Fix #146836: Auto merge not working in edit mode

Regression in [0] removed checks for indices referencing themselves
which need to be kept but can still be used as targets.

Restore this logic as well as fixing another problem (#147022)
where auto-merge would not merge into the nearest vertex, this
was especially noticeable then the threshold was set to a large value
but would happen at smaller values too.

[0]: bdae3e28a2
This commit is contained in:
Campbell Barton
2025-09-30 07:37:14 +00:00
parent d21f9fa07d
commit a59be80d38
3 changed files with 53 additions and 12 deletions

View File

@@ -107,6 +107,9 @@ int BLI_kdtree_nd_(calc_duplicates_fast)(const KDTree *tree,
* which other indices are merged into.
*
* \param tree: A tree, all indices *must* be unique.
* \param has_self_index: When true, account for indices
* in the `duplicates` array that reference themselves,
* prioritizing them as targets before de-duplicating the remainder with each other.
* \param deduplicate_cb: A function which receives duplicate indices,
* it must choose the "target" index to keep which is returned.
* The return value is an index in the `cluster` array (a value from `0..cluster_num`).
@@ -120,6 +123,7 @@ int BLI_kdtree_nd_(calc_duplicates_fast)(const KDTree *tree,
int BLI_kdtree_nd_(calc_duplicates_cb)(const KDTree *tree,
const float range,
int *duplicates,
bool has_self_index,
int (*deduplicate_cb)(void *user_data,
const int *cluster,
int cluster_num),
@@ -199,12 +203,14 @@ template<typename Fn>
inline int BLI_kdtree_nd_(calc_duplicates_cb_cpp)(const KDTree *tree,
const float distance,
int *duplicates,
const bool has_self_index,
const Fn &fn)
{
return BLI_kdtree_nd_(calc_duplicates_cb)(
tree,
distance,
duplicates,
has_self_index,
[](void *user_data, const int *cluster, int cluster_num) -> int {
const Fn &fn = *static_cast<const Fn *>(user_data);
return fn(cluster, cluster_num);

View File

@@ -9,7 +9,6 @@
#include "MEM_guardedalloc.h"
#include "BLI_array.hh"
#include "BLI_bit_vector.hh"
#include "BLI_kdtree_impl.h"
#include "BLI_math_base.h"
#include "BLI_utildefines.h"
@@ -899,6 +898,7 @@ int BLI_kdtree_nd_(calc_duplicates_fast)(const KDTree *tree,
int BLI_kdtree_nd_(calc_duplicates_cb)(const KDTree *tree,
const float range,
int *duplicates,
const bool has_self_index,
int (*duplicates_cb)(void *user_data,
const int *cluster,
int cluster_num),
@@ -916,26 +916,59 @@ int BLI_kdtree_nd_(calc_duplicates_cb)(const KDTree *tree,
index_to_node_index[tree->nodes[i].index] = int(i);
}
blender::BitVector<> visited(tree->max_node_index + 1, false);
int found = 0;
/* First pass, handle merging into self-index (if any exist). */
if (has_self_index) {
blender::Array<float> duplicates_dist_sq(tree->max_node_index + 1);
for (uint i = 0; i < nodes_len; i++) {
const int node_index = tree->nodes[i].index;
if (node_index != duplicates[node_index]) {
continue;
}
const float *search_co = tree->nodes[index_to_node_index[node_index]].co;
auto accumulate_neighbors_fn =
[&duplicates, &node_index, &duplicates_dist_sq, &found](
int neighbor_index, const float * /*co*/, const float dist_sq) -> bool {
const int target_index = duplicates[neighbor_index];
if (target_index == -1) {
duplicates[neighbor_index] = node_index;
duplicates_dist_sq[neighbor_index] = dist_sq;
found += 1;
}
/* Don't steal from self references. */
else if (target_index != neighbor_index) {
float &dist_sq_best = duplicates_dist_sq[neighbor_index];
/* Steal the target if it's closer. */
if (dist_sq < dist_sq_best) {
dist_sq_best = dist_sq;
duplicates[neighbor_index] = node_index;
}
}
return true;
};
BLI_kdtree_nd_(range_search_cb_cpp)(tree, search_co, range, accumulate_neighbors_fn);
}
}
/* Second pass, de-duplicate clusters that weren't handled in the first pass. */
/* Could be inline, declare here to avoid re-allocation. */
blender::Vector<int> cluster;
int found = 0;
for (uint i = 0; i < nodes_len; i++) {
const int node_index = tree->nodes[i].index;
if ((duplicates[node_index] != -1) || visited[node_index]) {
if (duplicates[node_index] != -1) {
continue;
}
BLI_assert(cluster.is_empty());
const float *search_co = tree->nodes[index_to_node_index[node_index]].co;
visited[node_index].set();
auto accumulate_neighbors_fn = [&duplicates, &visited, &cluster](int neighbor_index,
const float * /*co*/,
float /*dist_sq*/) -> bool {
if ((duplicates[neighbor_index] == -1) && !visited[neighbor_index]) {
auto accumulate_neighbors_fn = [&duplicates, &cluster](int neighbor_index,
const float * /*co*/,
const float /*dist_sq*/) -> bool {
if (duplicates[neighbor_index] == -1) {
cluster.append(neighbor_index);
visited[neighbor_index].set();
}
return true;
};

View File

@@ -677,12 +677,14 @@ static int *bmesh_find_doubles_by_distance_impl(BMesh *bm,
{
int *duplicates = MEM_malloc_arrayN<int>(verts_len, __func__);
bool found_duplicates = false;
bool has_self_index = false;
KDTree_3d *tree = BLI_kdtree_3d_new(verts_len);
for (int i = 0; i < verts_len; i++) {
BLI_kdtree_3d_insert(tree, i, verts[i]->co);
if (has_keep_vert && BMO_vert_flag_test(bm, verts[i], VERT_KEEP)) {
duplicates[i] = i;
has_self_index = true;
}
else {
duplicates[i] = -1;
@@ -730,7 +732,7 @@ static int *bmesh_find_doubles_by_distance_impl(BMesh *bm,
};
found_duplicates = BLI_kdtree_3d_calc_duplicates_cb_cpp(
tree, dist, duplicates, deduplicate_target_calc_fn) != 0;
tree, dist, duplicates, has_self_index, deduplicate_target_calc_fn) != 0;
BLI_kdtree_3d_free(tree);