By restricting the sample range along the ray to the valid segment. Supports **Mesh Light** - [x] restrict the ray segment to the side with MIS **Area Light** - [x] when the spread is zero, find the intersection of the ray and the bounding box/cylinder of the rectangle/ellipse area light beam - [x] when the spread is non-zero, find the intersection of the ray and the minimal enclosing cone of the area light beam *note the result is also unbiased when we just consider the cone from the sampled point in volume segment. Far away from the light source it's less noisy than the current solution, but near the light source it's much noisier. We have to restrict the sample region on the area light to the part that lits the ray then, I haven't tried yet to see if it would be less noisy.* **Point Light** - [x] the complete ray segment should be valid. **Spot Light** - [x] intersect the ray with the spot light cone - [x] support non-zero radius Pull Request: https://projects.blender.org/blender/blender/pulls/119438
1076 lines
24 KiB
C++
1076 lines
24 KiB
C++
/* SPDX-FileCopyrightText: 2011-2022 Blender Foundation
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0 */
|
|
|
|
#ifndef __UTIL_MATH_H__
|
|
#define __UTIL_MATH_H__
|
|
|
|
/* Math
|
|
*
|
|
* Basic math functions on scalar and vector types. This header is used by
|
|
* both the kernel code when compiled as C++, and other C++ non-kernel code. */
|
|
|
|
#ifndef __KERNEL_GPU__
|
|
# include <cmath>
|
|
#endif
|
|
|
|
#ifdef __HIP__
|
|
# include <hip/hip_vector_types.h>
|
|
#endif
|
|
|
|
#if !defined(__KERNEL_METAL__)
|
|
# include <float.h>
|
|
# include <math.h>
|
|
# include <stdio.h>
|
|
#endif /* !defined(__KERNEL_METAL__) */
|
|
|
|
#include "util/types.h"
|
|
|
|
CCL_NAMESPACE_BEGIN
|
|
|
|
/* Float Pi variations */
|
|
|
|
/* Division */
|
|
#ifndef M_PI_F
|
|
# define M_PI_F (3.1415926535897932f) /* pi */
|
|
#endif
|
|
#ifndef M_PI_2_F
|
|
# define M_PI_2_F (1.5707963267948966f) /* pi/2 */
|
|
#endif
|
|
#ifndef M_PI_4_F
|
|
# define M_PI_4_F (0.7853981633974830f) /* pi/4 */
|
|
#endif
|
|
#ifndef M_1_PI_F
|
|
# define M_1_PI_F (0.3183098861837067f) /* 1/pi */
|
|
#endif
|
|
#ifndef M_2_PI_F
|
|
# define M_2_PI_F (0.6366197723675813f) /* 2/pi */
|
|
#endif
|
|
#ifndef M_1_2PI_F
|
|
# define M_1_2PI_F (0.1591549430918953f) /* 1/(2*pi) */
|
|
#endif
|
|
#ifndef M_SQRT_PI_8_F
|
|
# define M_SQRT_PI_8_F (0.6266570686577501f) /* sqrt(pi/8) */
|
|
#endif
|
|
#ifndef M_LN_2PI_F
|
|
# define M_LN_2PI_F (1.8378770664093454f) /* ln(2*pi) */
|
|
#endif
|
|
|
|
/* Multiplication */
|
|
#ifndef M_2PI_F
|
|
# define M_2PI_F (6.2831853071795864f) /* 2*pi */
|
|
#endif
|
|
#ifndef M_4PI_F
|
|
# define M_4PI_F (12.566370614359172f) /* 4*pi */
|
|
#endif
|
|
|
|
/* Float sqrt variations */
|
|
#ifndef M_SQRT2_F
|
|
# define M_SQRT2_F (1.4142135623730950f) /* sqrt(2) */
|
|
#endif
|
|
#ifndef M_SQRT3_F
|
|
# define M_SQRT3_F (1.7320508075688772f) /* sqrt(3) */
|
|
#endif
|
|
#ifndef M_LN2_F
|
|
# define M_LN2_F (0.6931471805599453f) /* ln(2) */
|
|
#endif
|
|
#ifndef M_LN10_F
|
|
# define M_LN10_F (2.3025850929940457f) /* ln(10) */
|
|
#endif
|
|
|
|
/* Scalar */
|
|
|
|
#if !defined(__HIP__) && !defined(__KERNEL_ONEAPI__)
|
|
# ifdef _WIN32
|
|
ccl_device_inline float fmaxf(float a, float b)
|
|
{
|
|
return (a > b) ? a : b;
|
|
}
|
|
|
|
ccl_device_inline float fminf(float a, float b)
|
|
{
|
|
return (a < b) ? a : b;
|
|
}
|
|
|
|
# endif /* _WIN32 */
|
|
#endif /* __HIP__, __KERNEL_ONEAPI__ */
|
|
|
|
#if !defined(__KERNEL_GPU__) || defined(__KERNEL_ONEAPI__)
|
|
# ifndef __KERNEL_ONEAPI__
|
|
using std::isfinite;
|
|
using std::isnan;
|
|
using std::sqrt;
|
|
# else
|
|
# define isfinite(x) sycl::isfinite((x))
|
|
# define isnan(x) sycl::isnan((x))
|
|
# endif
|
|
|
|
ccl_device_inline int abs(int x)
|
|
{
|
|
return (x > 0) ? x : -x;
|
|
}
|
|
|
|
ccl_device_inline int max(int a, int b)
|
|
{
|
|
return (a > b) ? a : b;
|
|
}
|
|
|
|
ccl_device_inline int min(int a, int b)
|
|
{
|
|
return (a < b) ? a : b;
|
|
}
|
|
|
|
ccl_device_inline uint32_t max(uint32_t a, uint32_t b)
|
|
{
|
|
return (a > b) ? a : b;
|
|
}
|
|
|
|
ccl_device_inline uint32_t min(uint32_t a, uint32_t b)
|
|
{
|
|
return (a < b) ? a : b;
|
|
}
|
|
|
|
ccl_device_inline uint64_t max(uint64_t a, uint64_t b)
|
|
{
|
|
return (a > b) ? a : b;
|
|
}
|
|
|
|
ccl_device_inline uint64_t min(uint64_t a, uint64_t b)
|
|
{
|
|
return (a < b) ? a : b;
|
|
}
|
|
|
|
/* NOTE: On 64bit Darwin the `size_t` is defined as `unsigned long int` and `uint64_t` is defined
|
|
* as `unsigned long long`. Both of the definitions are 64 bit unsigned integer, but the automatic
|
|
* substitution does not allow to automatically pick function defined for `uint64_t` as it is not
|
|
* exactly the same type definition.
|
|
* Work this around by adding a templated function enabled for `size_t` type which will be used
|
|
* when there is no explicit specialization of `min()`/`max()` above. */
|
|
|
|
template<class T>
|
|
ccl_device_inline typename std::enable_if_t<std::is_same_v<T, size_t>, T> max(T a, T b)
|
|
{
|
|
return (a > b) ? a : b;
|
|
}
|
|
|
|
template<class T>
|
|
ccl_device_inline typename std::enable_if_t<std::is_same_v<T, size_t>, T> min(T a, T b)
|
|
{
|
|
return (a < b) ? a : b;
|
|
}
|
|
|
|
ccl_device_inline float max(float a, float b)
|
|
{
|
|
return (a > b) ? a : b;
|
|
}
|
|
|
|
ccl_device_inline float min(float a, float b)
|
|
{
|
|
return (a < b) ? a : b;
|
|
}
|
|
|
|
ccl_device_inline double max(double a, double b)
|
|
{
|
|
return (a > b) ? a : b;
|
|
}
|
|
|
|
ccl_device_inline double min(double a, double b)
|
|
{
|
|
return (a < b) ? a : b;
|
|
}
|
|
|
|
/* These 2 guys are templated for usage with registers data.
|
|
*
|
|
* NOTE: Since this is CPU-only functions it is ok to use references here.
|
|
* But for other devices we'll need to be careful about this.
|
|
*/
|
|
|
|
template<typename T> ccl_device_inline T min4(const T &a, const T &b, const T &c, const T &d)
|
|
{
|
|
return min(min(a, b), min(c, d));
|
|
}
|
|
|
|
template<typename T> ccl_device_inline T max4(const T &a, const T &b, const T &c, const T &d)
|
|
{
|
|
return max(max(a, b), max(c, d));
|
|
}
|
|
#endif /* __KERNEL_GPU__ */
|
|
|
|
ccl_device_inline float min4(float a, float b, float c, float d)
|
|
{
|
|
return min(min(a, b), min(c, d));
|
|
}
|
|
|
|
ccl_device_inline float max4(float a, float b, float c, float d)
|
|
{
|
|
return max(max(a, b), max(c, d));
|
|
}
|
|
|
|
#if !defined(__KERNEL_METAL__) && !defined(__KERNEL_ONEAPI__)
|
|
/* Int/Float conversion */
|
|
|
|
ccl_device_inline int as_int(uint i)
|
|
{
|
|
union {
|
|
uint ui;
|
|
int i;
|
|
} u;
|
|
u.ui = i;
|
|
return u.i;
|
|
}
|
|
|
|
ccl_device_inline uint as_uint(int i)
|
|
{
|
|
union {
|
|
uint ui;
|
|
int i;
|
|
} u;
|
|
u.i = i;
|
|
return u.ui;
|
|
}
|
|
|
|
ccl_device_inline uint as_uint(float f)
|
|
{
|
|
union {
|
|
uint i;
|
|
float f;
|
|
} u;
|
|
u.f = f;
|
|
return u.i;
|
|
}
|
|
|
|
# ifndef __HIP__
|
|
ccl_device_inline int __float_as_int(float f)
|
|
{
|
|
union {
|
|
int i;
|
|
float f;
|
|
} u;
|
|
u.f = f;
|
|
return u.i;
|
|
}
|
|
|
|
ccl_device_inline float __int_as_float(int i)
|
|
{
|
|
union {
|
|
int i;
|
|
float f;
|
|
} u;
|
|
u.i = i;
|
|
return u.f;
|
|
}
|
|
|
|
ccl_device_inline uint __float_as_uint(float f)
|
|
{
|
|
union {
|
|
uint i;
|
|
float f;
|
|
} u;
|
|
u.f = f;
|
|
return u.i;
|
|
}
|
|
|
|
ccl_device_inline float __uint_as_float(uint i)
|
|
{
|
|
union {
|
|
uint i;
|
|
float f;
|
|
} u;
|
|
u.i = i;
|
|
return u.f;
|
|
}
|
|
# endif
|
|
|
|
ccl_device_inline int4 __float4_as_int4(float4 f)
|
|
{
|
|
# ifdef __KERNEL_SSE__
|
|
return int4(_mm_castps_si128(f.m128));
|
|
# else
|
|
return make_int4(
|
|
__float_as_int(f.x), __float_as_int(f.y), __float_as_int(f.z), __float_as_int(f.w));
|
|
# endif
|
|
}
|
|
|
|
ccl_device_inline float4 __int4_as_float4(int4 i)
|
|
{
|
|
# ifdef __KERNEL_SSE__
|
|
return float4(_mm_castsi128_ps(i.m128));
|
|
# else
|
|
return make_float4(
|
|
__int_as_float(i.x), __int_as_float(i.y), __int_as_float(i.z), __int_as_float(i.w));
|
|
# endif
|
|
}
|
|
#endif /* !defined(__KERNEL_METAL__) */
|
|
|
|
#if defined(__KERNEL_METAL__)
|
|
ccl_device_forceinline bool isnan_safe(float f)
|
|
{
|
|
return isnan(f);
|
|
}
|
|
|
|
ccl_device_forceinline bool isfinite_safe(float f)
|
|
{
|
|
return isfinite(f);
|
|
}
|
|
#else
|
|
template<typename T> ccl_device_inline uint pointer_pack_to_uint_0(T *ptr)
|
|
{
|
|
return ((uint64_t)ptr) & 0xFFFFFFFF;
|
|
}
|
|
|
|
template<typename T> ccl_device_inline uint pointer_pack_to_uint_1(T *ptr)
|
|
{
|
|
return (((uint64_t)ptr) >> 32) & 0xFFFFFFFF;
|
|
}
|
|
|
|
template<typename T> ccl_device_inline T *pointer_unpack_from_uint(const uint a, const uint b)
|
|
{
|
|
return (T *)(((uint64_t)b << 32) | a);
|
|
}
|
|
|
|
ccl_device_inline uint uint16_pack_to_uint(const uint a, const uint b)
|
|
{
|
|
return (a << 16) | b;
|
|
}
|
|
|
|
ccl_device_inline uint uint16_unpack_from_uint_0(const uint i)
|
|
{
|
|
return i >> 16;
|
|
}
|
|
|
|
ccl_device_inline uint uint16_unpack_from_uint_1(const uint i)
|
|
{
|
|
return i & 0xFFFF;
|
|
}
|
|
|
|
/* Versions of functions which are safe for fast math. */
|
|
ccl_device_inline bool isnan_safe(float f)
|
|
{
|
|
unsigned int x = __float_as_uint(f);
|
|
return (x << 1) > 0xff000000u;
|
|
}
|
|
|
|
ccl_device_inline bool isfinite_safe(float f)
|
|
{
|
|
/* By IEEE 754 rule, 2*Inf equals Inf */
|
|
unsigned int x = __float_as_uint(f);
|
|
return (f == f) && (x == 0 || x == (1u << 31) || (f != 2.0f * f)) && !((x << 1) > 0xff000000u);
|
|
}
|
|
#endif
|
|
|
|
ccl_device_inline float ensure_finite(float v)
|
|
{
|
|
return isfinite_safe(v) ? v : 0.0f;
|
|
}
|
|
|
|
#if !defined(__KERNEL_METAL__)
|
|
ccl_device_inline int clamp(int a, int mn, int mx)
|
|
{
|
|
return min(max(a, mn), mx);
|
|
}
|
|
|
|
ccl_device_inline float clamp(float a, float mn, float mx)
|
|
{
|
|
return min(max(a, mn), mx);
|
|
}
|
|
|
|
ccl_device_inline float mix(float a, float b, float t)
|
|
{
|
|
return a + t * (b - a);
|
|
}
|
|
|
|
ccl_device_inline float smoothstep(float edge0, float edge1, float x)
|
|
{
|
|
float result;
|
|
if (x < edge0) {
|
|
result = 0.0f;
|
|
}
|
|
else if (x >= edge1) {
|
|
result = 1.0f;
|
|
}
|
|
else {
|
|
float t = (x - edge0) / (edge1 - edge0);
|
|
result = (3.0f - 2.0f * t) * (t * t);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
#endif /* !defined(__KERNEL_METAL__) */
|
|
|
|
#if defined(__KERNEL_CUDA__)
|
|
ccl_device_inline float saturatef(float a)
|
|
{
|
|
return __saturatef(a);
|
|
}
|
|
#elif !defined(__KERNEL_METAL__)
|
|
ccl_device_inline float saturatef(float a)
|
|
{
|
|
return clamp(a, 0.0f, 1.0f);
|
|
}
|
|
#endif /* __KERNEL_CUDA__ */
|
|
|
|
ccl_device_inline int float_to_int(float f)
|
|
{
|
|
return (int)f;
|
|
}
|
|
|
|
ccl_device_inline int floor_to_int(float f)
|
|
{
|
|
return float_to_int(floorf(f));
|
|
}
|
|
|
|
ccl_device_inline float floorfrac(float x, ccl_private int *i)
|
|
{
|
|
float f = floorf(x);
|
|
*i = float_to_int(f);
|
|
return x - f;
|
|
}
|
|
|
|
ccl_device_inline int ceil_to_int(float f)
|
|
{
|
|
return float_to_int(ceilf(f));
|
|
}
|
|
|
|
ccl_device_inline float fractf(float x)
|
|
{
|
|
return x - floorf(x);
|
|
}
|
|
|
|
/* Adapted from `godot-engine` math_funcs.h. */
|
|
ccl_device_inline float wrapf(float value, float max, float min)
|
|
{
|
|
float range = max - min;
|
|
return (range != 0.0f) ? value - (range * floorf((value - min) / range)) : min;
|
|
}
|
|
|
|
ccl_device_inline float pingpongf(float a, float b)
|
|
{
|
|
return (b != 0.0f) ? fabsf(fractf((a - b) / (b * 2.0f)) * b * 2.0f - b) : 0.0f;
|
|
}
|
|
|
|
ccl_device_inline float smoothminf(float a, float b, float k)
|
|
{
|
|
if (k != 0.0f) {
|
|
float h = fmaxf(k - fabsf(a - b), 0.0f) / k;
|
|
return fminf(a, b) - h * h * h * k * (1.0f / 6.0f);
|
|
}
|
|
else {
|
|
return fminf(a, b);
|
|
}
|
|
}
|
|
|
|
ccl_device_inline float signf(float f)
|
|
{
|
|
return (f < 0.0f) ? -1.0f : 1.0f;
|
|
}
|
|
|
|
ccl_device_inline float nonzerof(float f, float eps)
|
|
{
|
|
if (fabsf(f) < eps) {
|
|
return signf(f) * eps;
|
|
}
|
|
else {
|
|
return f;
|
|
}
|
|
}
|
|
|
|
/* `signum` function testing for zero. Matches GLSL and OSL functions. */
|
|
ccl_device_inline float compatible_signf(float f)
|
|
{
|
|
if (f == 0.0f) {
|
|
return 0.0f;
|
|
}
|
|
else {
|
|
return signf(f);
|
|
}
|
|
}
|
|
|
|
ccl_device_inline float smoothstepf(float f)
|
|
{
|
|
if (f <= 0.0f) {
|
|
return 0.0f;
|
|
}
|
|
if (f >= 1.0f) {
|
|
return 1.0f;
|
|
}
|
|
float ff = f * f;
|
|
return (3.0f * ff - 2.0f * ff * f);
|
|
}
|
|
|
|
ccl_device_inline int mod(int x, int m)
|
|
{
|
|
return (x % m + m) % m;
|
|
}
|
|
|
|
ccl_device_inline float3 float2_to_float3(const float2 a)
|
|
{
|
|
return make_float3(a.x, a.y, 0.0f);
|
|
}
|
|
|
|
ccl_device_inline float2 float3_to_float2(const float3 a)
|
|
{
|
|
return make_float2(a.x, a.y);
|
|
}
|
|
|
|
ccl_device_inline float3 float4_to_float3(const float4 a)
|
|
{
|
|
return make_float3(a.x, a.y, a.z);
|
|
}
|
|
|
|
ccl_device_inline float4 float3_to_float4(const float3 a)
|
|
{
|
|
return make_float4(a.x, a.y, a.z, 1.0f);
|
|
}
|
|
|
|
ccl_device_inline float4 float3_to_float4(const float3 a, const float w)
|
|
{
|
|
return make_float4(a.x, a.y, a.z, w);
|
|
}
|
|
|
|
ccl_device_inline float inverse_lerp(float a, float b, float x)
|
|
{
|
|
return (x - a) / (b - a);
|
|
}
|
|
|
|
/* Cubic interpolation between b and c, a and d are the previous and next point. */
|
|
ccl_device_inline float cubic_interp(float a, float b, float c, float d, float x)
|
|
{
|
|
return 0.5f *
|
|
(((d + 3.0f * (b - c) - a) * x + (2.0f * a - 5.0f * b + 4.0f * c - d)) * x +
|
|
(c - a)) *
|
|
x +
|
|
b;
|
|
}
|
|
|
|
CCL_NAMESPACE_END
|
|
|
|
#include "util/math_int2.h"
|
|
#include "util/math_int3.h"
|
|
#include "util/math_int4.h"
|
|
#include "util/math_int8.h"
|
|
|
|
#include "util/math_float2.h"
|
|
#include "util/math_float4.h"
|
|
#include "util/math_float8.h"
|
|
|
|
#include "util/math_float3.h"
|
|
|
|
#include "util/rect.h"
|
|
|
|
CCL_NAMESPACE_BEGIN
|
|
|
|
/* Triangle */
|
|
|
|
ccl_device_inline float triangle_area(ccl_private const float3 &v1,
|
|
ccl_private const float3 &v2,
|
|
ccl_private const float3 &v3)
|
|
{
|
|
return len(cross(v3 - v2, v1 - v2)) * 0.5f;
|
|
}
|
|
|
|
/* Orthonormal vectors */
|
|
|
|
ccl_device_inline void make_orthonormals(const float3 N,
|
|
ccl_private float3 *a,
|
|
ccl_private float3 *b)
|
|
{
|
|
#if 0
|
|
if (fabsf(N.y) >= 0.999f) {
|
|
*a = make_float3(1, 0, 0);
|
|
*b = make_float3(0, 0, 1);
|
|
return;
|
|
}
|
|
if (fabsf(N.z) >= 0.999f) {
|
|
*a = make_float3(1, 0, 0);
|
|
*b = make_float3(0, 1, 0);
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
if (N.x != N.y || N.x != N.z)
|
|
*a = make_float3(N.z - N.y, N.x - N.z, N.y - N.x); //(1,1,1)x N
|
|
else
|
|
*a = make_float3(N.z - N.y, N.x + N.z, -N.y - N.x); //(-1,1,1)x N
|
|
|
|
*a = normalize(*a);
|
|
*b = cross(N, *a);
|
|
}
|
|
|
|
/* Color division */
|
|
|
|
ccl_device_inline Spectrum safe_invert_color(Spectrum a)
|
|
{
|
|
FOREACH_SPECTRUM_CHANNEL (i) {
|
|
GET_SPECTRUM_CHANNEL(a, i) = (GET_SPECTRUM_CHANNEL(a, i) != 0.0f) ?
|
|
1.0f / GET_SPECTRUM_CHANNEL(a, i) :
|
|
0.0f;
|
|
}
|
|
|
|
return a;
|
|
}
|
|
|
|
ccl_device_inline Spectrum safe_divide_color(Spectrum a, Spectrum b)
|
|
{
|
|
FOREACH_SPECTRUM_CHANNEL (i) {
|
|
GET_SPECTRUM_CHANNEL(a, i) = (GET_SPECTRUM_CHANNEL(b, i) != 0.0f) ?
|
|
GET_SPECTRUM_CHANNEL(a, i) / GET_SPECTRUM_CHANNEL(b, i) :
|
|
0.0f;
|
|
}
|
|
|
|
return a;
|
|
}
|
|
|
|
ccl_device_inline float3 safe_divide_even_color(float3 a, float3 b)
|
|
{
|
|
float x, y, z;
|
|
|
|
x = (b.x != 0.0f) ? a.x / b.x : 0.0f;
|
|
y = (b.y != 0.0f) ? a.y / b.y : 0.0f;
|
|
z = (b.z != 0.0f) ? a.z / b.z : 0.0f;
|
|
|
|
/* try to get gray even if b is zero */
|
|
if (b.x == 0.0f) {
|
|
if (b.y == 0.0f) {
|
|
x = z;
|
|
y = z;
|
|
}
|
|
else if (b.z == 0.0f) {
|
|
x = y;
|
|
z = y;
|
|
}
|
|
else {
|
|
x = 0.5f * (y + z);
|
|
}
|
|
}
|
|
else if (b.y == 0.0f) {
|
|
if (b.z == 0.0f) {
|
|
y = x;
|
|
z = x;
|
|
}
|
|
else {
|
|
y = 0.5f * (x + z);
|
|
}
|
|
}
|
|
else if (b.z == 0.0f) {
|
|
z = 0.5f * (x + y);
|
|
}
|
|
|
|
return make_float3(x, y, z);
|
|
}
|
|
|
|
/* Rotation of point around axis and angle */
|
|
|
|
ccl_device_inline float3 rotate_around_axis(float3 p, float3 axis, float angle)
|
|
{
|
|
float costheta = cosf(angle);
|
|
float sintheta = sinf(angle);
|
|
float3 r;
|
|
|
|
r.x = ((costheta + (1 - costheta) * axis.x * axis.x) * p.x) +
|
|
(((1 - costheta) * axis.x * axis.y - axis.z * sintheta) * p.y) +
|
|
(((1 - costheta) * axis.x * axis.z + axis.y * sintheta) * p.z);
|
|
|
|
r.y = (((1 - costheta) * axis.x * axis.y + axis.z * sintheta) * p.x) +
|
|
((costheta + (1 - costheta) * axis.y * axis.y) * p.y) +
|
|
(((1 - costheta) * axis.y * axis.z - axis.x * sintheta) * p.z);
|
|
|
|
r.z = (((1 - costheta) * axis.x * axis.z - axis.y * sintheta) * p.x) +
|
|
(((1 - costheta) * axis.y * axis.z + axis.x * sintheta) * p.y) +
|
|
((costheta + (1 - costheta) * axis.z * axis.z) * p.z);
|
|
|
|
return r;
|
|
}
|
|
|
|
/* NaN-safe math ops */
|
|
|
|
ccl_device_inline float safe_sqrtf(float f)
|
|
{
|
|
return sqrtf(max(f, 0.0f));
|
|
}
|
|
|
|
ccl_device_inline float inversesqrtf(float f)
|
|
{
|
|
#if defined(__KERNEL_METAL__)
|
|
return (f > 0.0f) ? rsqrt(f) : 0.0f;
|
|
#else
|
|
return (f > 0.0f) ? 1.0f / sqrtf(f) : 0.0f;
|
|
#endif
|
|
}
|
|
|
|
ccl_device float safe_asinf(float a)
|
|
{
|
|
return asinf(clamp(a, -1.0f, 1.0f));
|
|
}
|
|
|
|
ccl_device float safe_acosf(float a)
|
|
{
|
|
return acosf(clamp(a, -1.0f, 1.0f));
|
|
}
|
|
|
|
ccl_device float compatible_powf(float x, float y)
|
|
{
|
|
#ifdef __KERNEL_GPU__
|
|
if (y == 0.0f) /* x^0 -> 1, including 0^0 */
|
|
return 1.0f;
|
|
|
|
/* GPU pow doesn't accept negative x, do manual checks here */
|
|
if (x < 0.0f) {
|
|
if (fmodf(-y, 2.0f) == 0.0f)
|
|
return powf(-x, y);
|
|
else
|
|
return -powf(-x, y);
|
|
}
|
|
else if (x == 0.0f)
|
|
return 0.0f;
|
|
#endif
|
|
return powf(x, y);
|
|
}
|
|
|
|
ccl_device float safe_powf(float a, float b)
|
|
{
|
|
if (UNLIKELY(a < 0.0f && b != float_to_int(b))) {
|
|
return 0.0f;
|
|
}
|
|
|
|
return compatible_powf(a, b);
|
|
}
|
|
|
|
ccl_device float safe_divide(float a, float b)
|
|
{
|
|
return (b != 0.0f) ? a / b : 0.0f;
|
|
}
|
|
|
|
ccl_device float safe_logf(float a, float b)
|
|
{
|
|
if (UNLIKELY(a <= 0.0f || b <= 0.0f)) {
|
|
return 0.0f;
|
|
}
|
|
|
|
return safe_divide(logf(a), logf(b));
|
|
}
|
|
|
|
ccl_device float safe_modulo(float a, float b)
|
|
{
|
|
return (b != 0.0f) ? fmodf(a, b) : 0.0f;
|
|
}
|
|
|
|
ccl_device float safe_floored_modulo(float a, float b)
|
|
{
|
|
return (b != 0.0f) ? a - floorf(a / b) * b : 0.0f;
|
|
}
|
|
|
|
ccl_device_inline float sqr(float a)
|
|
{
|
|
return a * a;
|
|
}
|
|
|
|
ccl_device_inline float sin_from_cos(const float c)
|
|
{
|
|
return safe_sqrtf(1.0f - sqr(c));
|
|
}
|
|
|
|
ccl_device_inline float cos_from_sin(const float s)
|
|
{
|
|
return safe_sqrtf(1.0f - sqr(s));
|
|
}
|
|
|
|
ccl_device_inline float sin_sqr_to_one_minus_cos(const float s_sq)
|
|
{
|
|
/* Using second-order Taylor expansion at small angles for better accuracy. */
|
|
return s_sq > 0.0004f ? 1.0f - safe_sqrtf(1.0f - s_sq) : 0.5f * s_sq;
|
|
}
|
|
|
|
ccl_device_inline float one_minus_cos(const float angle)
|
|
{
|
|
/* Using second-order Taylor expansion at small angles for better accuracy. */
|
|
return angle > 0.02f ? 1.0f - cosf(angle) : 0.5f * sqr(angle);
|
|
}
|
|
|
|
ccl_device_inline float pow20(float a)
|
|
{
|
|
return sqr(sqr(sqr(sqr(a)) * a));
|
|
}
|
|
|
|
ccl_device_inline float pow22(float a)
|
|
{
|
|
return sqr(a * sqr(sqr(sqr(a)) * a));
|
|
}
|
|
|
|
#ifdef __KERNEL_METAL__
|
|
ccl_device_inline float lgammaf(float x)
|
|
{
|
|
/* Nemes, Gergő (2010), "New asymptotic expansion for the Gamma function", Archiv der Mathematik
|
|
*/
|
|
const float _1_180 = 1.0f / 180.0f;
|
|
const float log2pi = 1.83787706641f;
|
|
const float logx = log(x);
|
|
return (log2pi - logx +
|
|
x * (logx * 2.0f + log(x * sinh(1.0f / x) + (_1_180 / pow(x, 6.0f))) - 2.0f)) *
|
|
0.5f;
|
|
}
|
|
#endif
|
|
|
|
ccl_device_inline float beta(float x, float y)
|
|
{
|
|
return expf(lgammaf(x) + lgammaf(y) - lgammaf(x + y));
|
|
}
|
|
|
|
ccl_device_inline float xor_signmask(float x, int y)
|
|
{
|
|
return __int_as_float(__float_as_int(x) ^ y);
|
|
}
|
|
|
|
ccl_device float bits_to_01(uint bits)
|
|
{
|
|
return bits * (1.0f / (float)0xFFFFFFFF);
|
|
}
|
|
|
|
#if !defined(__KERNEL_GPU__)
|
|
# if defined(__GNUC__)
|
|
ccl_device_inline uint popcount(uint x)
|
|
{
|
|
return __builtin_popcount(x);
|
|
}
|
|
# else
|
|
ccl_device_inline uint popcount(uint x)
|
|
{
|
|
/* TODO(Stefan): pop-count intrinsic for Windows with fallback for older CPUs. */
|
|
uint i = x;
|
|
i = i - ((i >> 1) & 0x55555555);
|
|
i = (i & 0x33333333) + ((i >> 2) & 0x33333333);
|
|
i = (((i + (i >> 4)) & 0xF0F0F0F) * 0x1010101) >> 24;
|
|
return i;
|
|
}
|
|
# endif
|
|
#elif defined(__KERNEL_ONEAPI__)
|
|
# define popcount(x) sycl::popcount(x)
|
|
#elif defined(__KERNEL_HIP__)
|
|
/* Use popcll to support 64-bit wave for pre-RDNA AMD GPUs */
|
|
# define popcount(x) __popcll(x)
|
|
#elif !defined(__KERNEL_METAL__)
|
|
# define popcount(x) __popc(x)
|
|
#endif
|
|
|
|
ccl_device_inline uint count_leading_zeros(uint x)
|
|
{
|
|
#if defined(__KERNEL_CUDA__) || defined(__KERNEL_OPTIX__) || defined(__KERNEL_HIP__)
|
|
return __clz(x);
|
|
#elif defined(__KERNEL_METAL__)
|
|
return clz(x);
|
|
#elif defined(__KERNEL_ONEAPI__)
|
|
return sycl::clz(x);
|
|
#else
|
|
assert(x != 0);
|
|
# ifdef _MSC_VER
|
|
unsigned long leading_zero = 0;
|
|
_BitScanReverse(&leading_zero, x);
|
|
return (31 - leading_zero);
|
|
# else
|
|
return __builtin_clz(x);
|
|
# endif
|
|
#endif
|
|
}
|
|
|
|
ccl_device_inline uint count_trailing_zeros(uint x)
|
|
{
|
|
#if defined(__KERNEL_CUDA__) || defined(__KERNEL_OPTIX__) || defined(__KERNEL_HIP__)
|
|
return (__ffs(x) - 1);
|
|
#elif defined(__KERNEL_METAL__)
|
|
return ctz(x);
|
|
#elif defined(__KERNEL_ONEAPI__)
|
|
return sycl::ctz(x);
|
|
#else
|
|
assert(x != 0);
|
|
# ifdef _MSC_VER
|
|
unsigned long ctz = 0;
|
|
_BitScanForward(&ctz, x);
|
|
return ctz;
|
|
# else
|
|
return __builtin_ctz(x);
|
|
# endif
|
|
#endif
|
|
}
|
|
|
|
ccl_device_inline uint find_first_set(uint x)
|
|
{
|
|
#if defined(__KERNEL_CUDA__) || defined(__KERNEL_OPTIX__) || defined(__KERNEL_HIP__)
|
|
return __ffs(x);
|
|
#elif defined(__KERNEL_METAL__)
|
|
return (x != 0) ? ctz(x) + 1 : 0;
|
|
#else
|
|
# ifdef _MSC_VER
|
|
return (x != 0) ? (32 - count_leading_zeros(x & (~x + 1))) : 0;
|
|
# else
|
|
return __builtin_ffs(x);
|
|
# endif
|
|
#endif
|
|
}
|
|
|
|
/* projections */
|
|
ccl_device_inline float2 map_to_tube(const float3 co)
|
|
{
|
|
float len, u, v;
|
|
len = sqrtf(co.x * co.x + co.y * co.y);
|
|
if (len > 0.0f) {
|
|
u = (1.0f - (atan2f(co.x / len, co.y / len) / M_PI_F)) * 0.5f;
|
|
v = (co.z + 1.0f) * 0.5f;
|
|
}
|
|
else {
|
|
u = v = 0.0f;
|
|
}
|
|
return make_float2(u, v);
|
|
}
|
|
|
|
ccl_device_inline float2 map_to_sphere(const float3 co)
|
|
{
|
|
float l = dot(co, co);
|
|
float u, v;
|
|
if (l > 0.0f) {
|
|
if (UNLIKELY(co.x == 0.0f && co.y == 0.0f)) {
|
|
u = 0.0f; /* Otherwise domain error. */
|
|
}
|
|
else {
|
|
u = (0.5f - atan2f(co.x, co.y) * M_1_2PI_F);
|
|
}
|
|
v = 1.0f - safe_acosf(co.z / sqrtf(l)) * M_1_PI_F;
|
|
}
|
|
else {
|
|
u = v = 0.0f;
|
|
}
|
|
return make_float2(u, v);
|
|
}
|
|
|
|
/* Compares two floats.
|
|
* Returns true if their absolute difference is smaller than abs_diff (for numbers near zero)
|
|
* or their relative difference is less than ulp_diff ULPs.
|
|
* Based on
|
|
* https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/
|
|
*/
|
|
|
|
ccl_device_inline bool compare_floats(float a, float b, float abs_diff, int ulp_diff)
|
|
{
|
|
if (fabsf(a - b) < abs_diff) {
|
|
return true;
|
|
}
|
|
|
|
if ((a < 0.0f) != (b < 0.0f)) {
|
|
return false;
|
|
}
|
|
|
|
return (abs(__float_as_int(a) - __float_as_int(b)) < ulp_diff);
|
|
}
|
|
|
|
/* Calculate the angle between the two vectors a and b.
|
|
* The usual approach `acos(dot(a, b))` has severe precision issues for small angles,
|
|
* which are avoided by this method.
|
|
* Based on "Mangled Angles" from https://people.eecs.berkeley.edu/~wkahan/Mindless.pdf
|
|
*/
|
|
ccl_device_inline float precise_angle(float3 a, float3 b)
|
|
{
|
|
return 2.0f * atan2f(len(a - b), len(a + b));
|
|
}
|
|
|
|
/* Tangent of the angle between vectors a and b. */
|
|
ccl_device_inline float tan_angle(float3 a, float3 b)
|
|
{
|
|
return len(cross(a, b)) / dot(a, b);
|
|
}
|
|
|
|
/* Return value which is greater than the given one and is a power of two. */
|
|
ccl_device_inline uint next_power_of_two(uint x)
|
|
{
|
|
return x == 0 ? 1 : 1 << (32 - count_leading_zeros(x));
|
|
}
|
|
|
|
/* Return value which is lower than the given one and is a power of two. */
|
|
ccl_device_inline uint prev_power_of_two(uint x)
|
|
{
|
|
return x < 2 ? x : 1 << (31 - count_leading_zeros(x - 1));
|
|
}
|
|
|
|
#ifndef __has_builtin
|
|
# define __has_builtin(v) 0
|
|
#endif
|
|
|
|
/* Reverses the bits of a 32 bit integer. */
|
|
ccl_device_inline uint32_t reverse_integer_bits(uint32_t x)
|
|
{
|
|
/* Use a native instruction if it exists. */
|
|
#if defined(__KERNEL_CUDA__)
|
|
return __brev(x);
|
|
#elif defined(__KERNEL_METAL__)
|
|
return reverse_bits(x);
|
|
#elif defined(__aarch64__) || (defined(_M_ARM64) && !defined(_MSC_VER))
|
|
/* Assume the rbit is always available on 64bit ARM architecture. */
|
|
__asm__("rbit %w0, %w1" : "=r"(x) : "r"(x));
|
|
return x;
|
|
#elif defined(__arm__) && ((__ARM_ARCH > 7) || __ARM_ARCH == 6 && __ARM_ARCH_ISA_THUMB >= 2)
|
|
/* This ARM instruction is available in ARMv6T2 and above.
|
|
* This 32-bit Thumb instruction is available in ARMv6T2 and above. */
|
|
__asm__("rbit %0, %1" : "=r"(x) : "r"(x));
|
|
return x;
|
|
#elif __has_builtin(__builtin_bitreverse32)
|
|
return __builtin_bitreverse32(x);
|
|
#else
|
|
/* Flip pairwise. */
|
|
x = ((x & 0x55555555) << 1) | ((x & 0xAAAAAAAA) >> 1);
|
|
/* Flip pairs. */
|
|
x = ((x & 0x33333333) << 2) | ((x & 0xCCCCCCCC) >> 2);
|
|
/* Flip nibbles. */
|
|
x = ((x & 0x0F0F0F0F) << 4) | ((x & 0xF0F0F0F0) >> 4);
|
|
/* Flip bytes. CPUs have an instruction for that, pretty fast one. */
|
|
# ifdef _MSC_VER
|
|
return _byteswap_ulong(x);
|
|
# elif defined(__INTEL_COMPILER)
|
|
return (uint32_t)_bswap((int)x);
|
|
# else
|
|
/* Assuming gcc or clang. */
|
|
return __builtin_bswap32(x);
|
|
# endif
|
|
#endif
|
|
}
|
|
|
|
/* Check if intervals (first->x, first->y) and (second.x, second.y) intersect, and replace the
|
|
* first interval with their intersection. */
|
|
ccl_device_inline bool intervals_intersect(ccl_private float2 *first, const float2 second)
|
|
{
|
|
first->x = fmaxf(first->x, second.x);
|
|
first->y = fminf(first->y, second.y);
|
|
|
|
return first->x < first->y;
|
|
}
|
|
|
|
/* Solve quadratic equation a*x^2 + b*x + c = 0, adapted from Mitsuba 3
|
|
* The solution is ordered so that x1 <= x2.
|
|
* Returns true if at least one solution is found. */
|
|
ccl_device_inline bool solve_quadratic(
|
|
const float a, const float b, const float c, ccl_private float &x1, ccl_private float &x2)
|
|
{
|
|
/* If the equation is linear, the solution is -c/b, but b has to be non-zero. */
|
|
const bool valid_linear = (a == 0.0f) && (b != 0.0f);
|
|
x1 = x2 = -c / b;
|
|
|
|
const float discriminant = sqr(b) - 4.0f * a * c;
|
|
/* Allow slightly negative discriminant in case of numerical precision issues. */
|
|
const bool valid_quadratic = (a != 0.0f) && (discriminant > -1e-5f);
|
|
|
|
if (valid_quadratic) {
|
|
/* Numerically stable version of (-b ± sqrt(discriminant)) / (2 * a), avoiding catastrophic
|
|
* cancellation when `b` is very close to `sqrt(discriminant)`, by finding the solution of
|
|
* greater magnitude which does not suffer from loss of precision, then using the identity
|
|
* x1 * x2 = c / a. */
|
|
const float temp = -0.5f * (b + copysignf(safe_sqrtf(discriminant), b));
|
|
const float r1 = temp / a;
|
|
const float r2 = c / temp;
|
|
|
|
x1 = fminf(r1, r2);
|
|
x2 = fmaxf(r1, r2);
|
|
}
|
|
|
|
return (valid_linear || valid_quadratic);
|
|
}
|
|
|
|
CCL_NAMESPACE_END
|
|
|
|
#endif /* __UTIL_MATH_H__ */
|