Files
test2/source/blender/collada/DocumentImporter.cpp
Arystanbek Dyussenov d06eb49b2f COLLADA importer: basic armature import.
Since in DAE only a matrix is stored per bone, some tricks have to be applied to build an armature from it:
- direction for "leaf" bones is hard-coded to Y vector. This will be changed to bone matrix orientation, somehow code will need to 
  derive the bone "forward" axis
- for "leaf" bones length cannot be determined, currently it is hard-coded (second screenshot), but I think changing it to the average 
  length of all non-leaf bones is ok
- parent bones get their tail at last child's head, this is not good (first screenshot). For bones with more than one child Chingiz 
  suggested not to link it with any child, I think it's a good idea. Length will be the same as for leaf bones.

Screenshots: 
http://img232.imageshack.us/img232/8905/screenfhy.png
http://img406.imageshack.us/img406/3004/tobaggan.png
2009-07-25 16:10:17 +00:00

1706 lines
51 KiB
C++

#include "COLLADAFWRoot.h"
#include "COLLADAFWIWriter.h"
#include "COLLADAFWStableHeaders.h"
#include "COLLADAFWAnimationCurve.h"
#include "COLLADAFWAnimationList.h"
#include "COLLADAFWCamera.h"
#include "COLLADAFWColorOrTexture.h"
#include "COLLADAFWEffect.h"
#include "COLLADAFWFloatOrDoubleArray.h"
#include "COLLADAFWGeometry.h"
#include "COLLADAFWImage.h"
#include "COLLADAFWIndexList.h"
#include "COLLADAFWInstanceGeometry.h"
#include "COLLADAFWLight.h"
#include "COLLADAFWMaterial.h"
#include "COLLADAFWMesh.h"
#include "COLLADAFWMeshPrimitiveWithFaceVertexCount.h"
#include "COLLADAFWNode.h"
#include "COLLADAFWPolygons.h"
#include "COLLADAFWRotate.h"
#include "COLLADAFWSampler.h"
#include "COLLADAFWScale.h"
#include "COLLADAFWSkinController.h"
#include "COLLADAFWSkinControllerData.h"
#include "COLLADAFWTransformation.h"
#include "COLLADAFWTranslate.h"
#include "COLLADAFWTypes.h"
#include "COLLADAFWVisualScene.h"
#include "COLLADAFWFileInfo.h"
#include "COLLADAFWArrayPrimitiveType.h"
#include "COLLADASaxFWLLoader.h"
// TODO move "extern C" into header files
extern "C"
{
#include "ED_keyframing.h"
#include "ED_armature.h"
#include "BKE_main.h"
#include "BKE_customdata.h"
#include "BKE_library.h"
#include "BKE_texture.h"
#include "BKE_fcurve.h"
#include "BKE_depsgraph.h"
#include "BLI_util.h"
}
#include "BKE_armature.h"
#include "BKE_mesh.h"
#include "BKE_global.h"
#include "BKE_context.h"
#include "BKE_object.h"
#include "BKE_image.h"
#include "BKE_material.h"
#include "BKE_utildefines.h"
#include "BLI_arithb.h"
#include "BLI_listbase.h"
#include "BLI_string.h"
#include "DNA_lamp_types.h"
#include "DNA_armature_types.h"
#include "DNA_anim_types.h"
#include "DNA_curve_types.h"
#include "DNA_texture_types.h"
#include "DNA_camera_types.h"
#include "DNA_object_types.h"
#include "DNA_meshdata_types.h"
#include "DNA_mesh_types.h"
#include "DNA_material_types.h"
#include "DNA_scene_types.h"
#include "MEM_guardedalloc.h"
#include "DocumentImporter.h"
#include <string>
#include <map>
// #define COLLADA_DEBUG
char *CustomData_get_layer_name(const struct CustomData *data, int type, int n);
const char *primTypeToStr(COLLADAFW::MeshPrimitive::PrimitiveType type)
{
using namespace COLLADAFW;
switch (type) {
case MeshPrimitive::LINES:
return "LINES";
case MeshPrimitive::LINE_STRIPS:
return "LINESTRIPS";
case MeshPrimitive::POLYGONS:
return "POLYGONS";
case MeshPrimitive::POLYLIST:
return "POLYLIST";
case MeshPrimitive::TRIANGLES:
return "TRIANGLES";
case MeshPrimitive::TRIANGLE_FANS:
return "TRIANGLE_FANS";
case MeshPrimitive::TRIANGLE_STRIPS:
return "TRIANGLE_FANS";
case MeshPrimitive::POINTS:
return "POINTS";
case MeshPrimitive::UNDEFINED_PRIMITIVE_TYPE:
return "UNDEFINED_PRIMITIVE_TYPE";
}
return "UNKNOWN";
}
const char *geomTypeToStr(COLLADAFW::Geometry::GeometryType type)
{
switch (type) {
case COLLADAFW::Geometry::GEO_TYPE_MESH:
return "MESH";
case COLLADAFW::Geometry::GEO_TYPE_SPLINE:
return "SPLINE";
case COLLADAFW::Geometry::GEO_TYPE_CONVEX_MESH:
return "CONVEX_MESH";
}
return "UNKNOWN";
}
/*
COLLADA Importer limitations:
- no multiple scene import, all objects are added to active scene
*/
/** Class that needs to be implemented by a writer.
IMPORTANT: The write functions are called in arbitrary order.*/
class Writer: public COLLADAFW::IWriter
{
private:
std::string mFilename;
bContext *mContext;
std::map<COLLADAFW::UniqueId, Mesh*> uid_mesh_map; // geometry unique id-to-mesh map
std::map<COLLADAFW::UniqueId, Image*> uid_image_map;
std::map<COLLADAFW::UniqueId, Material*> uid_material_map;
std::map<COLLADAFW::UniqueId, Material*> uid_effect_map;
std::map<COLLADAFW::UniqueId, Camera*> uid_camera_map;
std::map<COLLADAFW::UniqueId, Lamp*> uid_lamp_map;
std::map<COLLADAFW::UniqueId, COLLADAFW::UniqueId> skinid_meshid_map;
// maps for assigning textures to uv layers
std::map<COLLADAFW::TextureMapId, char*> set_layername_map;
std::map<COLLADAFW::TextureMapId, std::vector<MTex*> > index_mtex_map;
// this structure is used to assign material indices to faces
// when materials are assigned to an object
struct Primitive {
MFace *mface;
int totface;
};
typedef std::map<COLLADAFW::MaterialId, std::vector<Primitive> > MaterialIdPrimitiveArrayMap;
// amazing name!
std::map<COLLADAFW::UniqueId, MaterialIdPrimitiveArrayMap> geom_uid_mat_mapping_map;
// maps for animation
std::map<COLLADAFW::UniqueId, std::vector<FCurve*> > uid_fcurve_map;
struct AnimatedTransform {
Object *ob;
// COLLADAFW::Node *node;
COLLADAFW::Transformation *tm; // which transform is animated by an AnimationList->id
};
// Nodes don't share AnimationLists (Arystan)
std::map<COLLADAFW::UniqueId, AnimatedTransform> uid_animated_map; // AnimationList->uniqueId to AnimatedObject map
// ----------------------------------------------------------------------
// Armature and related
// to build armature bones form inverse bind matrices
struct JointData {
float inv_bind_mat[4][4]; // joint inverse bind matrix
Object *ob_arm; // armature object
};
std::map<int, JointData> joint_index_to_joint_info_map;
std::map<COLLADAFW::UniqueId, int> joint_id_to_joint_index_map;
struct ArmatureData {
bArmature *arm;
COLLADAFW::SkinController *controller;
};
std::map<COLLADAFW::UniqueId, ArmatureData> controller_id_to_arm_info_map;
std::vector<COLLADAFW::Node*> root_joints;
class UnitConverter
{
private:
COLLADAFW::FileInfo::Unit mUnit;
COLLADAFW::FileInfo::UpAxisType mUpAxis;
public:
UnitConverter(COLLADAFW::FileInfo::UpAxisType upAxis, COLLADAFW::FileInfo::Unit& unit) :
mUpAxis(upAxis), mUnit(unit)
{
}
// TODO
// convert vector vec from COLLADA format to Blender
void convertVec3(float *vec)
{
}
// TODO need also for angle conversion, time conversion...
};
class UVDataWrapper
{
COLLADAFW::MeshVertexData *mVData;
public:
UVDataWrapper(COLLADAFW::MeshVertexData& vdata) : mVData(&vdata)
{}
#ifdef COLLADA_DEBUG
void print()
{
fprintf(stderr, "UVs:\n");
COLLADAFW::ArrayPrimitiveType<float>* values = mVData->getFloatValues();
for (int i = 0; i < values->getCount(); i += 2) {
fprintf(stderr, "%.1f, %.1f\n", (*values)[i], (*values)[i+1]);
}
fprintf(stderr, "\n");
}
#endif
void getUV(int uv_set_index, int uv_index[2], float *uv)
{
switch(mVData->getType()) {
case COLLADAFW::MeshVertexData::DATA_TYPE_FLOAT:
{
COLLADAFW::ArrayPrimitiveType<float>* values = mVData->getFloatValues();
uv[0] = (*values)[uv_index[0]];
uv[1] = (*values)[uv_index[1]];
break;
}
case COLLADAFW::MeshVertexData::DATA_TYPE_DOUBLE:
{
COLLADAFW::ArrayPrimitiveType<double>* values = mVData->getDoubleValues();
uv[0] = (float)(*values)[uv_index[0]];
uv[1] = (float)(*values)[uv_index[1]];
break;
}
}
}
};
public:
/** Constructor. */
Writer(bContext *C, const char *filename) : mContext(C), mFilename(filename) {};
/** Destructor. */
~Writer() {};
bool write()
{
COLLADASaxFWL::Loader loader;
COLLADAFW::Root root(&loader, this);
// XXX report error
if (!root.loadDocument(mFilename))
return false;
return true;
}
/** This method will be called if an error in the loading process occurred and the loader cannot
continue to to load. The writer should undo all operations that have been performed.
@param errorMessage A message containing informations about the error that occurred.
*/
virtual void cancel(const COLLADAFW::String& errorMessage)
{
// TODO: if possible show error info
//
// Should we get rid of invisible Meshes that were created so far
// or maybe create objects at coordinate space origin?
//
// The latter sounds better.
}
/** This is the method called. The writer hast to prepare to receive data.*/
virtual void start()
{
}
/** This method is called after the last write* method. No other methods will be called after this.*/
virtual void finish()
{
}
/** When this method is called, the writer must write the global document asset.
@return The writer should return true, if writing succeeded, false otherwise.*/
virtual bool writeGlobalAsset ( const COLLADAFW::FileInfo* asset )
{
// XXX take up_axis, unit into account
// COLLADAFW::FileInfo::Unit unit = asset->getUnit();
// COLLADAFW::FileInfo::UpAxisType upAxis = asset->getUpAxisType();
return true;
}
/** When this method is called, the writer must write the scene.
@return The writer should return true, if writing succeeded, false otherwise.*/
virtual bool writeScene ( const COLLADAFW::Scene* scene )
{
// XXX could store the scene id, but do nothing for now
return true;
}
// bind early created mesh to object, assign materials and textures
Object *create_mesh_object(Object *ob, Scene *sce, COLLADAFW::Node *node,
COLLADAFW::InstanceGeometry *geom, bool isController)
{
ob = add_object(sce, OB_MESH);
const std::string& id = node->getOriginalId();
if (id.length())
rename_id(&ob->id, (char*)id.c_str());
// replace ob->data freeing the old one
Mesh *old_mesh = (Mesh*)ob->data;
const COLLADAFW::UniqueId *geom_uid = &geom->getInstanciatedObjectId();
// checking if node instanciates controller or geometry
if (isController) {
if (skinid_meshid_map.find(*geom_uid) == skinid_meshid_map.end()) {
fprintf(stderr, "Couldn't find a mesh UID by controller's UID.\n");
return NULL;
}
geom_uid = &skinid_meshid_map[*geom_uid];
}
else {
if (uid_mesh_map.find(*geom_uid) == uid_mesh_map.end()) {
// XXX report to user
// this could happen if a mesh was not created
// (e.g. if it contains unsupported geometry)
fprintf(stderr, "Couldn't find a mesh by UID.\n");
return NULL;
}
}
set_mesh(ob, uid_mesh_map[*geom_uid]);
if (old_mesh->id.us == 0) free_libblock(&G.main->mesh, old_mesh);
Mesh *me = (Mesh*)ob->data;
MTex *diffuse_mtex = NULL;
MTFace *tface = NULL;
char layername[100];
bool first_time = true;
// assign material indices to mesh faces
for (int k = 0; k < geom->getMaterialBindings().getCount(); k++) {
const COLLADAFW::UniqueId& ma_uid = geom->getMaterialBindings()[k].getReferencedMaterial();
// check if material was properly written to map
if (uid_material_map.find(ma_uid) == uid_material_map.end()) {
fprintf(stderr, "Cannot find material by UID.\n");
continue;
}
Material *ma = uid_material_map[ma_uid];
int l;
// assign textures to uv layers
// bvi_array "bind_vertex_input array"
COLLADAFW::InstanceGeometry::TextureCoordinateBindingArray& bvi_array =
geom->getMaterialBindings()[k].getTextureCoordinateBindingArray();
for (l = 0; l < bvi_array.getCount(); l++) {
COLLADAFW::TextureMapId tex_index = bvi_array[l].textureMapId;
size_t set_index = bvi_array[l].setIndex;
char *uvname = set_layername_map[set_index];
// check if mtexes were properly added to vector
if (index_mtex_map.find(tex_index) == index_mtex_map.end()) {
fprintf(stderr, "Cannot find mtexes by texmap id.\n");
continue;
}
std::vector<MTex*> mtexes = index_mtex_map[tex_index];
std::vector<MTex*>::iterator it;
for (it = mtexes.begin(); it != mtexes.end(); it++) {
MTex *mtex = *it;
strcpy(mtex->uvname, uvname);
}
}
for (l = 0; l < 18; l++) {
if (ma->mtex[l] && ma->mtex[l]->mapto == MAP_COL) {
diffuse_mtex = ma->mtex[l];
}
}
if (diffuse_mtex) {
//diffuse_mtex = mtex;
if (first_time) {
tface = (MTFace*)CustomData_get_layer_named(&me->fdata, CD_MTFACE, diffuse_mtex->uvname);
strcpy(layername, diffuse_mtex->uvname);
first_time = false;
}
else if (strcmp(diffuse_mtex->uvname, layername) != 0) {
tface = (MTFace*)CustomData_get_layer_named(&me->fdata, CD_MTFACE, diffuse_mtex->uvname);
strcpy(layername, diffuse_mtex->uvname);
}
}
assign_material(ob, ma, ob->totcol + 1);
MaterialIdPrimitiveArrayMap& mat_prim_map = geom_uid_mat_mapping_map[*geom_uid];
COLLADAFW::MaterialId mat_id = geom->getMaterialBindings()[k].getMaterialId();
// if there's geometry that uses this material,
// set mface->mat_nr=k for each face in that geometry
if (mat_prim_map.find(mat_id) != mat_prim_map.end()) {
std::vector<Primitive>& prims = mat_prim_map[mat_id];
std::vector<Primitive>::iterator it;
for (it = prims.begin(); it != prims.end(); it++) {
Primitive& prim = *it;
l = 0;
while (l++ < prim.totface) {
prim.mface->mat_nr = k;
prim.mface++;
// if tface was set
// bind image to tface
if (tface) {
tface->mode = TF_TEX;
tface->tpage = (Image*)diffuse_mtex->tex->ima;
tface++;
}
}
}
}
}
return ob;
}
void write_node (COLLADAFW::Node *node, Scene *sce, Object *par = NULL)
{
// XXX linking object with the first <instance_geometry>, though a node may have more of them...
// maybe join multiple <instance_...> meshes into 1, and link object with it? not sure...
if (node->getType() != COLLADAFW::Node::NODE) {
if (node->getType() == COLLADAFW::Node::JOINT) {
root_joints.push_back(node);
}
return;
}
COLLADAFW::InstanceGeometryPointerArray &geom = node->getInstanceGeometries();
COLLADAFW::InstanceCameraPointerArray &camera = node->getInstanceCameras();
COLLADAFW::InstanceLightPointerArray &lamp = node->getInstanceLights();
COLLADAFW::InstanceControllerPointerArray &controller = node->getInstanceControllers();
COLLADAFW::InstanceNodePointerArray &inst_node = node->getInstanceNodes();
Object *ob = NULL;
int k;
// <instance_geometry>
if (geom.getCount() != 0) {
ob = create_mesh_object(ob, sce, node, geom[0], false);
}
// <instance_camera>
else if (camera.getCount() != 0) {
const COLLADAFW::UniqueId& cam_uid = camera[0]->getInstanciatedObjectId();
if (uid_camera_map.find(cam_uid) == uid_camera_map.end()) {
fprintf(stderr, "Couldn't find camera by UID. \n");
return;
}
ob = add_object(sce, OB_CAMERA);
Camera *cam = uid_camera_map[cam_uid];
Camera *old_cam = (Camera*)ob->data;
old_cam->id.us--;
ob->data = cam;
if (old_cam->id.us == 0) free_libblock(&G.main->camera, old_cam);
}
// <instance_light>
else if (lamp.getCount() != 0) {
const COLLADAFW::UniqueId& lamp_uid = lamp[0]->getInstanciatedObjectId();
if (uid_lamp_map.find(lamp_uid) == uid_lamp_map.end()) {
fprintf(stderr, "Couldn't find lamp by UID. \n");
return;
}
ob = add_object(sce, OB_LAMP);
Lamp *la = uid_lamp_map[lamp_uid];
Lamp *old_lamp = (Lamp*)ob->data;
old_lamp->id.us--;
ob->data = la;
if (old_lamp->id.us == 0) free_libblock(&G.main->lamp, old_lamp);
}
// <instance_controller>
else if (controller.getCount() != 0) {
/*const COLLADAFW::UniqueId& geom_uid = controller[0]->getInstanciatedObjectId();
bArmature *arm = meshId_armature_map[geom_uid];
if (!arm) {
fprintf(stderr, "Cannot find armature by geometry uid. \n");
return;
}*/
COLLADAFW::InstanceController *geom = (COLLADAFW::InstanceController*)controller[0];
ob = create_mesh_object(ob, sce, node, geom, true);
}
// XXX <node> - this is not supported yet
else if (inst_node.getCount() != 0) {
return;
}
// if node is empty - create empty object
// XXX empty node may not mean it is empty object, not sure about this
else {
ob = add_object(sce, OB_EMPTY);
}
// just checking if object wasn't created
if (ob == NULL) return;
// if par was given make this object child of the previous
if (par != NULL) {
Object workob;
ob->parent = par;
// doing what 'set parent' operator does
par->recalc |= OB_RECALC_OB;
ob->parsubstr[0] = 0;
// since ob->obmat is identity, this is not needed?
what_does_parent(sce, ob, &workob);
Mat4Invert(ob->parentinv, workob.obmat);
ob->recalc |= OB_RECALC_OB|OB_RECALC_DATA;
ob->partype = PAROBJECT;
DAG_scene_sort(sce);
}
// transform Object
float rot[3][3];
Mat3One(rot);
// transform Object and store animation linking info
for (k = 0; k < node->getTransformations().getCount(); k ++) {
COLLADAFW::Transformation *tm = node->getTransformations()[k];
COLLADAFW::Transformation::TransformationType type = tm->getTransformationType();
switch(type) {
case COLLADAFW::Transformation::TRANSLATE:
{
COLLADAFW::Translate *tra = (COLLADAFW::Translate*)tm;
COLLADABU::Math::Vector3& t = tra->getTranslation();
ob->loc[0] = (float)t[0];
ob->loc[1] = (float)t[1];
ob->loc[2] = (float)t[2];
}
break;
case COLLADAFW::Transformation::ROTATE:
{
COLLADAFW::Rotate *ro = (COLLADAFW::Rotate*)tm;
COLLADABU::Math::Vector3& raxis = ro->getRotationAxis();
float angle = (float)(ro->getRotationAngle() * M_PI / 180.0f);
float axis[] = {raxis[0], raxis[1], raxis[2]};
float quat[4];
float rot_copy[3][3];
float mat[3][3];
AxisAngleToQuat(quat, axis, angle);
QuatToMat3(quat, mat);
Mat3CpyMat3(rot_copy, rot);
Mat3MulMat3(rot, rot_copy, mat);
}
break;
case COLLADAFW::Transformation::SCALE:
{
COLLADABU::Math::Vector3& s = ((COLLADAFW::Scale*)tm)->getScale();
ob->size[0] = (float)s[0];
ob->size[1] = (float)s[1];
ob->size[2] = (float)s[2];
}
break;
case COLLADAFW::Transformation::MATRIX:
case COLLADAFW::Transformation::LOOKAT:
case COLLADAFW::Transformation::SKEW:
fprintf(stderr, "MATRIX, LOOKAT and SKEW transformations are not supported yet.\n");
break;
}
// AnimationList that drives this Transformation
const COLLADAFW::UniqueId& anim_list_id = tm->getAnimationList();
// store this so later we can link animation data with ob
AnimatedTransform anim = {ob, tm};
this->uid_animated_map[anim_list_id] = anim;
}
Mat3ToEul(rot, ob->rot);
// if node has child nodes write them
COLLADAFW::NodePointerArray &child_nodes = node->getChildNodes();
for (k = 0; k < child_nodes.getCount(); k++) {
COLLADAFW::Node *child_node = child_nodes[k];
write_node(child_node, sce, ob);
}
}
JointData *get_joint_data(COLLADAFW::Node *node)
{
const COLLADAFW::UniqueId& joint_id = node->getUniqueId();
if (joint_id_to_joint_index_map.find(joint_id) == joint_id_to_joint_index_map.end()) {
fprintf(stderr, "Cannot find a joint index by joint id for %s.\n",
node->getOriginalId().c_str());
return NULL;
}
int joint_index = joint_id_to_joint_index_map[joint_id];
return &joint_index_to_joint_info_map[joint_index];
}
void create_bone(COLLADAFW::Node *node, EditBone *parent, bArmature *arm)
{
JointData* jd = get_joint_data(node);
if (jd) {
float mat[4][4];
// get original world-space matrix
Mat4Invert(mat, jd->inv_bind_mat);
// TODO rename from Node "name" attrs later
EditBone *bone = addEditBone(arm, "Bone");
if (parent) bone->parent = parent;
// set head
VecCopyf(bone->head, mat[3]);
// set tail, can't set it to head because 0-length bones are not allowed
float vec[3] = {0.0f, 0.5f, 0.0f};
VecAddf(bone->tail, bone->head, vec);
// set parent tail
if (parent)
VecCopyf(parent->tail, bone->head);
COLLADAFW::NodePointerArray& children = node->getChildNodes();
for (int i = 0; i < children.getCount(); i++) {
create_bone(children[i], bone, arm);
}
}
}
void create_bone_branch(COLLADAFW::Node *root)
{
JointData* jd = get_joint_data(root);
if (!jd) return;
Object *ob_arm = jd->ob_arm;
// enter armature edit mode
ED_armature_to_edit(ob_arm);
COLLADAFW::NodePointerArray& children = root->getChildNodes();
for (int i = 0; i < children.getCount(); i++) {
create_bone(children[i], NULL, (bArmature*)ob_arm->data);
}
// exit armature edit mode
ED_armature_from_edit(CTX_data_scene(mContext), ob_arm);
}
// here we add bones to armature, having armatures previously created in writeController
void build_armatures()
{
std::vector<COLLADAFW::Node*>::iterator it;
for (it = root_joints.begin(); it != root_joints.end(); it++) {
create_bone_branch(*it);
}
}
/** When this method is called, the writer must write the entire visual scene.
@return The writer should return true, if writing succeeded, false otherwise.*/
virtual bool writeVisualScene ( const COLLADAFW::VisualScene* visualScene )
{
// This method is guaranteed to be called _after_ writeGeometry, writeMaterial, etc.
// for each <node> in <visual_scene>:
// create an Object
// if Mesh (previously created in writeGeometry) to which <node> corresponds exists, link Object with that mesh
// update: since we cannot link a Mesh with Object in
// writeGeometry because <geometry> does not reference <node>,
// we link Objects with Meshes here
// TODO: create a new scene except the selected <visual_scene> - use current blender
// scene for it
Scene *sce = CTX_data_scene(mContext);
for (int i = 0; i < visualScene->getRootNodes().getCount(); i++) {
COLLADAFW::Node *node = visualScene->getRootNodes()[i];
const COLLADAFW::Node::NodeType& type = node->getType();
if (type == COLLADAFW::Node::NODE) {
write_node(node, sce);
}
else if (type == COLLADAFW::Node::JOINT){
root_joints.push_back(node);
}
}
if (root_joints.size()) {
build_armatures();
}
return true;
}
/** When this method is called, the writer must handle all nodes contained in the
library nodes.
@return The writer should return true, if writing succeeded, false otherwise.*/
virtual bool writeLibraryNodes ( const COLLADAFW::LibraryNodes* libraryNodes )
{
return true;
}
// utility functions
void set_face_indices(MFace *mface, unsigned int *indices, bool quad)
{
mface->v1 = indices[0];
mface->v2 = indices[1];
mface->v3 = indices[2];
if (quad) mface->v4 = indices[3];
}
// change face indices order so that v4 is not 0
void rotate_face_indices(MFace *mface) {
mface->v4 = mface->v1;
mface->v1 = mface->v2;
mface->v2 = mface->v3;
mface->v3 = 0;
}
void set_face_uv(MTFace *mtface, UVDataWrapper &uvs, int uv_set_index,
COLLADAFW::IndexList& index_list, int index, bool quad)
{
int uv_indices[4][2];
// per face vertex indices, this means for quad we have 4 indices, not 8
COLLADAFW::UIntValuesArray& indices = index_list.getIndices();
// make indices into FloatOrDoubleArray
for (int i = 0; i < (quad ? 4 : 3); i++) {
int uv_index = indices[index + i];
uv_indices[i][0] = uv_index * 2;
uv_indices[i][1] = uv_index * 2 + 1;
}
uvs.getUV(uv_set_index, uv_indices[0], mtface->uv[0]);
uvs.getUV(uv_set_index, uv_indices[1], mtface->uv[1]);
uvs.getUV(uv_set_index, uv_indices[2], mtface->uv[2]);
if (quad) uvs.getUV(uv_set_index, uv_indices[3], mtface->uv[3]);
#ifdef COLLADA_DEBUG
if (quad) {
fprintf(stderr, "face uv:\n"
"((%d, %d), (%d, %d), (%d, %d), (%d, %d))\n"
"((%.1f, %.1f), (%.1f, %.1f), (%.1f, %.1f), (%.1f, %.1f))\n",
uv_indices[0][0], uv_indices[0][1],
uv_indices[1][0], uv_indices[1][1],
uv_indices[2][0], uv_indices[2][1],
uv_indices[3][0], uv_indices[3][1],
mtface->uv[0][0], mtface->uv[0][1],
mtface->uv[1][0], mtface->uv[1][1],
mtface->uv[2][0], mtface->uv[2][1],
mtface->uv[3][0], mtface->uv[3][1]);
}
else {
fprintf(stderr, "face uv:\n"
"((%d, %d), (%d, %d), (%d, %d))\n"
"((%.1f, %.1f), (%.1f, %.1f), (%.1f, %.1f))\n",
uv_indices[0][0], uv_indices[0][1],
uv_indices[1][0], uv_indices[1][1],
uv_indices[2][0], uv_indices[2][1],
mtface->uv[0][0], mtface->uv[0][1],
mtface->uv[1][0], mtface->uv[1][1],
mtface->uv[2][0], mtface->uv[2][1]);
}
#endif
}
#ifdef COLLADA_DEBUG
void print_index_list(COLLADAFW::IndexList& index_list)
{
fprintf(stderr, "Index list for \"%s\":\n", index_list.getName().c_str());
for (int i = 0; i < index_list.getIndicesCount(); i += 2) {
fprintf(stderr, "%u, %u\n", index_list.getIndex(i), index_list.getIndex(i + 1));
}
fprintf(stderr, "\n");
}
#endif
/** When this method is called, the writer must write the geometry.
@return The writer should return true, if writing succeeded, false otherwise.*/
virtual bool writeGeometry ( const COLLADAFW::Geometry* cgeom )
{
// - create a mesh object
// - write geometry
// - ignore usupported primitive types
// TODO: import also uvs, normals
// XXX what to do with normal indices?
// XXX num_normals may be != num verts, then what to do?
// check geometry->getType() first
if (cgeom->getType() != COLLADAFW::Geometry::GEO_TYPE_MESH) {
// TODO: report warning
fprintf(stderr, "Mesh type %s is not supported\n", geomTypeToStr(cgeom->getType()));
return true;
}
COLLADAFW::Mesh *cmesh = (COLLADAFW::Mesh*)cgeom;
// first check if we can import this mesh
COLLADAFW::MeshPrimitiveArray& prim_arr = cmesh->getMeshPrimitives();
int i;
for (i = 0; i < prim_arr.getCount(); i++) {
COLLADAFW::MeshPrimitive *mp = prim_arr[i];
COLLADAFW::MeshPrimitive::PrimitiveType type = mp->getPrimitiveType();
const char *type_str = primTypeToStr(type);
// OpenCollada passes POLYGONS type for <polylist>
if (type == COLLADAFW::MeshPrimitive::POLYLIST || type == COLLADAFW::MeshPrimitive::POLYGONS) {
COLLADAFW::Polygons *mpvc = (COLLADAFW::Polygons*)mp;
COLLADAFW::Polygons::VertexCountArray& vca = mpvc->getGroupedVerticesVertexCountArray();
for(int j = 0; j < vca.getCount(); j++){
int count = vca[j];
if (count != 3 && count != 4) {
fprintf(stderr, "%s has at least one face with vertex count > 4 or < 3\n",
type_str);
return true;
}
}
}
else if(type != COLLADAFW::MeshPrimitive::TRIANGLES) {
fprintf(stderr, "Primitive type %s is not supported.\n", type_str);
return true;
}
}
size_t totvert = cmesh->getPositions().getFloatValues()->getCount() / 3;
const std::string& str_geom_id = cgeom->getOriginalId();
Mesh *me = add_mesh((char*)str_geom_id.c_str());
// store mesh ptr
// to link it later with Object
this->uid_mesh_map[cgeom->getUniqueId()] = me;
// vertices
me->mvert = (MVert*)CustomData_add_layer(&me->vdata, CD_MVERT, CD_CALLOC, NULL, totvert);
me->totvert = totvert;
float *pos_float_array = cmesh->getPositions().getFloatValues()->getData();
MVert *mvert = me->mvert;
i = 0;
while (i < totvert) {
// fill mvert
mvert->co[0] = pos_float_array[0];
mvert->co[1] = pos_float_array[1];
mvert->co[2] = pos_float_array[2];
pos_float_array += 3;
mvert++;
i++;
}
// count totface
int totface = cmesh->getFacesCount();
// allocate faces
me->mface = (MFace*)CustomData_add_layer(&me->fdata, CD_MFACE, CD_CALLOC, NULL, totface);
me->totface = totface;
// UVs
int totuvset = cmesh->getUVCoords().getInputInfosArray().getCount();
for (i = 0; i < totuvset; i++) {
// add new CustomData layer
CustomData_add_layer(&me->fdata, CD_MTFACE, CD_CALLOC, NULL, totface);
this->set_layername_map[i] = CustomData_get_layer_name(&me->fdata, CD_MTFACE, i);
}
// activate the first uv layer if any
if (totuvset) me->mtface = (MTFace*)CustomData_get_layer_n(&me->fdata, CD_MTFACE, 0);
UVDataWrapper uvs(cmesh->getUVCoords());
#ifdef COLLADA_DEBUG
uvs.print();
#endif
// read faces
MFace *mface = me->mface;
MaterialIdPrimitiveArrayMap mat_prim_map;
// TODO: import uv set names
int face_index = 0;
for (i = 0; i < prim_arr.getCount(); i++) {
COLLADAFW::MeshPrimitive *mp = prim_arr[i];
// faces
size_t prim_totface = mp->getFaceCount();
unsigned int *indices = mp->getPositionIndices().getData();
int j, k;
int type = mp->getPrimitiveType();
int index = 0;
// since we cannot set mface->mat_nr here, we store a portion of me->mface in Primitive
Primitive prim = {mface, 0};
COLLADAFW::IndexListArray& index_list_array = mp->getUVCoordIndicesArray();
#ifdef COLLADA_DEBUG
fprintf(stderr, "Primitive %d:\n", i);
for (int j = 0; j < totuvset; j++) {
print_index_list(*index_list_array[j]);
}
#endif
if (type == COLLADAFW::MeshPrimitive::TRIANGLES) {
for (j = 0; j < prim_totface; j++){
set_face_indices(mface, indices, false);
indices += 3;
for (k = 0; k < totuvset; k++) {
// get mtface by face index and uv set index
MTFace *mtface = (MTFace*)CustomData_get_layer_n(&me->fdata, CD_MTFACE, k);
set_face_uv(&mtface[face_index], uvs, k, *index_list_array[k], index, false);
}
index += 3;
mface++;
face_index++;
prim.totface++;
}
}
else if (type == COLLADAFW::MeshPrimitive::POLYLIST || type == COLLADAFW::MeshPrimitive::POLYGONS) {
COLLADAFW::Polygons *mpvc = (COLLADAFW::Polygons*)mp;
COLLADAFW::Polygons::VertexCountArray& vcounta = mpvc->getGroupedVerticesVertexCountArray();
for (j = 0; j < prim_totface; j++) {
// face
int vcount = vcounta[j];
set_face_indices(mface, indices, vcount == 4);
indices += vcount;
// do the trick if needed
if (vcount == 4 && mface->v4 == 0)
rotate_face_indices(mface);
// set mtface for each uv set
// it is assumed that all primitives have equal number of UV sets
for (k = 0; k < totuvset; k++) {
// get mtface by face index and uv set index
MTFace *mtface = (MTFace*)CustomData_get_layer_n(&me->fdata, CD_MTFACE, k);
set_face_uv(&mtface[face_index], uvs, k, *index_list_array[k], index, mface->v4 != 0);
}
index += mface->v4 ? 4 : 3;
mface++;
face_index++;
prim.totface++;
}
}
mat_prim_map[mp->getMaterialId()].push_back(prim);
}
geom_uid_mat_mapping_map[cgeom->getUniqueId()] = mat_prim_map;
mesh_calc_normals(me->mvert, me->totvert, me->mface, me->totface, NULL);
make_edges(me, 0);
return true;
}
/** When this method is called, the writer must write the material.
@return The writer should return true, if writing succeeded, false otherwise.*/
virtual bool writeMaterial( const COLLADAFW::Material* cmat )
{
const std::string& str_mat_id = cmat->getOriginalId();
Material *ma = add_material((char*)str_mat_id.c_str());
this->uid_effect_map[cmat->getInstantiatedEffect()] = ma;
this->uid_material_map[cmat->getUniqueId()] = ma;
return true;
}
// create mtex, create texture, set texture image
MTex *create_texture(COLLADAFW::EffectCommon *ef, COLLADAFW::Texture ctex, Material *ma, int i)
{
COLLADAFW::SamplerPointerArray& samp_array = ef->getSamplerPointerArray();
COLLADAFW::Sampler *sampler = samp_array[ctex.getSamplerId()];
const COLLADAFW::UniqueId& ima_uid = sampler->getSourceImage();
if (uid_image_map.find(ima_uid) == uid_image_map.end()) {
fprintf(stderr, "Couldn't find an image by UID.\n");
return NULL;
}
ma->mtex[i] = add_mtex();
ma->mtex[i]->texco = TEXCO_UV;
ma->mtex[i]->tex = add_texture("texture");
ma->mtex[i]->tex->type = TEX_IMAGE;
ma->mtex[i]->tex->ima = uid_image_map[ima_uid];
index_mtex_map[ctex.getTextureMapId()].push_back(ma->mtex[i]);
return ma->mtex[i];
}
/** When this method is called, the writer must write the effect.
@return The writer should return true, if writing succeeded, false otherwise.*/
virtual bool writeEffect( const COLLADAFW::Effect* effect )
{
const COLLADAFW::UniqueId& uid = effect->getUniqueId();
if (uid_effect_map.find(uid) == uid_effect_map.end()) {
fprintf(stderr, "Couldn't find a material by UID.\n");
return true;
}
Material *ma = uid_effect_map[uid];
COLLADAFW::CommonEffectPointerArray common_efs = effect->getCommonEffects();
if (common_efs.getCount() < 1) {
fprintf(stderr, "<effect> hasn't got <profile_COMMON>s.\n Currently we support only them. \n");
return true;
}
// XXX TODO: Take all <profile_common>s
// Currently only first <profile_common> is supported
COLLADAFW::EffectCommon *ef = common_efs[0];
COLLADAFW::EffectCommon::ShaderType shader = ef->getShaderType();
// blinn
if (shader == COLLADAFW::EffectCommon::SHADER_BLINN) {
ma->spec_shader = MA_SPEC_BLINN;
ma->spec = ef->getShininess().getFloatValue();
}
// phong
else if (shader == COLLADAFW::EffectCommon::SHADER_PHONG) {
ma->spec_shader = MA_SPEC_PHONG;
ma->spec = ef->getShininess().getFloatValue();
}
// lambert
else if (shader == COLLADAFW::EffectCommon::SHADER_LAMBERT) {
ma->diff_shader = MA_DIFF_LAMBERT;
}
// default - lambert
else {
ma->diff_shader = MA_DIFF_LAMBERT;
fprintf(stderr, "Current shader type is not supported.\n");
}
// reflectivity
ma->ray_mirror = ef->getReflectivity().getFloatValue();
// index of refraction
ma->ang = ef->getIndexOfRefraction().getFloatValue();
int i = 0;
COLLADAFW::Color col;
COLLADAFW::Texture ctex;
MTex *mtex = NULL;
// DIFFUSE
// color
if (ef->getDiffuse().isColor()) {
col = ef->getDiffuse().getColor();
ma->r = col.getRed();
ma->g = col.getGreen();
ma->b = col.getBlue();
}
// texture
else if (ef->getDiffuse().isTexture()) {
ctex = ef->getDiffuse().getTexture();
mtex = create_texture(ef, ctex, ma, i);
if (mtex != NULL) {
mtex->mapto = MAP_COL;
ma->texact = (int)i;
i++;
}
}
// AMBIENT
// color
if (ef->getAmbient().isColor()) {
col = ef->getAmbient().getColor();
ma->ambr = col.getRed();
ma->ambg = col.getGreen();
ma->ambb = col.getBlue();
}
// texture
else if (ef->getAmbient().isTexture()) {
ctex = ef->getAmbient().getTexture();
mtex = create_texture(ef, ctex, ma, i);
if (mtex != NULL) {
mtex->mapto = MAP_AMB;
i++;
}
}
// SPECULAR
// color
if (ef->getSpecular().isColor()) {
col = ef->getSpecular().getColor();
ma->specr = col.getRed();
ma->specg = col.getGreen();
ma->specb = col.getBlue();
}
// texture
else if (ef->getSpecular().isTexture()) {
ctex = ef->getSpecular().getTexture();
mtex = create_texture(ef, ctex, ma, i);
if (mtex != NULL) {
mtex->mapto = MAP_SPEC;
i++;
}
}
// REFLECTIVE
// color
if (ef->getReflective().isColor()) {
col = ef->getReflective().getColor();
ma->mirr = col.getRed();
ma->mirg = col.getGreen();
ma->mirb = col.getBlue();
}
// texture
else if (ef->getReflective().isTexture()) {
ctex = ef->getReflective().getTexture();
mtex = create_texture(ef, ctex, ma, i);
if (mtex != NULL) {
mtex->mapto = MAP_REF;
i++;
}
}
// EMISSION
// color
if (ef->getEmission().isColor()) {
// XXX there is no emission color in blender
// but I am not sure
}
// texture
else if (ef->getEmission().isTexture()) {
ctex = ef->getEmission().getTexture();
mtex = create_texture(ef, ctex, ma, i);
if (mtex != NULL) {
mtex->mapto = MAP_EMIT;
i++;
}
}
return true;
}
/** When this method is called, the writer must write the camera.
@return The writer should return true, if writing succeeded, false otherwise.*/
virtual bool writeCamera( const COLLADAFW::Camera* camera )
{
std::string name = camera->getOriginalId();
Camera *cam = (Camera*)add_camera((char*)name.c_str());
if (!cam) {
fprintf(stderr, "Cannot create camera. \n");
return true;
}
this->uid_camera_map[camera->getUniqueId()] = cam;
// XXX import camera options
return true;
}
/** When this method is called, the writer must write the image.
@return The writer should return true, if writing succeeded, false otherwise.*/
virtual bool writeImage( const COLLADAFW::Image* image )
{
// XXX maybe it is necessary to check if the path is absolute or relative
const std::string& filepath = image->getImageURI().toNativePath();
const char *filename = (const char*)mFilename.c_str();
char dir[FILE_MAX];
char full_path[FILE_MAX];
BLI_split_dirfile_basic(filename, dir, NULL);
BLI_join_dirfile(full_path, dir, filepath.c_str());
Image *ima = BKE_add_image_file(full_path, 0);
if (!ima) {
fprintf(stderr, "Cannot create image. \n");
return true;
}
this->uid_image_map[image->getUniqueId()] = ima;
return true;
}
/** When this method is called, the writer must write the light.
@return The writer should return true, if writing succeeded, false otherwise.*/
virtual bool writeLight( const COLLADAFW::Light* light )
{
std::string name = light->getOriginalId();
Lamp *lamp = (Lamp*)add_lamp((char*)name.c_str());
if (!lamp) {
fprintf(stderr, "Cannot create lamp. \n");
return true;
}
COLLADAFW::Light::LightType type = light->getLightType();
switch(type) {
case COLLADAFW::Light::AMBIENT_LIGHT:
{
lamp->type = LA_HEMI;
}
break;
case COLLADAFW::Light::SPOT_LIGHT:
{
lamp->type = LA_SPOT;
}
break;
case COLLADAFW::Light::DIRECTIONAL_LIGHT:
{
lamp->type = LA_SUN;
}
break;
case COLLADAFW::Light::POINT_LIGHT:
{
lamp->type = LA_AREA;
}
break;
case COLLADAFW::Light::UNDEFINED:
{
fprintf(stderr, "Current lamp type is not supported. \n");
lamp->type = LA_LOCAL;
}
break;
}
this->uid_lamp_map[light->getUniqueId()] = lamp;
// XXX import light options*/
return true;
}
float get_float(COLLADAFW::FloatOrDoubleArray array, int i)
{
switch(array.getType()) {
case COLLADAFW::MeshVertexData::DATA_TYPE_FLOAT:
{
COLLADAFW::ArrayPrimitiveType<float> *values = array.getFloatValues();
return (*values)[i];
}
case COLLADAFW::MeshVertexData::DATA_TYPE_DOUBLE:
{
COLLADAFW::ArrayPrimitiveType<double> *values = array.getDoubleValues();
return (float)(*values)[i];
}
}
}
void write_curves(const COLLADAFW::Animation* anim,
COLLADAFW::AnimationCurve *curve,
COLLADAFW::FloatOrDoubleArray input,
COLLADAFW::FloatOrDoubleArray output,
COLLADAFW::FloatOrDoubleArray intan,
COLLADAFW::FloatOrDoubleArray outtan, size_t dim, float fps)
{
int i;
char *path = "location";
if (dim == 1) {
// create fcurve
FCurve *fcu = (FCurve*)MEM_callocN(sizeof(FCurve), "FCurve");
if (!fcu) {
fprintf(stderr, "Cannot create fcurve. \n");
return;
}
fcu->flag = (FCURVE_VISIBLE|FCURVE_AUTO_HANDLES|FCURVE_SELECTED);
fcu->rna_path = BLI_strdupn(path, strlen(path));
fcu->array_index = 0;
fcu->totvert = curve->getKeyCount();
// create beztriple for each key
for (i = 0; i < curve->getKeyCount(); i++) {
BezTriple bez;
memset(&bez, 0, sizeof(BezTriple));
// intangent
bez.vec[0][0] = get_float(intan, i + i) * fps;
bez.vec[0][1] = get_float(intan, i + i + 1);
// input, output
bez.vec[1][0] = get_float(input, i) * fps;
bez.vec[1][1] = get_float(output, i);
// outtangent
bez.vec[2][0] = get_float(outtan, i + i) * fps;
bez.vec[2][1] = get_float(outtan, i + i + 1);
bez.ipo = U.ipo_new; /* use default interpolation mode here... */
bez.f1 = bez.f2 = bez.f3 = SELECT;
bez.h1 = bez.h2 = HD_AUTO;
insert_bezt_fcurve(fcu, &bez);
calchandles_fcurve(fcu);
}
// map fcurve to animation's UID
this->uid_fcurve_map[anim->getUniqueId()].push_back(fcu);
}
else if(dim == 3) {
for (i = 0; i < dim; i++ ) {
// create fcurve
FCurve *fcu = (FCurve*)MEM_callocN(sizeof(FCurve), "FCurve");
if (!fcu) {
fprintf(stderr, "Cannot create fcurve. \n");
continue;
}
fcu->flag = (FCURVE_VISIBLE|FCURVE_AUTO_HANDLES|FCURVE_SELECTED);
fcu->rna_path = BLI_strdupn(path, strlen(path));
fcu->array_index = 0;
fcu->totvert = curve->getKeyCount();
// create beztriple for each key
for (int j = 0; j < curve->getKeyCount(); j++) {
BezTriple bez;
memset(&bez, 0, sizeof(BezTriple));
// intangent
bez.vec[0][0] = get_float(intan, j * 6 + i + i) * fps;
bez.vec[0][1] = get_float(intan, j * 6 + i + i + 1);
// input, output
bez.vec[1][0] = get_float(input, j) * fps;
bez.vec[1][1] = get_float(output, j * 3 + i);
// outtangent
bez.vec[2][0] = get_float(outtan, j * 6 + i + i) * fps;
bez.vec[2][1] = get_float(outtan, j * 6 + i + i + 1);
bez.ipo = U.ipo_new; /* use default interpolation mode here... */
bez.f1 = bez.f2 = bez.f3 = SELECT;
bez.h1 = bez.h2 = HD_AUTO;
insert_bezt_fcurve(fcu, &bez);
calchandles_fcurve(fcu);
}
// map fcurve to animation's UID
this->uid_fcurve_map[anim->getUniqueId()].push_back(fcu);
}
}
}
// this function is called only for animations that pass COLLADAFW::validate
virtual bool writeAnimation( const COLLADAFW::Animation* anim )
{
if (anim->getAnimationType() == COLLADAFW::Animation::ANIMATION_CURVE) {
COLLADAFW::AnimationCurve *curve = (COLLADAFW::AnimationCurve*)anim;
Scene *scene = CTX_data_scene(mContext);
float fps = (float)FPS;
// I wonder how do we use this (Arystan)
size_t dim = curve->getOutDimension();
// XXX Don't know if it's necessary
// Should we check outPhysicalDimension?
if (curve->getInPhysicalDimension() != COLLADAFW::PHYSICAL_DIMENSION_TIME) {
fprintf(stderr, "Inputs physical dimension is not time. \n");
return true;
}
COLLADAFW::FloatOrDoubleArray input = curve->getInputValues();
COLLADAFW::FloatOrDoubleArray output = curve->getOutputValues();
COLLADAFW::FloatOrDoubleArray intan = curve->getInTangentValues();
COLLADAFW::FloatOrDoubleArray outtan = curve->getOutTangentValues();
// a curve can have mixed interpolation type,
// in this case curve->getInterpolationTypes returns a list of interpolation types per key
COLLADAFW::AnimationCurve::InterpolationType interp = curve->getInterpolationType();
if (interp != COLLADAFW::AnimationCurve::INTERPOLATION_MIXED) {
switch (interp) {
case COLLADAFW::AnimationCurve::INTERPOLATION_LINEAR:
// support this
write_curves(anim, curve, input, output, intan, outtan, dim, fps);
break;
case COLLADAFW::AnimationCurve::INTERPOLATION_BEZIER:
// and this
write_curves(anim, curve, input, output, intan, outtan, dim, fps);
break;
case COLLADAFW::AnimationCurve::INTERPOLATION_CARDINAL:
case COLLADAFW::AnimationCurve::INTERPOLATION_HERMITE:
case COLLADAFW::AnimationCurve::INTERPOLATION_BSPLINE:
case COLLADAFW::AnimationCurve::INTERPOLATION_STEP:
fprintf(stderr, "CARDINAL, HERMITE, BSPLINE and STEP anim interpolation types not supported yet.\n");
break;
}
}
else {
// not supported yet
fprintf(stderr, "MIXED anim interpolation type is not supported yet.\n");
}
}
else {
fprintf(stderr, "FORMULA animation type is not supported yet.\n");
}
return true;
}
void change_fcurve(Object *ob, const COLLADAFW::UniqueId& anim_id, char *rna_path, int array_index)
{
if (uid_fcurve_map.find(anim_id) == uid_fcurve_map.end()) {
fprintf(stderr, "Cannot find fcurves by UID.\n");
return;
}
ID *id = &ob->id;
bAction *act;
if (!ob->adt || !ob->adt->action)
act = verify_adt_action(id, 1);
else
act = verify_adt_action(id, 0);
if (!ob->adt || !ob->adt->action) {
fprintf(stderr, "Cannot create anim data or action for this object. \n");
return;
}
FCurve *fcu;
std::vector<FCurve*> fcurves = uid_fcurve_map[anim_id];
std::vector<FCurve*>::iterator it;
int i = 0;
for (it = fcurves.begin(); it != fcurves.end(); it++) {
fcu = *it;
strcpy(fcu->rna_path, rna_path);
if (array_index == -1)
fcu->array_index = i;
else
fcu->array_index = array_index;
// convert degrees to radians for rotation
if (strcmp(rna_path, "rotation") == 0) {
for(int j = 0; j < fcu->totvert; j++) {
float rot_intan = fcu->bezt[j].vec[0][1];
float rot_output = fcu->bezt[j].vec[1][1];
float rot_outtan = fcu->bezt[j].vec[2][1];
fcu->bezt[j].vec[0][1] = rot_intan * M_PI / 180.0f;
fcu->bezt[j].vec[1][1] = rot_output * M_PI / 180.0f;
fcu->bezt[j].vec[2][1] = rot_outtan * M_PI / 180.0f;
}
}
i++;
BLI_addtail(&act->curves, fcu);
}
}
// called on post-process stage after writeVisualScenes
virtual bool writeAnimationList( const COLLADAFW::AnimationList* animationList )
{
const COLLADAFW::UniqueId& anim_list_id = animationList->getUniqueId();
// possible in case we cannot interpret some transform
if (uid_animated_map.find(anim_list_id) == uid_animated_map.end()) {
return true;
}
// what does this AnimationList animate?
AnimatedTransform& animated = uid_animated_map[anim_list_id];
char *loc = "location";
char *rotate = "rotation";
char *scale = "scale";
Object *ob = animated.ob;
const COLLADAFW::AnimationList::AnimationBindings& bindings = animationList->getAnimationBindings();
switch (animated.tm->getTransformationType()) {
case COLLADAFW::Transformation::TRANSLATE:
{
for (int i = 0; i < bindings.getCount(); i++) {
const COLLADAFW::AnimationList::AnimationBinding& binding = bindings[i];
COLLADAFW::UniqueId anim_uid = binding.animation;
switch (binding.animationClass) {
case COLLADAFW::AnimationList::POSITION_X:
change_fcurve(ob, anim_uid, loc, 0);
break;
case COLLADAFW::AnimationList::POSITION_Y:
change_fcurve(ob, anim_uid, loc, 1);
break;
case COLLADAFW::AnimationList::POSITION_Z:
change_fcurve(ob, anim_uid, loc, 2);
break;
case COLLADAFW::AnimationList::POSITION_XYZ:
change_fcurve(ob, anim_uid, loc, -1);
break;
default:
fprintf(stderr, "AnimationClass %d is not supported for TRANSLATE transformation.\n", binding.animationClass);
}
}
}
break;
case COLLADAFW::Transformation::ROTATE:
{
COLLADAFW::Rotate* rot = (COLLADAFW::Rotate*)animated.tm;
COLLADABU::Math::Vector3& axis = rot->getRotationAxis();
for (int i = 0; i < bindings.getCount(); i++) {
const COLLADAFW::AnimationList::AnimationBinding& binding = bindings[i];
COLLADAFW::UniqueId anim_uid = binding.animation;
switch (binding.animationClass) {
case COLLADAFW::AnimationList::ANGLE:
if (COLLADABU::Math::Vector3::UNIT_X == axis) {
change_fcurve(ob, anim_uid, rotate, 0);
}
else if (COLLADABU::Math::Vector3::UNIT_Y == axis) {
change_fcurve(ob, anim_uid, rotate, 1);
}
else if (COLLADABU::Math::Vector3::UNIT_Z == axis) {
change_fcurve(ob, anim_uid, rotate, 2);
}
break;
case COLLADAFW::AnimationList::AXISANGLE:
// convert axis-angle to quat? or XYZ?
break;
default:
fprintf(stderr, "AnimationClass %d is not supported for ROTATE transformation.\n",
binding.animationClass);
}
}
}
break;
case COLLADAFW::Transformation::SCALE:
{
// same as for TRANSLATE
for (int i = 0; i < bindings.getCount(); i++) {
const COLLADAFW::AnimationList::AnimationBinding& binding = bindings[i];
COLLADAFW::UniqueId anim_uid = binding.animation;
switch (binding.animationClass) {
case COLLADAFW::AnimationList::POSITION_X:
change_fcurve(ob, anim_uid, scale, 0);
break;
case COLLADAFW::AnimationList::POSITION_Y:
change_fcurve(ob, anim_uid, scale, 1);
break;
case COLLADAFW::AnimationList::POSITION_Z:
change_fcurve(ob, anim_uid, scale, 2);
break;
case COLLADAFW::AnimationList::POSITION_XYZ:
change_fcurve(ob, anim_uid, scale, -1);
break;
default:
fprintf(stderr, "AnimationClass %d is not supported for TRANSLATE transformation.\n", binding.animationClass);
}
}
}
break;
case COLLADAFW::Transformation::MATRIX:
case COLLADAFW::Transformation::SKEW:
case COLLADAFW::Transformation::LOOKAT:
fprintf(stderr, "Animation of MATRIX, SKEW and LOOKAT transformations is not supported yet.\n");
break;
}
return true;
}
// TODO move it somewhere better place
void mat4_from_dae_mat4(float out[][4], const COLLADABU::Math::Matrix4& in) {
// in DAE, matrices use columns vectors, (see comments in COLLADABUMathMatrix4.h)
// so here, to make a blender matrix, we simply swap columns and rows
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
out[i][j] = in[j][i];
}
}
}
/** When this method is called, the writer must write the skin controller data.
@return The writer should return true, if writing succeeded, false otherwise.*/
virtual bool writeSkinControllerData( const COLLADAFW::SkinControllerData* skin )
{
// use inverse bind matrices to construct armature
// it is safe to invert them to get the original matrices
// because if they are inverse matrices, they can be inverted
// just do like so:
// - create armature
// - enter editmode
// - add edit bones and head/tail properties using matrices and parent-child info
// - exit edit mode
// store join inv bind matrix to use it later in armature construction
const COLLADAFW::Matrix4Array& inv_bind_mats = skin->getInverseBindMatrices();
int i;
for (i = 0; i < skin->getJointsCount(); i++) {
JointData jd;
mat4_from_dae_mat4(jd.inv_bind_mat, inv_bind_mats[i]);
joint_index_to_joint_info_map[i] = jd;
}
// see COLLADAFW::validate for an example of how to use SkinControllerData
/* what should I do here?
- create armature (should I create it here or somewhere else?)
- create bones
- create vertex group for each bone?
- create MDeformVerts? - no, I don't know what mesh to modify
is it possible to create MDeformVerts & vertex groups without assigning them to a mesh or object
- set weights
- map something(armature, vgoups, dverts) to skin controller uid, so I can use it in controller
*/
/*const std::string& skin_id = skinControllerData->getOriginalId();
size_t num_bones = skinControllerData->getJointsCount();
bArmature *arm = add_armature((char*)skin_id.c_str());
if (!arm) {
fprintf(stderr, "Cannot create armature. \n");
return true;
}
for (int i = 0; i < num_bones; i++) {
// create bone
//addEditBone(arm, "my_bone");
Bone *bone = (Bone*)MEM_callocN(sizeof(Bone), "Bone");
BLI_strncpy(bone->name, "bone", 32);
//unique_bone_name(arm, "my_bone");
BLI_addtail(&arm->bonebase, bone);
bone->flag |= BONE_TIPSEL;
bone->weight= 1.0f;
bone->dist= 0.25f;
bone->xwidth= 0.1f;
bone->zwidth= 0.1f;
bone->ease1= 1.0f;
bone->ease2= 1.0f;
bone->rad_head= 0.10f;
bone->rad_tail= 0.05f;
bone->segments= 1;
bone->layer= arm->layer;
// TODO: add inverse bind matrices
i++;
}
this->uid_controller_map[skinControllerData->getUniqueId()] = arm;
*/
return true;
}
// this is called on postprocess, before writeVisualScenes
virtual bool writeController( const COLLADAFW::Controller* controller )
{
// here we:
// - create armature
// - create EditBones, not setting parent-child relationships
// - store armature
Scene *sce = CTX_data_scene(mContext);
const COLLADAFW::UniqueId& skin_id = controller->getUniqueId();
if (controller->getControllerType() == COLLADAFW::Controller::CONTROLLER_TYPE_SKIN) {
Object *ob_arm = add_object(sce, OB_ARMATURE);
COLLADAFW::SkinController *skinco = (COLLADAFW::SkinController*)controller;
const COLLADAFW::UniqueId& id = skinco->getSkinControllerData();
// "Node" ids
const COLLADAFW::UniqueIdArray& joint_ids = skinco->getJoints();
int i;
for (i = 0; i < joint_ids.getCount(); i++) {
// store armature pointer
JointData& jd = joint_index_to_joint_info_map[i];
jd.ob_arm = ob_arm;
// now we'll be able to get inv bind matrix from joint id
joint_id_to_joint_index_map[joint_ids[i]] = i;
}
/*if (uid_controller_map.find(skin_id) == uid_controller_map.end()) {
fprintf(stderr, "Cannot find armature by UID.\n");
return true;
}*/
//bArmature *arm = uid_controller_map[skin_id];
// map mesh to controller's uid
//const COLLADAFW::UniqueId& geom_uid = skin->getSource();
//this->skinid_meshid_map[skin_id] = geom_uid;
}
// morph controller
else {
}
return true;
}
};
void DocumentImporter::import(bContext *C, const char *filename)
{
Writer w(C, filename);
w.write();
}