, ptr);
rgb_to_hsv_v(rgb, hsv);
hsv_to_rgb(hsv[0], hsv[1] * sat, hsv[2], rgb + 0, rgb + 1, rgb + 2);
rgb_float_to_uchar(ptr, rgb);
ptr += 4;
}
});
}
if (ibuf->float_buffer.data != nullptr && ibuf->channels >= 3) {
threading::parallel_for(IndexRange(pixel_count), 64 * 1024, [&](IndexRange range) {
const int channels = ibuf->channels;
float *ptr = ibuf->float_buffer.data + range.first() * channels;
float hsv[3];
for ([[maybe_unused]] const int64_t i : range) {
rgb_to_hsv_v(ptr, hsv);
hsv_to_rgb(hsv[0], hsv[1] * sat, hsv[2], ptr + 0, ptr + 1, ptr + 2);
ptr += channels;
}
});
}
}
/** \} */