Files
test2/source/blender/blenlib/BLI_vector_set.hh
илья _ bfb0d2ad20 Fix #144846: Mesh triangulation can generate duplicate faces and edges
Mesh invariants imply that edges and faces must be unique, so things
like reversed edges or duplicate faces with equal vertices are invalid.
For this reason, every time we generate new elements we have to ensure
that all new elements are unique between each other and already existing
elements. The recent refactor (ea875f6f32) introduced a new
algorithm to generate new mesh elements, and deduplication of new
elements was also a part of it. The problem is that the deduplication
only guaranteed that the original elements and new elements don't
overlap; deduplication between each new elements is not complete.

To solve the problem both new triangles and new edges have to be
deduplicated, even if there is no duplicates. Just to know this we have
to build a hash sets.

Triangle deduplication is a special part of the triangulation code,
but edges already handled elsewhere in the code base.

This refactor fixes this by replacing the original approach with one
which guarantees distinct faces and edges in the result.

Unfortunately, this fix increases runtime of the node 10x for a simple
cube with 500-vertex sides. It should be possible to make the
performance better again, but that requires more work.

Other work had to be done to enable this, so this depends on:
- [x] 157e7e0351
- [x] fa8574b80b

Co-authored-by: Hans Goudey <hans@blender.org>
Pull Request: https://projects.blender.org/blender/blender/pulls/147634
2025-10-09 19:29:18 +02:00

1152 lines
33 KiB
C++

/* SPDX-FileCopyrightText: 2023 Blender Authors
*
* SPDX-License-Identifier: GPL-2.0-or-later */
#pragma once
/** \file
* \ingroup bli
*
* A `blender::VectorSet<Key>` is an ordered container for elements of type `Key`. It has the same
* interface as `blender::Set` with the following extensions:
* - The insertion order of keys is maintained as long as no elements are removed.
* - The keys are stored in a contiguous array.
*
* All core operations (add, remove and contains) can be done in O(1) amortized expected time.
*
* Using a VectorSet instead of a normal Set can be beneficial in any of the following
* circumstances:
* - The insertion order is important.
* - Iteration over all keys has to be fast.
* - The keys in the set are supposed to be passed to a function that does not have to know that
* the keys are stored in a set. With a VectorSet, one can get a Span containing all keys
* without additional copies.
*
* blender::VectorSet is implemented using open addressing in a slot array with a power-of-two
* size. Other than in blender::Set, a slot does not contain the key though. Instead it only
* contains an index into an array of keys that is stored separately.
*
* Some noteworthy information:
* - Key must be a movable type.
* - Pointers to keys might be invalidated, when the vector set is changed or moved.
* - The hash function can be customized. See BLI_hash.hh for details.
* - The probing strategy can be customized. See BLI_probing_strategies.hh for details.
* - The slot type can be customized. See BLI_vector_set_slots.hh for details.
* - The methods `add_new` and `remove_contained` should be used instead of `add` and `remove`
* whenever appropriate. Assumptions and intention are described better this way.
* - Using a range-for loop over a vector set, is as efficient as iterating over an array (because
* it is the same thing).
* - Lookups can be performed using types other than Key without conversion. For that use the
* methods ending with `_as`. The template parameters Hash and IsEqual have to support the other
* key type. This can greatly improve performance when the strings are used as keys.
* - The default constructor is cheap.
* - The `print_stats` method can be used to get information about the distribution of keys and
* memory usage.
*/
#include "BLI_array.hh"
#include "BLI_hash.hh"
#include "BLI_hash_tables.hh"
#include "BLI_probing_strategies.hh"
#include "BLI_vector.hh"
#include "BLI_vector_set_slots.hh"
namespace blender {
template<
/**
* Type of the elements that are stored in this set. It has to be movable. Furthermore, the
* hash and is-equal functions have to support it.
*/
typename Key,
/**
* The number of values that can be stored in the container without a heap allocation.
*/
int64_t InlineBufferCapacity = default_inline_buffer_capacity(sizeof(Key)),
/**
* The strategy used to deal with collisions. They are defined in BLI_probing_strategies.hh.
*/
typename ProbingStrategy = DefaultProbingStrategy,
/**
* The hash function used to hash the keys. There is a default for many types. See BLI_hash.hh
* for examples on how to define a custom hash function.
*/
typename Hash = DefaultHash<Key>,
/**
* The equality operator used to compare keys. By default it will simply compare keys using the
* `==` operator.
*/
typename IsEqual = DefaultEquality<Key>,
/**
* This is what will actually be stored in the hash table array. At a minimum a slot has to be
* able to hold an array index and information about whether the slot is empty, occupied or
* removed. Using a non-standard slot type can improve performance for some types.
* Also see BLI_vector_set_slots.hh.
*/
typename Slot = typename DefaultVectorSetSlot<Key>::type,
/**
* The allocator used by this set. Should rarely be changed, except when you don't want that
* MEM_* etc. is used internally.
*/
typename Allocator = GuardedAllocator>
class VectorSet {
public:
using value_type = Key;
using pointer = Key *;
using const_pointer = const Key *;
using reference = Key &;
using const_reference = const Key &;
using iterator = Key *;
using const_iterator = const Key *;
using size_type = int64_t;
private:
/**
* Slots are either empty, occupied or removed. The number of occupied slots can be computed by
* subtracting the removed slots from the occupied-and-removed slots.
*/
int64_t removed_slots_;
int64_t occupied_and_removed_slots_;
/**
* The maximum number of slots that can be used (either occupied or removed) until the set has to
* grow. This is the total number of slots times the max load factor.
*/
int64_t usable_slots_;
/**
* The number of slots minus one. This is a bit mask that can be used to turn any integer into a
* valid slot index efficiently.
*/
uint64_t slot_mask_;
/** This is called to hash incoming keys. */
BLI_NO_UNIQUE_ADDRESS Hash hash_;
/** This is called to check equality of two keys. */
BLI_NO_UNIQUE_ADDRESS IsEqual is_equal_;
/** The max load factor is 1/2 = 50% by default. */
#define LOAD_FACTOR 1, 2
static constexpr LoadFactor max_load_factor_ = LoadFactor(LOAD_FACTOR);
using SlotArray = Array<Slot, LoadFactor::compute_total_slots(4, LOAD_FACTOR), Allocator>;
#undef LOAD_FACTOR
/**
* This is the array that contains the actual slots. There is always at least one empty slot and
* the size of the array is a power of two.
*/
SlotArray slots_;
/** A buffer for #keys_ that will remain uninitialized until it is used. */
BLI_NO_UNIQUE_ADDRESS TypedBuffer<Key, InlineBufferCapacity> inline_buffer_;
/**
* Pointer to an array that contains all keys. The keys are sorted by insertion order as long as
* no keys are removed. The first set->size() elements in this array are initialized. The
* capacity of the array is usable_slots_.
*/
Key *keys_;
/** Iterate over a slot index sequence for a given hash. */
#define VECTOR_SET_SLOT_PROBING_BEGIN(HASH, R_SLOT) \
SLOT_PROBING_BEGIN (ProbingStrategy, HASH, slot_mask_, SLOT_INDEX) \
auto &R_SLOT = slots_[SLOT_INDEX];
#define VECTOR_SET_SLOT_PROBING_END() SLOT_PROBING_END()
/**
* Be a friend with other template instantiations. This is necessary to implement some memory
* management logic.
*/
template<typename Other,
int64_t OtherInlineBufferCapacity,
typename OtherProbingStrategy,
typename OtherHash,
typename OtherIsEqual,
typename OtherSlot,
typename OtherAllocator>
friend class VectorSet;
public:
/**
* Initialize an empty vector set. This is a cheap operation and won't do an allocation. This is
* necessary to avoid a high cost when no elements are added at all. An optimized grow operation
* is performed on the first insertion.
*/
VectorSet(Allocator allocator = {}) noexcept
: removed_slots_(0),
occupied_and_removed_slots_(0),
usable_slots_(0),
slot_mask_(0),
slots_(1, allocator)
{
keys_ = inline_buffer_;
}
VectorSet(Hash hash, IsEqual is_equal) : VectorSet()
{
hash_ = std::move(hash);
is_equal_ = std::move(is_equal);
}
VectorSet(NoExceptConstructor, Allocator allocator = {}) : VectorSet(allocator) {}
VectorSet(Span<Key> keys, Allocator allocator = {}) : VectorSet(NoExceptConstructor(), allocator)
{
this->add_multiple(keys);
}
/**
* Construct a vector set that contains the given keys. Duplicates will be removed automatically.
*/
VectorSet(const std::initializer_list<Key> &keys, Allocator allocator = {})
: VectorSet(Span(keys), allocator)
{
}
~VectorSet()
{
destruct_n(keys_, this->size());
if (keys_ != inline_buffer_) {
this->deallocate_keys_array(keys_);
}
}
VectorSet(const VectorSet &other) : slots_(other.slots_)
{
if (other.size() <= InlineBufferCapacity) {
usable_slots_ = other.size();
keys_ = inline_buffer_;
}
else {
keys_ = this->allocate_keys_array(other.usable_slots_);
usable_slots_ = other.usable_slots_;
}
try {
uninitialized_copy_n(other.keys_, other.size(), keys_);
}
catch (...) {
if (keys_ != inline_buffer_) {
this->deallocate_keys_array(keys_);
}
throw;
}
removed_slots_ = other.removed_slots_;
occupied_and_removed_slots_ = other.occupied_and_removed_slots_;
slot_mask_ = other.slot_mask_;
hash_ = other.hash_;
is_equal_ = other.is_equal_;
}
template<int64_t OtherInlineBufferCapacity>
VectorSet(
VectorSet<Key, OtherInlineBufferCapacity, ProbingStrategy, Hash, IsEqual, Slot, Allocator>
&&other) noexcept
: removed_slots_(other.removed_slots_),
occupied_and_removed_slots_(other.occupied_and_removed_slots_),
slot_mask_(other.slot_mask_),
slots_(std::move(other.slots_))
{
if (other.is_inline()) {
const int64_t size = other.size();
usable_slots_ = size;
constexpr bool other_is_same_type = std::is_same_v<VectorSet, std::decay_t<decltype(other)>>;
constexpr size_t max_full_copy_size = 32;
if constexpr (other_is_same_type && std::is_trivial_v<Key> &&
sizeof(inline_buffer_) <= max_full_copy_size)
{
/* Optimize by copying the full inline buffer. Similar to #Vector move constructor. */
keys_ = inline_buffer_;
if (size > 0) {
memcpy(inline_buffer_, other.inline_buffer_, sizeof(inline_buffer_));
}
}
else {
if (OtherInlineBufferCapacity <= InlineBufferCapacity || size <= InlineBufferCapacity) {
keys_ = inline_buffer_;
}
else {
keys_ = this->allocate_keys_array(size);
}
uninitialized_relocate_n(other.keys_, size, keys_);
}
}
else {
keys_ = other.keys_;
usable_slots_ = other.usable_slots_;
}
other.removed_slots_ = 0;
other.occupied_and_removed_slots_ = 0;
other.usable_slots_ = 0;
other.slot_mask_ = 0;
other.slots_ = SlotArray(1);
other.keys_ = other.inline_buffer_;
}
VectorSet &operator=(const VectorSet &other)
{
return copy_assign_container(*this, other);
}
VectorSet &operator=(VectorSet &&other)
{
return move_assign_container(*this, std::move(other));
}
/**
* Get the key stored at the given position in the vector.
*/
const Key &operator[](const int64_t index) const
{
BLI_assert(index >= 0);
BLI_assert(index <= this->size());
return keys_[index];
}
operator Span<Key>() const
{
return Span<Key>(keys_, this->size());
}
/**
* Get a Span referencing the keys vector. The referenced memory buffer is only valid as
* long as the vector set is not changed.
*
* The keys must not be changed, because this would change their hash value.
*/
Span<Key> as_span() const
{
return *this;
}
/**
* Add a new key to the vector set. This invokes undefined behavior when the key is in the set
* already. When you know for certain that a key is not in the set yet, use this method for
* better performance. This also expresses the intent better.
*/
void add_new(const Key &key)
{
this->add_new__impl(key, hash_(key));
}
void add_new(Key &&key)
{
this->add_new__impl(std::move(key), hash_(key));
}
/**
* Add a key to the vector set. If the key exists in the set already, nothing is done. The return
* value is true if the key was newly added.
*
* This is similar to std::unordered_set::insert.
*/
bool add(const Key &key)
{
return this->add_as(key);
}
bool add(Key &&key)
{
return this->add_as(std::move(key));
}
template<typename ForwardKey> bool add_as(ForwardKey &&key)
{
return this->add__impl(std::forward<ForwardKey>(key), hash_(key));
}
/**
* Similar to #add but reinserts the key if it already exists. Using this only makes sense if the
* key contains additional data besides what affects the hash.
*
* \note This is different from first removing and then adding the key again, because
* #add_overwrite does not change the index where the value is stored. Removing an element can
* change the order of elements.
*
* \return True if the key was newly added, false if it was already present and was overwritten.
*/
bool add_overwrite(const Key &key)
{
return this->add_overwrite_as(key);
}
bool add_overwrite(Key &&key)
{
return this->add_overwrite_as(std::move(key));
}
template<typename ForwardKey> bool add_overwrite_as(ForwardKey &&key)
{
return this->add_overwrite__impl(std::forward<ForwardKey>(key), hash_(key));
}
/**
* Convenience function to add many keys to the vector set at once. Duplicates are removed
* automatically.
*
* We might be able to make this faster than sequentially adding all keys, but that is not
* implemented yet.
*/
void add_multiple(Span<Key> keys)
{
for (const Key &key : keys) {
this->add(key);
}
}
/**
* Returns true if the key is in the vector set.
*
* This is similar to std::unordered_set::find() != std::unordered_set::end().
*/
bool contains(const Key &key) const
{
return this->contains_as(key);
}
template<typename ForwardKey> bool contains_as(const ForwardKey &key) const
{
return this->contains__impl(key, hash_(key));
}
/**
* Deletes the key from the set. Returns true when the key existed in the set and is now removed.
* This might change the order of elements in the vector.
*
* This is similar to std::unordered_set::erase.
*/
bool remove(const Key &key)
{
return this->remove_as(key);
}
template<typename ForwardKey> bool remove_as(const ForwardKey &key)
{
return this->remove__impl(key, hash_(key));
}
/**
* Deletes the key from the set. This invokes undefined behavior when the key is not in the set.
* It might change the order of elements in the vector.
*/
void remove_contained(const Key &key)
{
this->remove_contained_as(key);
}
template<typename ForwardKey> void remove_contained_as(const ForwardKey &key)
{
this->remove_contained__impl(key, hash_(key));
}
/**
* Remove all values for which the given predicate is true and return the number or values
* removed. This may change the order of elements in the vector.
*
* This is similar to std::erase_if.
*/
template<typename Predicate> int64_t remove_if(Predicate &&predicate)
{
const int64_t prev_size = this->size();
for (Slot &slot : slots_) {
if (slot.is_occupied()) {
const int64_t index = slot.index();
const Key &key = keys_[index];
if (predicate(key)) {
this->remove_key_internal(slot);
}
}
}
return prev_size - this->size();
}
/**
* Delete and return a key from the set. This will remove the last element in the vector. The
* order of the remaining elements in the set is not changed.
*/
Key pop()
{
return this->pop__impl();
}
/**
* Return the location of the key in the vector. It is assumed that the key is in the vector
* set. If this is not necessarily the case, use `index_of_try`.
*/
int64_t index_of(const Key &key) const
{
return this->index_of_as(key);
}
template<typename ForwardKey> int64_t index_of_as(const ForwardKey &key) const
{
return this->index_of__impl(key, hash_(key));
}
/**
* Return the location of the key in the vector. If the key is not in the set, -1 is returned.
* If you know for sure that the key is in the set, it is better to use `index_of` instead.
*/
int64_t index_of_try(const Key &key) const
{
return this->index_of_try_as(key);
}
template<typename ForwardKey> int64_t index_of_try_as(const ForwardKey &key) const
{
return this->index_of_try__impl(key, hash_(key));
}
/**
* Return the index of the key in the vector. If the key is not in the set, add it and return its
* index.
*/
int64_t index_of_or_add(const Key &key)
{
return this->index_of_or_add_as(key);
}
int64_t index_of_or_add(Key &&key)
{
return this->index_of_or_add_as(std::move(key));
}
template<typename ForwardKey> int64_t index_of_or_add_as(ForwardKey &&key)
{
return this->index_of_or_add__impl(std::forward<ForwardKey>(key), hash_(key));
}
/**
* Returns the key that is stored in the vector set that compares equal to the given key. This
* invokes undefined behavior when the key is not in the set.
*/
const Key &lookup_key(const Key &key) const
{
return this->lookup_key_as(key);
}
template<typename ForwardKey> const Key &lookup_key_as(const ForwardKey &key) const
{
const Key *key_ptr = this->lookup_key_ptr_as(key);
BLI_assert(key_ptr != nullptr);
return *key_ptr;
}
/**
* Returns the key that compares equal to the given key. If the key is not in the set, the given
* default value is returned instead.
*/
Key lookup_key_default(const Key &key, const Key &default_value) const
{
return this->lookup_key_default_as(key, default_value);
}
template<typename ForwardKey, typename... ForwardDefault>
Key lookup_key_default_as(const ForwardKey &key, ForwardDefault &&...default_key) const
{
const Key *ptr = this->lookup_key_ptr_as(key);
if (ptr == nullptr) {
return Key(std::forward<ForwardDefault>(default_key)...);
}
return *ptr;
}
/**
* Returns a pointer to the key that is stored in the vector set that compares equal to the given
* key. If the key is not in the set, null is returned.
*/
const Key *lookup_key_ptr(const Key &key) const
{
return this->lookup_key_ptr_as(key);
}
template<typename ForwardKey> const Key *lookup_key_ptr_as(const ForwardKey &key) const
{
const int64_t index = this->index_of_try__impl(key, hash_(key));
if (index >= 0) {
return keys_ + index;
}
return nullptr;
}
/**
* Get a pointer to the beginning of the array containing all keys.
*/
const Key *data() const
{
return keys_;
}
const Key *begin() const
{
return keys_;
}
const Key *end() const
{
return keys_ + this->size();
}
/**
* Get an index range containing all valid indices for this array.
*/
IndexRange index_range() const
{
return IndexRange(this->size());
}
/**
* Print common statistics like size and collision count. This is useful for debugging purposes.
*/
void print_stats(const char *name) const
{
HashTableStats stats(*this, this->as_span());
stats.print(name);
}
bool is_inline() const
{
return keys_ == inline_buffer_;
}
/**
* Returns the number of keys stored in the vector set.
*/
int64_t size() const
{
return occupied_and_removed_slots_ - removed_slots_;
}
/**
* Returns true if no keys are stored.
*/
bool is_empty() const
{
return occupied_and_removed_slots_ == removed_slots_;
}
/**
* Returns the number of available slots. This is mostly for debugging purposes.
*/
int64_t capacity() const
{
return slots_.size();
}
/**
* Returns the amount of removed slots in the set. This is mostly for debugging purposes.
*/
int64_t removed_amount() const
{
return removed_slots_;
}
/**
* Returns the bytes required per element. This is mostly for debugging purposes.
*/
int64_t size_per_element() const
{
return sizeof(Slot) + sizeof(Key);
}
/**
* Returns the approximate memory requirements of the set in bytes. This is more correct for
* larger sets.
*/
int64_t size_in_bytes() const
{
return int64_t(sizeof(Slot) * slots_.size() + sizeof(Key) * usable_slots_);
}
/**
* Potentially resize the vector set such that it can hold n elements without doing another grow.
*/
void reserve(const int64_t n)
{
if (usable_slots_ < n) {
this->realloc_and_reinsert(n);
}
}
/**
* Remove all elements. Under some circumstances #clear_and_keep_capacity may be more efficient.
*/
void clear()
{
std::destroy_at(this);
new (this) VectorSet(NoExceptConstructor{});
}
/**
* Remove all elements, but don't free the underlying memory.
*
* This can be more efficient than using #clear if approximately the same or more elements are
* added again afterwards. If way fewer elements are added instead, the cost of maintaining a
* large hash table can lead to very bad worst-case performance.
*/
void clear_and_keep_capacity()
{
destruct_n(keys_, this->size());
for (Slot &slot : slots_) {
slot.~Slot();
new (&slot) Slot();
}
removed_slots_ = 0;
occupied_and_removed_slots_ = 0;
}
/**
* Get the number of collisions that the probing strategy has to go through to find the key or
* determine that it is not in the set.
*/
int64_t count_collisions(const Key &key) const
{
return this->count_collisions__impl(key, hash_(key));
}
using VectorT = Vector<Key, default_inline_buffer_capacity(sizeof(Key)), Allocator>;
/**
* Extracts all inserted values as a #Vector. The values are removed from the #VectorSet. This
* takes O(1) time.
*
* The caller does not need special handling for when the data is stored inline in the vector
* set.
*
* One can use this to create a #Vector without duplicates efficiently.
*/
VectorT extract_vector()
{
const int64_t size = this->size();
VectorData<Key, Allocator> data;
if (this->is_inline()) {
data.data = this->allocate_keys_array(size);
data.size = size;
data.capacity = size;
try {
uninitialized_relocate_n(keys_, size, data.data);
}
catch (...) {
this->deallocate_keys_array(data.data);
throw;
}
}
else {
data.data = keys_;
data.size = size;
data.capacity = usable_slots_;
}
/* Reset some values so that the destructor does not free the data that is moved to the
* #Vector. */
keys_ = inline_buffer_;
occupied_and_removed_slots_ = 0;
removed_slots_ = 0;
std::destroy_at(this);
new (this) VectorSet();
return VectorT(data);
}
private:
BLI_NOINLINE void realloc_and_reinsert(const int64_t min_usable_slots)
{
int64_t total_slots, usable_slots;
max_load_factor_.compute_total_and_usable_slots(
SlotArray::inline_buffer_capacity(), min_usable_slots, &total_slots, &usable_slots);
BLI_assert(total_slots >= 1);
const uint64_t new_slot_mask = uint64_t(total_slots) - 1;
/* Optimize the case when the set was empty beforehand. We can avoid some copies here. */
if (this->size() == 0) {
try {
slots_.reinitialize(total_slots);
Key *new_keys;
if (usable_slots <= InlineBufferCapacity) {
new_keys = inline_buffer_;
}
else {
new_keys = this->allocate_keys_array(usable_slots);
}
if (keys_ != inline_buffer_) {
this->deallocate_keys_array(keys_);
}
keys_ = new_keys;
}
catch (...) {
this->noexcept_reset();
throw;
}
removed_slots_ = 0;
occupied_and_removed_slots_ = 0;
usable_slots_ = usable_slots;
slot_mask_ = new_slot_mask;
return;
}
SlotArray new_slots(total_slots);
try {
for (Slot &slot : slots_) {
if (slot.is_occupied()) {
this->add_after_grow(slot, new_slots, new_slot_mask);
slot.remove();
}
}
slots_ = std::move(new_slots);
}
catch (...) {
this->noexcept_reset();
throw;
}
/* Allocate the new keys array, or use the inline buffer if possible. */
Key *new_keys;
if (usable_slots <= InlineBufferCapacity) {
new_keys = inline_buffer_;
}
else {
new_keys = this->allocate_keys_array(usable_slots);
}
/* Copy the keys to the new array. When the inline buffer isn't used before and after the
* reallocation (`new_keys` also references the inline buffer), no copying is necessary. */
if (new_keys != keys_) {
try {
uninitialized_relocate_n(keys_, this->size(), new_keys);
}
catch (...) {
if (new_keys != inline_buffer_) {
this->deallocate_keys_array(new_keys);
}
this->noexcept_reset();
throw;
}
}
/* Free the old keys array. */
if (keys_ != inline_buffer_) {
this->deallocate_keys_array(keys_);
}
keys_ = new_keys;
occupied_and_removed_slots_ -= removed_slots_;
usable_slots_ = usable_slots;
removed_slots_ = 0;
slot_mask_ = new_slot_mask;
}
void add_after_grow(Slot &old_slot, SlotArray &new_slots, const uint64_t new_slot_mask)
{
const Key &key = keys_[old_slot.index()];
const uint64_t hash = old_slot.get_hash(key, Hash());
SLOT_PROBING_BEGIN (ProbingStrategy, hash, new_slot_mask, slot_index) {
Slot &slot = new_slots[slot_index];
if (slot.is_empty()) {
slot.occupy(old_slot.index(), hash);
return;
}
}
SLOT_PROBING_END();
}
void noexcept_reset() noexcept
{
Allocator allocator = slots_.allocator();
this->~VectorSet();
new (this) VectorSet(NoExceptConstructor(), allocator);
}
template<typename ForwardKey>
bool contains__impl(const ForwardKey &key, const uint64_t hash) const
{
VECTOR_SET_SLOT_PROBING_BEGIN (hash, slot) {
if (slot.is_empty()) {
return false;
}
if (slot.contains(key, is_equal_, hash, keys_)) {
return true;
}
}
VECTOR_SET_SLOT_PROBING_END();
}
template<typename ForwardKey> void add_new__impl(ForwardKey &&key, const uint64_t hash)
{
BLI_assert(!this->contains_as(key));
this->ensure_can_add();
VECTOR_SET_SLOT_PROBING_BEGIN (hash, slot) {
if (slot.is_empty()) {
int64_t index = this->size();
Key *dst = keys_ + index;
new (dst) Key(std::forward<ForwardKey>(key));
BLI_assert(hash_(*dst) == hash);
slot.occupy(index, hash);
occupied_and_removed_slots_++;
return;
}
}
VECTOR_SET_SLOT_PROBING_END();
}
template<typename ForwardKey> bool add__impl(ForwardKey &&key, const uint64_t hash)
{
this->ensure_can_add();
VECTOR_SET_SLOT_PROBING_BEGIN (hash, slot) {
if (slot.is_empty()) {
const int64_t index = this->size();
Key *dst = keys_ + index;
new (dst) Key(std::forward<ForwardKey>(key));
BLI_assert(hash_(*dst) == hash);
slot.occupy(index, hash);
occupied_and_removed_slots_++;
return true;
}
if (slot.contains(key, is_equal_, hash, keys_)) {
return false;
}
}
VECTOR_SET_SLOT_PROBING_END();
}
template<typename ForwardKey> bool add_overwrite__impl(ForwardKey &&key, const uint64_t hash)
{
this->ensure_can_add();
VECTOR_SET_SLOT_PROBING_BEGIN (hash, slot) {
if (slot.is_empty()) {
const int64_t index = this->size();
Key *dst = keys_ + index;
new (dst) Key(std::forward<ForwardKey>(key));
BLI_assert(hash_(*dst) == hash);
slot.occupy(index, hash);
occupied_and_removed_slots_++;
return true;
}
if (slot.contains(key, is_equal_, hash, keys_)) {
const int64_t index = slot.index();
Key &stored_key = keys_[index];
stored_key = std::forward<ForwardKey>(key);
BLI_assert(hash_(stored_key) == hash);
return false;
}
}
VECTOR_SET_SLOT_PROBING_END();
}
template<typename ForwardKey>
int64_t index_of__impl(const ForwardKey &key, const uint64_t hash) const
{
BLI_assert(this->contains_as(key));
VECTOR_SET_SLOT_PROBING_BEGIN (hash, slot) {
if (slot.contains(key, is_equal_, hash, keys_)) {
return slot.index();
}
}
VECTOR_SET_SLOT_PROBING_END();
}
template<typename ForwardKey>
int64_t index_of_try__impl(const ForwardKey &key, const uint64_t hash) const
{
VECTOR_SET_SLOT_PROBING_BEGIN (hash, slot) {
if (slot.contains(key, is_equal_, hash, keys_)) {
return slot.index();
}
if (slot.is_empty()) {
return -1;
}
}
VECTOR_SET_SLOT_PROBING_END();
}
template<typename ForwardKey>
int64_t index_of_or_add__impl(ForwardKey &&key, const uint64_t hash)
{
this->ensure_can_add();
VECTOR_SET_SLOT_PROBING_BEGIN (hash, slot) {
if (slot.contains(key, is_equal_, hash, keys_)) {
return slot.index();
}
if (slot.is_empty()) {
const int64_t index = this->size();
Key *dst = keys_ + index;
new (dst) Key(std::forward<ForwardKey>(key));
BLI_assert(hash_(*dst) == hash);
slot.occupy(index, hash);
occupied_and_removed_slots_++;
return index;
}
}
VECTOR_SET_SLOT_PROBING_END();
}
Key pop__impl()
{
BLI_assert(this->size() > 0);
const int64_t index_to_pop = this->size() - 1;
Key key = std::move(keys_[index_to_pop]);
keys_[index_to_pop].~Key();
const uint64_t hash = hash_(key);
removed_slots_++;
VECTOR_SET_SLOT_PROBING_BEGIN (hash, slot) {
if (slot.has_index(index_to_pop)) {
slot.remove();
return key;
}
}
VECTOR_SET_SLOT_PROBING_END();
}
template<typename ForwardKey> bool remove__impl(const ForwardKey &key, const uint64_t hash)
{
VECTOR_SET_SLOT_PROBING_BEGIN (hash, slot) {
if (slot.contains(key, is_equal_, hash, keys_)) {
this->remove_key_internal(slot);
return true;
}
if (slot.is_empty()) {
return false;
}
}
VECTOR_SET_SLOT_PROBING_END();
}
template<typename ForwardKey>
void remove_contained__impl(const ForwardKey &key, const uint64_t hash)
{
BLI_assert(this->contains_as(key));
VECTOR_SET_SLOT_PROBING_BEGIN (hash, slot) {
if (slot.contains(key, is_equal_, hash, keys_)) {
this->remove_key_internal(slot);
return;
}
}
VECTOR_SET_SLOT_PROBING_END();
}
void remove_key_internal(Slot &slot)
{
int64_t index_to_remove = slot.index();
int64_t size = this->size();
int64_t last_element_index = size - 1;
if (index_to_remove < last_element_index) {
keys_[index_to_remove] = std::move(keys_[last_element_index]);
this->update_slot_index(keys_[index_to_remove], last_element_index, index_to_remove);
}
keys_[last_element_index].~Key();
slot.remove();
removed_slots_++;
}
void update_slot_index(const Key &key, const int64_t old_index, const int64_t new_index)
{
uint64_t hash = hash_(key);
VECTOR_SET_SLOT_PROBING_BEGIN (hash, slot) {
if (slot.has_index(old_index)) {
slot.update_index(new_index);
return;
}
}
VECTOR_SET_SLOT_PROBING_END();
}
template<typename ForwardKey>
int64_t count_collisions__impl(const ForwardKey &key, const uint64_t hash) const
{
int64_t collisions = 0;
VECTOR_SET_SLOT_PROBING_BEGIN (hash, slot) {
if (slot.contains(key, is_equal_, hash, keys_)) {
return collisions;
}
if (slot.is_empty()) {
return collisions;
}
collisions++;
}
VECTOR_SET_SLOT_PROBING_END();
}
void ensure_can_add()
{
if (occupied_and_removed_slots_ >= usable_slots_) {
this->realloc_and_reinsert(this->size() + 1);
BLI_assert(occupied_and_removed_slots_ < usable_slots_);
}
}
Key *allocate_keys_array(const int64_t size)
{
return static_cast<Key *>(
slots_.allocator().allocate(sizeof(Key) * size_t(size), alignof(Key), AT));
}
void deallocate_keys_array(Key *keys)
{
slots_.allocator().deallocate(keys);
}
};
/**
* Same as a normal VectorSet, but does not use Blender's guarded allocator. This is useful when
* allocating memory with static storage duration.
*/
template<typename Key,
int64_t InlineBufferCapacity = 4,
typename ProbingStrategy = DefaultProbingStrategy,
typename Hash = DefaultHash<Key>,
typename IsEqual = DefaultEquality<Key>,
typename Slot = typename DefaultVectorSetSlot<Key>::type>
using RawVectorSet =
VectorSet<Key, InlineBufferCapacity, ProbingStrategy, Hash, IsEqual, Slot, RawAllocator>;
template<typename T, typename GetIDFn> struct CustomIDHash {
using CustomIDType = decltype(GetIDFn{}(std::declval<T>()));
uint64_t operator()(const T &value) const
{
return get_default_hash(GetIDFn{}(value));
}
uint64_t operator()(const CustomIDType &value) const
{
return get_default_hash(value);
}
};
template<typename T, typename GetIDFn> struct CustomIDEqual {
using CustomIDType = decltype(GetIDFn{}(std::declval<T>()));
bool operator()(const T &a, const T &b) const
{
return GetIDFn{}(a) == GetIDFn{}(b);
}
bool operator()(const CustomIDType &a, const T &b) const
{
return a == GetIDFn{}(b);
}
bool operator()(const T &a, const CustomIDType &b) const
{
return GetIDFn{}(a) == b;
}
};
/**
* Used for a set where the key itself isn't used for the hash or equality but some part of the
* key instead. For example the string identifiers of node types.
*
* #GetIDFn should have an implementation that returns a hashable and equality comparable type,
* i.e. `StringRef operator()(const bNode *value) { return value->idname; }`.
*/
template<typename T, typename GetIDFn, int64_t InlineBufferCapacity = 4>
using CustomIDVectorSet = VectorSet<T,
InlineBufferCapacity,
DefaultProbingStrategy,
CustomIDHash<T, GetIDFn>,
CustomIDEqual<T, GetIDFn>>;
} // namespace blender